Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even.
Социальная поддержка сократила уровень неравенства в России
Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке. В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов. Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения.
В России вырос уровень доходного неравенства
Анонимность — одно из главных преимуществ коэффициента Джини. Нет необходимости знать, кто имеет какие доходы персонально. Недостатки коэффициента Джини В разделе не хватает ссылок на источники см. Так, чем на большее количество групп поделена одна и та же совокупность больше квантилей , тем выше для неё значение коэффициента Джини. Коэффициент Джини не учитывает источник дохода, то есть для определённой географической единицы страны, региона и т. Метод кривой Лоренца и коэффициента Джини в деле исследования неравномерности распределения доходов среди населения имеет дело только с денежными доходами, меж тем некоторым работникам заработную плату выдают в виде продуктов питания и т.
Коэффициент Джини показывает расслоение. Максимальный уровень неравенства в стране фиксировался в 2010 году. А в 2022-м произошло его ощутимое снижение. В России наметилась положительная динамика на сокращение разрыва доходов богатых и бедных слоев населения, подтверждают эксперты. У нас снижаются темпы роста доходов наиболее обеспеченных групп населения, то есть богатые богатеют уже не так быстро, как в 1990-е или начале 2000-х годов.
Доходы наименее обеспеченных слоев населения растут за счет поддержки государства, поясняет старший научный сотрудник Центра стратификационных исследований Института социальной политики НИУ ВШЭ Василий Аникин. Снижение бедности происходит за счет увеличения МРОТ, который влияет на размер социальных выплат, и политики поддержки семей с детьми. Также сокращению уровня бедности в России способствовали социальные выплаты в пандемию. При этом планы по увеличению МРОТ позволяют сделать прогноз, что число бедных людей в России будет сокращаться и дальше, отмечает эксперт. Максимальный уровень неравенства наблюдался в 2010 году.
Gini coefficien «опускает» источник доходов для страны региона и т. По факту его значение может быть низким. В то же время часть граждан зарабатывает деньги тяжелым «каторжным» трудом, а часть — получает доход от собственности. Таким образом они получают 5-процентный доход, которые большинство граждан зарабатывают своим трудом. Для расчета Gini coefficien требуются определенные данные по статистике. Но методы, применяемые для их сбора, различны. Это значительно усложняет процесс сопоставления коэффициентов, а подчас делает это невозможным. Несоответствия при применении Gini coefficien в плановой экономике, где материальные ресурсы принадлежат государству обществу , распределяются централизованно. Поскольку Джини принимает к учету лишь разницу доходов населения, а не государства общества , то именно в плановой экономике его значение может быть некорректным, более положительным. Gini coefficien и кривая Лоренца применяются только в отношении доходов граждан, выраженных в денежной форме. Между тем многим работникам заработок выдают в натуральной форме. Например, продукцией продуктами питания собственного производства либо закупленными в др. Выдача заработка опционами на акции имеет особенности при его учете для расчета Джини. Опцион, не являясь доходом, дает возможность заработать на акциях. Вырученные за продажу акций деньги учитывают при расчете коэффициента. Пример расчета коэффициента Джини Задача: определить Gini coefficien для трех групп населения по данным из таблицы, применив аналитический способ расчета.
Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм?
Ваш пароль
Какие страны и почему отличаются высоким показателем джини география реферат | В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. |
Что такое коэффициент Джини и зачем он нужен | Вокруг Света | Коэффициент концентрации доходов, или индекс Джини, может быть рассчитан и с помощью других методик. |
Как рассчитать коэффициент Джини в Excel (с примером) | Свое название данный коэффициент получил по инициалам демографа и статиста Корадо Джини, предложившего эту статистическую модель. |
Коэффициент Джини | Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини. |
В России зафиксирован рост доходного неравенства - АБН 24 | Тут уместно провести параллели с коэффициентом Джини, который показывает имущественное расслоение населения. |
С 1 декабря 2014 года
- Коэффициент джини в России
- Социальное неравенство. Индекс Джини
- Измерение неравенства: что такое коэффициент Джини?
- Какие страны и почему отличаются высоким показателем джини география реферат
- Что бы сделал Робин Гуд?
- Мы в соц сетях
Вы точно человек?
