Новости коэффициент джини показывает

показателе расслоения общества. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения.

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Что такое коэффициент Джини и кривая Лоренца: показатель концентрации доходов и по какой формуле он определяется, сколько составляет в России и в мире. 10%, 30% населения, коэффициент Джини для распределения богатства) Россия опережает любую другую крупную страну.

Среди населения России растет доходное неравенство: почему ускорился этот процесс?

У бедных же денег нет, и большинство из них тонут в болоте кредитов, из-за чего они становятся ещё беднее. Тут, конечно, нужен пример. Смотри, допустим есть 5 человек: Вася Пупкин капитал 20 рублей Иван Иванов капитал 2 000 рублей Средняк Средняков капитал 20 000 рублей Игорь Альфаинвестор капитал 2 000 000 рублей Вагит Алекперов капитал 200 000 000 000 рублей Прошёл год. Вася и Иван, не имея средств к существованию, перебивались мелкими подработками, мелкими кражами и потребительскими кредитами. В итоге, Вася должен банку 100 000 рублей, а Иван — 20 000 рублей. Средняк Средняков как работал, так и работает. Зарплату ему увеличили на сумму инфляции и теперь в конце месяца его капитал составляет 22 000 рублей. Учитывая инфляцию, он остался на том же уровне благосостояния, в отличие от Васька и Ванька, влезших в кредиты. Игорь и Вагит инвестировали свои капиталы в акции и ETF.

Оба получили хорошую доходность. Игорь получил больше в процентах на капитал. Из этого примера видно, насколько тяжело бедным не стать беднее, и насколько просто богатому стать богаче. Даже ничего не делая, получая мизерный процент на многомиллиардный капитал, ты всё равно за отрезок времени разбогатеешь на большую сумму, чем человек с миллионом, организовавший суперприбыльный бизнес, и работающий как белка в колесе. В данном примере есть ещё один показательный персонаж — Средняк Средняков. Он олицетворяет собой человека, живущего от зарплаты до зарплаты. Он не становится беднее, но и богаче тоже не становится. Хотя он находится в той позиции, когда ему намного легче, чем Васе или Ивану начать инвестировать, двигаясь в сторону жизни, когда «деньги делают деньги, которые делают деньги, которые делают деньги, которые… и т.

С другой стороны, ему легче, чем Игорю или, тем более, Вагиту попасть в ситуацию, в которой находятся Вася и Иван. Что бы ни делал человек, он довольно крепко «увязает» в своём финансовом положении.

Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца.

Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию.

Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям.

Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много?

Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели.

Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего.

Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0.

Then double click on the series Population, Total. After the formula is complete, you can verify its syntax by clicking the Validate button. Give a name to your custom indicator and click on Add. To have "not available" values in the database treated as zero within your formula, use the NA function. Later if you wish to see or change the formula for an indicator you have created, from the right side current selection panel click the Edit. Use the DEL key to delete the last entry and step backwards to edit the formula. Click the Clear button to erase the custom indicator formula. Note: Validation will verify a formula for proper syntax only. Derived indicators may yield inappropriate results and caution should be observed. These rules apply only to custom country groups you have created.

Какие страны и почему отличаются высоким показателем джини география реферат

Коэффициент Джини: все ли равны? Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают.
Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения Степень неравенства доходов внутри групп населения (коэффициент Джини) выросла по итогам 2023 года до 0,403, тогда как в 2022 этот показатель составлял 0,395, констатировал Росстат.
Как рассчитать коэффициент Джини в Excel (с примером) Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини.
Что бы сделал Робин Гуд? - Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини.

Коэффициент Джини (распределение дохода)

Gini Coefficient Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково.
Коэффициент Джини (распределение дохода) Коэффициент Джини (индекс концентрации доходов) в целом по России и по субъектам Российской Федерации.
Коэффициент Джини. Формула. Что показывает «Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство».

Кривая Лоренца

Что бы сделал Робин Гуд? Коэффициент Джини показывает степень неравенства в распределении доходов/богатства внутри страны или группы.
В России вырос уровень доходного неравенства | Ямал-Медиа Коэффициент концентрации доходов, или индекс Джини, может быть рассчитан и с помощью других методик.

Некоторые равнее: что такое коэффициент Джини и зачем он нужен

Строится она следующим образом: 1. Берём ось координат, по оси X будем отмерять процент населения обычно принято делить на 5 частей, называемых квинтилями , а по оси Y будем отмерять процент дохода также принято делить на 5 частей. Отмечаем точками, процент от общего дохода, который получает каждый квинтиль. Соединяем линии — Кривая Лоренца готова. Но для определения Коэффициента Джини нужно построить ещё и линию «абсолютного равенства». Линия будет являться биссектрисой между координатными осями. График готов.