Что бы сделал Робин Гуд? - | В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. |
РБК: Росстат зафиксировал рост концентрации доходов в 2023 году | Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают. |
Индекс Джини в странах мира | GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes. |
Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини | Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. |
В России зафиксирован рост доходного неравенства
Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство». Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.
Так в Бразилии в процентном соотношении от дохода бедные платят налогов больше, чем богатые. Динамика индекса Джини. Например, в конце 90-х россияне в опросе «Интерфакс-АИФ» называли такие причины неравенства: 32 Спустя 20 лет изменилось немногое.
Часто кажется, что бедность — это трущобы, лохмотья и похлёбка на воде. Но в действительности бедными считаются люди, уровень дохода которых позволяет только поддерживать прожиточный минимум. Различают прожиточный и минимум физического выживания. Прожиточный минимум — минимальный уровень стандарта жизни, принятый в стране или регионе.
Раньше в России прожиточный минимум привязывался к продуктовой потребительской корзине. Теперь в него закладывают ещё товары длительного пользования и услуги. На начало 2019 года прожиточный минимум в России — 10 тысяч рублей. Вот как он изменялся с 2013 года: 32 На душу населения в тыс.
И это явственно ощущается многими. Россияне в целом не согласны с расчётами Росстата — люди относят к бедным тех, чей месячный доход на человека меньше 15 500 рублей. Минимальный доход, по их мнению, зависит от размера населенного пункта: 32 На душу населения в тыс. Это 43 млн человек.
В России количество бедных различается по регионам. Оценить уровень жизни человека можно и по расходам на питание. Чем они меньше, тем больше остаётся свободных средств на образование, инвестиции или организацию бизнеса. Исследователи Государственного университета Вашингтона посчитали, какой процент дохода люди расходуют на еду в мире: Рис.
Доля трат на продукты по странам мира. Деньги притягивают деньги, поэтому, как ни грустно это звучит, то, где мы окажемся в будущем, зависит от стартовых условий, которые были у нас в прошлом. За 2018 год самые крупные состояния увеличились на 900 млрд долларов, то есть богатейшие люди планеты ежедневно зарабатывали 2,5 млрд долларов.
Если мы представим себе, что площадь этого треугольника изображает совершенно неравномерное распределение доходов населения, то площадь фигуры между кривой Лоренца для Казыстана и кривой абсолютного равенства изображает неравенство в Казыстане. Тогда, если мы разделим неравенство Казыстана на абсолютное неравенство площадь треугольника АBC , то узнаем, какую долю неравенство в Казыстане составляет от абсолютного неравенства. Это и будет коэффициентом Джини для Казыстана, а метод расчета коэффициента называется геометрическим методом расчета. Но как посчитать площадь заштрихованной фигуры? Это просто: можно разделить эту фигуру на два треугольника и 3 трапеции, вывести площади всех этих фигур и сложить их. Геометрический способ был представлен для того, чтобы было понятно, в чем суть этого коэффициента. Мы же воспользуемся универсальной формулой расчета коэффициента алгебраически : Для самых искушенных читателей предлагаю вывести коэффициент Джини геометрическим методом, и сравнить с показателем, который мы сейчас выведем алгебраическим методом.
Mean 66: Aggregates are calculated as the average of available data for each time period. Values are not shown if more than one third of the observations in the series are missing. Median: Aggregates are calculated as the median of available data for each time period. Median 66: Aggregates are calculated as the median of available data for each time period. Values are not computed if more than a third of the observations in the series are missing.
Min: Aggregates are set to the lowest available value for each time period. Sum: Aggregates are calculated as the sum of available data for each time period. Sum 66: Aggregates are calculated as the sum of available data for each time period. Sums are not shown if more than one third of the observations in the series are missing. Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period.
Ваш пароль
Коэффициент Джини определяется как отношение площади фигуры, расположенной под кривой Лоренца, к площади треугольника ODC. Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке. Коэффициент итальянского экономиста, статиста и демографа Коррадо Джини (более известный как индекс Джини) позволяет более точно, количественно измерить степень неравномерности распределения доходов населения.
Gini Coefficient
А вот бедные и медленно развивающиеся страны, к сожалению, демонстрируют обратную тенденцию. Естественно, чтобы отслеживать этот параметр, нужно найти это число и контролировать его изменение ежегодно. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Делается это следующим образом: Строится прямая Лоренца на основе собранных статистических данных. Затем рассчитывается коэффициент. Он берется, как отношение площади образованной фигуры к площади треугольника, отображающей прямую равенства. Фактически ищут 2 площади. Если они будут идентичны, то коэффициент Джини будет равен нулю и означать полное равенство между всеми группами населения.
Так, в мегаполисах жить легче, чем в маленьких городках. Рост уровня образования снижает риск бедности, а наличие детей — повышает.
Да, на трудовые доходы у нас единая ставка налога — 13 процентов. Но заработная плата — это не все виды доходов. По другим видам доходов у нас либо нет налогов — на пенсии, стипендии, пособия, либо другие ставки налогообложения, например, на предпринимательские доходы или от финансовых операций. Ещё один инструмент выравнивания — социальные трансферты: пособия, пенсии, компенсационные выплаты и льготы. Возвращаясь к идее разделения доходов богатых среди бедных, хотелось бы напомнить пример зимних Олимпийских игр — 2014 в Сочи. Перед их проведением некоторые тоже высчитывали, во сколько организация Олимпиады обошлась каждому россиянину. Разделили 50 миллиардов долларов на 143 миллиона жителей, оказалось, по 350 долларов на человека. Если делить только на бедных, получается более 3200 долларов на каждого. Но теперь мы так гордимся результатами Олимпиады, что вопрос, стоило ли тратить на неё деньги, снят с повестки дня.
Кривая Лоренца и коэффициент Джини также не учитывают данный эффект. В-третьих, индивиды могут получать трансферты в натуральной форме, которые не отражаются в кривой Лоренца, хотя при этом влияют на распределение доходов индивидов. Трансферты в натуральной форме могут быть реализованы в виде помощи беднейшим слоям населения продуктами питания, одеждой, но обычно они предоставляются в виде многочисленных льгот бесплатный проезд в общественном транспорте, бесплатные путевки в санатории и так далее. С учетом подобных трансфертов экономическое положение беднейших слоев населения улучшается, но кривая Лоренца и коэффициент Джини этого не учитывают. Не так давно в России многие льготы были монетизированы, и объективные доходы беднейших слоев населения стало считать легче. Следовательно, кривая Лоренца стала лучше отражать реальное распределение доходов в обществе.
Данные показатели используются для оценки степени неравенства доходов, и входят в область позитивного экономического анализа. Напомним, что позитивный анализ отличается от нормативного анализа тем, что позитивный анализ анализирует экономику объективно, как есть, а нормативный анализ является попыткой улучшить мир, сделать «как должно быть». Если оценка степени неравенства является позитивным экономическим анализом, то попытки снизить неравенство в распределении доходов принадлежат к области нормативного экономического анализа. Нормативный экономический анализ известен тем, что разные экономисты могут предложить разное, часто диаметральное противоположные рекомендации по решению одной и той же проблемы. Это не означает, что кто-то является более компетентным, а кто менее компетентным. Это только означает, что экономисты отталкиваются от различных философских взглядов на понятие справедливости, а единства в этом вопросе нет.
Сначала мы рассмотрим различные существующие системы ценностей, а затем покажем, каким образом можно обеспечить более справедливое распределение доходов в рамках каждой системы. Государство сейчас выступает не только в качестве устранителя рыночных провалов, о которых мы активно говорили в прошлой главе внешние эффекты и предоставление общественных благ , но и в качестве стимулятора экономики, когда экономика испытывает трудные времена. Налоги являются основным источником доходов государства. Любое государство имеет множество налогов и сборов, построенных по определенным принципам, а также институты контроля по сбору налогов. Все это составляет налоговую систему государства. Для оценки налоговой системы используются принципы эффективности и справедливости.
Как мы уже знаем, понятие справедливости не является точно определённым для экономистов. В зависимости от системы моральных ценностей справедливость может быть установлена тем или иным образом. Экономисты гораздо более едины при определении того, что такое эффективность. Эффективной является та налоговая система, которая менее всего приводит к искажению стимулов у участников рынка, а следовательно, и к возникновению безвозвратных потерь. Покажем, каким образом безвозвратные потери связаны с искажением стимулов у участников рынка. По теме «рыночное равновесие» мы помним, что безвозвратные потери возникали, когда налоги и субсидии изменяли положение кривых спроса и предложения, то есть изменяли экономическое поведение людей.