Чем больше площадь фигуры, образованной Кривой Лоренца и линией «абсолютного равенства», тем сильнее проявляется в данном обществе неравенство. Коэффициент Джини — это отношение площади этой фигуры к площади треугольника, образованного осью X, линией «абсолютного равенства» и вертикальной линией на отметке 100 по оси X. В результате мы получим значение от 0 до 1. Где 0 — абсолютное равенство, а 1 — абсолютное неравенство когда все доходы принадлежат одному человеку. Если считать по квинтилям, то единицу мы не получим даже в теории, но при разбиении оси X на количество граждан такая ситуация возможна теоретически, если всё принадлежит кому-то одному из представителей данного общества и то, коэффициент всё равно на какие-то миллионные доли будет меньше 1. То есть, чем меньше значение этого коэффициента, тем меньше будет неравенство.

Индекс Джини — это тот же Коэффициент Джини, но выраженный в процентах. Значение индекса находится в пределах от 0 до 100. Децильный коэффициент Помимо Коэффициента Джини есть и другие коэффициенты, отражающие неравенство в обществе. Так, популярностью пользуется также Децильный коэффициент. Дециль — это десятая часть. Например, в офисе трудятся 100 работников от уборщиц до генерального директора.

Дело в большей степени состоит в проблемной выборке для статистической оценки. Так, например, индекс прожиточного минимума высчитывает Минтруд, который не учитывает полное изменение стоимости услуг по всей стране, что на выходе дает более красивую картину по прожиточному минимуму, а значит, население кажется менее бедным, чем есть на самом деле. В обзоре ВШЭ сказано, что Росстат тоже не безгрешен. Он определяет инфляцию и прожиточный минимум на основе цен в городах и не учитывает стоимость товаров в несетевых магазинах в сельской местности. То же касается и услуг. Десятка богатых к десятке бедных Для определения неравенства используется еще так называемый децильный коэффициент.

Этот показатель в России менялся за последнее десятилетие примерно в общей парадигме коэффициента Джини и тоже наглядно показывал разницу в доходах бедных и богатых. По данным Росстата, за последние десять лет наиболее низким децильный коэффициент оказался в 2017 году 15,3 , а самым высоким — в 2008-2010 годах 16,6. По другим оценкам, в истории современной России он в реальности мог достигать и 17. Нормально это или нет? В предвоенной царской России начала XX века, например, по расчетам профессора факультета социологии Санкт-Петербургского государственного университета Бориса Миронова, децильный коэффициент равнялся всего лишь 6,5. В других странах коэффициент сильно разнится, причем далеко не всегда это коррелирует с благополучием страны.

Так, в 2015 году в Южной Корее он составлял 7,8, что считается очень хорошим показателем. Сообразно общей картине различается и коэффициент Джини по странам. В США в 2000-х и 2010-х годах показатель доходил до 0,450, а вот в Великобритании был на уровне 0,360, в Германии — 0,280. Разница очень наглядная. Еще раз доказывающая, что в России действует американская, а не европейская и тем более не восточноазиатская модель экономики.

Теперь, когда у нас есть с чем сравнивать, становится понятно: чем дальше от красной линии или чем ближе к синей линии находится кривая Лоренца — тем более неравномерно распределены доходы. Возникает вполне логичный вопрос: а нет ли какого-то количественного показателя, который бы показывал уровень неравенства?

Такой показатель есть, в 1912 году его вывел итальянский статистик Коррадо Джини 1884-1965 , в честь которого и назван коэффициент. Если мы представим себе, что площадь этого треугольника изображает совершенно неравномерное распределение доходов населения, то площадь фигуры между кривой Лоренца для Казыстана и кривой абсолютного равенства изображает неравенство в Казыстане. Тогда, если мы разделим неравенство Казыстана на абсолютное неравенство площадь треугольника АBC , то узнаем, какую долю неравенство в Казыстане составляет от абсолютного неравенства. Это и будет коэффициентом Джини для Казыстана, а метод расчета коэффициента называется геометрическим методом расчета. Но как посчитать площадь заштрихованной фигуры?

Click the Clear button to erase the custom indicator formula. Note: Validation will verify a formula for proper syntax only. Derived indicators may yield inappropriate results and caution should be observed. These rules apply only to custom country groups you have created.

They do not apply to official groups presented in your selected database. For each selected series, choose your Aggregation Rule and Weight Indicator if needed from the corresponding drop-down boxes. Check the Apply to all box if you wish to use the same methodology for all selected series. Aggregation Rules include: 1. Max: Aggregates are set to the highest available value for each time period. Mean: Aggregates are calculated as the average of available data for each time period.

Индекс Джини в странах мира

В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов – кривой Лоуренса. Свое название данный коэффициент получил по инициалам демографа и статиста Корадо Джини, предложившего эту статистическую модель. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране.

РБК: Росстат зафиксировал рост концентрации доходов в 2023 году

Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. В 2023 году коэффициент Джини (индекс концентрации доходов) составил 0,403, сообщил Росстат. Далее мы покажем, что Коэффициент Джини является абсолютно точной алгебраической интерпретацией Кривой Лоренца, а она в свою очередь является его графическим отображением. На примере коэффициента Джини показано, насколько сильно различается оценка неравенства в зависимости от используемых данных и способов расчета. Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель.

В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи

Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини.

Что бы сделал Робин Гуд?

Неформальная экономическая деятельность, как правило, составляет большую часть истинного экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ. Коэффициент Джини Gini coefficient — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной. Именно она широко применяется в задачах банковского кредитования, страхования и целевом маркетинге. Для полного понимания этой метрики нам для начала необходимо окунуться в экономику и разобраться, для чего она используется там.

Экономика Коэффициент Джини изменяется от 0 до 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения и тем выше уровень общественного неравенства в государстве, и наоборот. В экономике существует несколько способов рассчитать этот коэффициент, мы остановимся на формуле Брауна предварительно необходимо создать вариационный ряд — отранжировать население по доходам : где — число жителей, — кумулятивная доля населения, — кумулятивная доля дохода для Давайте разберем вышеописанное на игрушечном примере, чтобы интуитивно понять смысл этой статистики. Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей.

В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом.

Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца.

Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла.

Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики.

Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни.

Мне кажется, что в ней проще запутаться, а получается ровно то же самое. Чтобы проверить себя, решите задачу. Ответ и решение под спойлерами: Задача Предположим, что в некоторой стране N проживают три группы населения: бедные, средний класс и богатые. Группы равны по численности жителей, но различаются по уровню дохода: средний класс зарабатывает в два раза больше, чем бедные, а богатые зарабатывают в два раза больше, чем средний класс. Внутри групп доходы распределены равномерно.

Нарисуйте график кривой Лоренца и рассчитайте коэффициент Джини.

Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, представляет большую часть реального экономического производства в развивающихся странах и находится в нижней части распределения доходов внутри стран. В обоих случаях это означает, что индекс Джини измеренных доходов будет завышать истинное неравенство доходов.

Точные данные о богатстве получить еще труднее из-за популярности налоговых убежищ. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается свести двумерную область разрыв между кривой Лоренца и линией равенства к одному числу, он скрывает информацию о «форме» неравенства. В бытовом плане это было бы похоже на описание содержимого фотографии исключительно ее длиной по одному краю или простым средним значением яркости пикселей.

Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини. Например, большое количество пенсионеров повышает индекс Джини. В какой стране самый высокий индекс Джини?

Южная Африка с коэффициентом Джини 63,0 в настоящее время признана страной с самым высоким неравенством доходов. World Population Review объясняет это массовое неравенство расовой, гендерной и географической дискриминацией, поскольку белые мужчины и городские рабочие в Южной Африке получают гораздо более высокие зарплаты, чем все остальные. Что означает индекс Джини, равный 50?

В первом квартале 2024 года в российской экономике сложилась уникальная ситуация: продолжается бум потребительского кредитования и потребительский бум, который не дает охладить рынок кредитования физлиц, при одновременном притоке средств населения в банки. Потребление в целом продолжает поддерживаться опережающей динамикой 01 апр 2024 Ульяновская область подготовила первый выпуск народных облигаций 29 марта 2024 года начнется размещение первого выпуска народных облигаций для физических лиц Ульяновской области. Чтобы получить бонус, нужно:Зарегистрироваться на Финуслугах;Выбрать вклад;Ввести промокод 22 марта 2024 Как мы работаем 8 марта В праздничный день, 8 марта, Финуслуги работают в обычном режиме — вы можете выбирать любые продукты, отправлять заявки в банки и страховые компании.

РБК: Росстат зафиксировал рост концентрации доходов в 2023 году

Коэффициент концентрации Джини (G) используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]. Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. В минувшем году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос.

Похожие новости:

Оцените статью
Добавить комментарий