Безвозвратные потери заключались в том, что какие-то покупатели не смогли купить товар, а какие-то производители не могли продать товар по сравнению с ситуацией, когда цены точно отражают предельные издержки. Рассмотрим простой пример: индивид А оценивает удовольствие от потребления мороженого в 60 рублей, индивид В - в 40 рублей. Если цена стаканчика мороженого оставляет 30 рублей, то каждый из них его купит и получит удовольствие. Сумма потребительского излишка будет равна 40 рублей 30 рублей у индивида А и 10 рублей у индивида В. Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления. Суммарный потребительский излишек теперь будет равен только 10 рублям это излишек индивида А.
Налоговые сборы при это составят 20 рублей их оплатит опять же только индивид А , и их получает государство. На этом простом примере мы убедились, что при налогообложении возникли безвозвратные потери в размере 10 рублей. И они возникают потому, что индивид В поменял свое экономическое поведение, полностью отказавшись от потребления мороженого.
И кривая абсолютного неравенства тогда будет выглядеть как красная кривая на графике слева. Также, как и кривая абсолютного равенства, кривая абсолютного неравенства имеет сугубо теоретический смысл, пока что история не знает реальных примеров стран, где было бы абсолютное равенство или абсолютное неравенство.
Эти линии мы построили только для того, чтобы ориентироваться, к какой из этих крайностей ближе кривая Лоренца для страны Казыстан. Теперь, когда у нас есть с чем сравнивать, становится понятно: чем дальше от красной линии или чем ближе к синей линии находится кривая Лоренца — тем более неравномерно распределены доходы. Возникает вполне логичный вопрос: а нет ли какого-то количественного показателя, который бы показывал уровень неравенства? Такой показатель есть, в 1912 году его вывел итальянский статистик Коррадо Джини 1884-1965 , в честь которого и назван коэффициент. Если мы представим себе, что площадь этого треугольника изображает совершенно неравномерное распределение доходов населения, то площадь фигуры между кривой Лоренца для Казыстана и кривой абсолютного равенства изображает неравенство в Казыстане.
Среди населения России растет доходное неравенство: почему ускорился этот процесс?
Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически.
У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение.
Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита.
Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает.
Harrod—Domar model — неокейнсианская модель экономического роста, объясняющая рост экономики при условии постоянства коэффициентов капиталоёмкости и склонности к сбережению в долгосрочном периоде. В модели были впервые интегрированы процессы мультипликации и акселерации. Модель объединила работы Роя Ф. Харрода, впервые предложившего свою модель гарантированного роста в 1939 году, и Евсея Домара, который в 1946 году расширил условия краткосрочного кейнсианского равновесия... Конвергенция в экономике эффект наверстывания — гипотеза, что более бедные страны с низкими доходами на душу населения будут иметь более высокие темпы экономического роста, чем богатые страны. В результате доход на душу населения всех экономик должен в конечном итоге сойтись. Развивающиеся страны имеют потенциал к росту более высокими темпами, чем развитые страны, поскольку убывание доходности факторов производства в частности, капитала меньше, чем в богатых странах.
Кроме того, более бедные... ВВП в расчёте на душу населения определяет уровень экономического развития государства. Все показатели для сопоставимости выражаются в единой валюте — доллар США. Пересчёты из национальных валют в доллары выполняются по рыночным обменным курсам валют. ROI от англ. ROI обычно выражается в процентах, реже — в виде дроби. Этот показатель может также иметь следующие названия: прибыль на инвестированный капитал, прибыль на инвестиции, возврат, доходность инвестированного капитала, норма доходности. Подробнее: Окупаемость инвестиций Паритет покупательной способности англ. Согласно теории о паритете покупательной способности, на одну и ту же сумму денег, пересчитанную по текущему курсу в национальные валюты, в разных странах мира можно приобрести одно и то же количество товаров и услуг при отсутствии транспортных издержек и ограничений...
Жёсткость — способность экономических величин сопротивляться изменениям. Например, часто говорят, что номинальные зарплаты жестки в краткосрочном периоде. Рыночные силы могут уменьшать реальную стоимость труда в промышленности, но номинальные зарплаты будут стремиться оставаться на предыдущем уровне в краткосрочном периоде. Это может обосновываться институциональными факторами, такими как ценовое регулирование, обязанность исполнять контракты, профсоюзы, человеческая настойчивость или нужда, личная... Модель пересекающихся перекрывающихся поколений модель Самуэльсона — Даймонда, англ. Функция потребления — функция, описывающая взаимосвязь между потреблением и располагаемым доходом. Закон убывающей доходности или Закон убывающей отдачи — экономический закон, гласящий, что увеличение одного из факторов производства земля, труд, капитал сверх определённых значений обеспечивает прирост дохода результата на всё меньшую величину, то есть темп увеличения дохода результата меньше темпа увеличения производственного фактора. Эластичность спроса по доходу англ. Income elasticity of demand — показатель процентного изменения спроса на какой-либо товар в результате изменения дохода потребителя.
Индикатор подлинного прогресса англ. GPI, как и ВВП, имеет денежное выражение, но в отличие от ВВП, суммирующего свои составляющие, в основе GPI лежит идея разделения на категории выгод и издержек, а итоговый показатель определяется как разность между ними. GPI стал одной из немногих альтернатив ВВП, широко обсуждаемых в научном сообществе и применяемых правительствами...
Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини.
Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни.
Так образуется специфическая «ловушка бедности», которая не позволяет обществу полноценно развиваться. Передовые страны, которые входят в рейтинги самых лучших по разным показателям, стараются устранить это негативное явление. Так, например, в Норвегии, за последние 15 лет коэффициент Джини стремится вниз — он уменьшился с 0,4 до 0,2, то есть в 2 раза. Обобщая, в случае этой скандинавской страны можно утверждать, что количество бедных здесь снизилось вдвое. И такая картина наблюдается во многих развитых странах. А вот бедные и медленно развивающиеся страны, к сожалению, демонстрируют обратную тенденцию.
Естественно, чтобы отслеживать этот параметр, нужно найти это число и контролировать его изменение ежегодно. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей.
В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи
В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2]. И на её основании можно вывести коэффициент Джинни. Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент.
Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Системы прогрессивного налогообложения и трансфертных платежей приближают " кривую Лоренца " к биссектрисе.
Однако эти различия в большинстве своем являются результатом выбора самого человека. Так, кто-то после окончания 11-го класса пойдет работать, а кто-то поступит в ВУЗ. Итак, выпускник ВУЗа имеет больше возможностей для получения большего дохода, чем люди, не имеющие высшего образования. Различия в профессиональном опыте. Доходы людей отличаются, в том числе и вследствие различий в профессиональном опыте. Так, если Иванов работает в фирме один год, то понятно, что он будет получать зарплату меньше, чем Петров, который в этой фирме более 10 лет и имеет больший профессиональный опыт. Различия в распределении собственности. Различия в распределении собственности является наиболее веской причиной неравенства доходов. Немалое количество людей имеют небольшую или вообще не имеют собственности и, соответственно, или получают небольшой доход или не получают его вообще. А другие являются владельцами большего количества недвижимости, оборудования, акций и т. Риск, удача, неудача, доступ к ценной информации. Эти факторы также оказывают существенное влияние на распределение доходов.
Индекс Джини: расчет и формула Коэффициент Джини рассчитывается по следующей формуле: В графическом отображении коэффициент Джини представляет собой соотношение площади фигуры, образованной линией абсолютно равномерного распределения доходов под 45 градусов и кривой Лоренца, отображающей неравномерность распределения, к общей площади треугольника, образованной линиями абсолютно равномерного и абсолютно неравномерного распределения доходов: В десятичном значении показатель выступает коэффициентом, также его могут отображать в процентах, тогда он становится индексом. Расчетом данного показателя занимаются статистические ведомства и международные аналитические организации. Значения и трактование коэффициента Джини Коэффициент Джини может иметь значение от 0 абсолютно равномерное распределение доходов до 1 абсолютно неравномерное распределение доходов. Чем выше значение индекса Джини — тем выше уровень социального неравенства в государстве.
Индекс Джини и неравенство доходов
«Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство». Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход. Как указывает автор, коэффициент Джини лишь один из многих измерителей неравенства, и сказанное относительно коэффициента Джини в равной мере относится и к остальным, близким по содержанию показателям (например, к индексам Тейла, Аткинсона, Херфиналя-Хиршмана. Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини.