Новости фрактал в природе

Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом.

ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ

Фракталы: бесконечность внутри нас — Блоги Казанского федерального университета Фракталы существуют не только в макро мире, но и на поверхности Земли.
Фракталы в природе и в дизайне: сакральная геометрия повсюду Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах.

Прекрасные фракталы в природе

Мир вокруг нас. Часть первая»: Рис. Изображение Н-фрактала и бронхиального дерева На рисунке 14 мы видим переплетение двух фрактальных систем — лёгочной слева и кровеносной справа. Говорить про фрактальное строение человеческого организма можно много. Мы приведем еще несколько примеров. В тканях пищеварительного тракта одна волокнистая поверхность встроена в другую. Фрактальные ответвления или складки значительно увеличивают площадь поверхности, необходимой для всасывания в тонком кишечнике. Желчные протоки в печени и мочеполовая система, иммунная система и вестибулярный аппарат, сетчатка глаза, а также почки — всё это является фрактальными структурами, которые прекрасно организованы и хорошо подготовлены к различного рода повреждениям. На сегодняшний день накоплено немало научных данных, свидетельствующих о фрактальности структур и функций головного мозга и нервной системы.

Интересный факт: при визуальном поиске глаз человека вычерчивает фрактальную траекторию! Возьмём физическое тело человека целиком. Наблюдая за ростом и развитием его от рождения до смерти, мы сможем увидеть различные масштабные копии одного объекта. Тело человека претерпевает изменения подобно нелинейному динамическому фракталу. Развитие человеческого тела. Процесс динамического фрактала Комплексный подход В прошлом веке появилась и закрепилась тенденция на разделение целостной когда-то науки на узкие направления. Научный язык усложнился, учёные всё меньше слышат друг друга, углубляясь в свои специализации. Однако сейчас уже мы понимаем, что весь мир живой и неживой природы подчиняется одним закономерностям: от развития колоний бактерий до распределения небесных тел в космическом пространстве.

Это понимание позволяет нам увидеть более целостную картину мира, открыть взаимосвязь разрозненных, казалось бы объектов, понять причинно-следственные связи. Несомненно комплексным должен быть подход и к здоровью человека. Узкая специализация врачей зачастую не позволяет лечить человека как единый организм. Но человек имеет более сложное строение: то, что видимо глазу — тело и энергетическую конструкцию, которая не видна обычным зрением.

Хотя, конечно, у каждого таймфрейма есть свои особенности, но общий характер рыночных движений сохраняется благодаря фрактальности. Фракталом в трейдинге принято называть локальный экстремум, состоящий из нескольких баров.

Стрелками на графике показаны фракталы, которые являются экстремумами — то есть, локальными минимумами или максимумами на текущем графике. Билл Уильямс определяет, что: для образования верхнего фрактала бар должен иметь самый высокий максимум по сравнению с 2-мя барами слева и 2-мя барами справа; для образования нижнего фрактала бар должен иметь самый низкий минимум по сравнению с 2-мя барами слева и 2-мя барами справа. Как следствие, фракталы не могут появиться на самом правом краю графика. Для его образования, нужно, как минимум, 5 баров. С целью построения стратегии торговли, основанной на фракталах, Билл Уильямс вводит также правила сигнального и стартового фракталов. По классике Билла Уильямса, фракталы предлагается торговать на пробой идея отображена на картинке ниже.

Своей карьерой трейдера, и многочисленными примерами успехов последователей, Билл Уильямс подтвердил состоятельность подхода, основанного на фрактальности и подобию окружающему миру. Можно улучшить ли торговлю по фракталам, используя современные программные решения для анализа рынков? Прибыльная торговля по фракталам с помощью анализа объемов Основная проблема торговли по фракталам — это многочисленные пробои фракталов-экстремумов.

Your browser does not support the video tag. Цикл книг «Фракталы и Хаос».

Больцманом и Дж. В качестве меры хаотичности движения они использовали понятие энтропии. В странном мире хаоса и турбулентности начиная с 70-х г. XX века ученые стали находить непривычную, но вполне определенную упорядоченность, образуемую путем бесконечного в принципе повторения какой-либо исходной формы во все уменьшающемся масштабе по определенному алгоритму, инструкции или формуле фрактальные закономерности.

В современной науке фрактальность поведения сложных нелинейных систем считается их неотъемлемым свойством как строго доказанный математический факт. Оказывается, что если система достаточно сложна, то она в своем развитии обязательно проходит через чередующиеся этапы устойчивого и хаотического развития. Причем сценарии перехода от порядка к хаосу и обратно поддаются классификации, и вновь все многообразие природных процессов распадается на небольшое число качественно подобных. Один из таких сценариев может быть описан с помощью наглядного геометрического образа, рисунка, являющегося фракталом. Речь идет о так называемом логистическом отображении, впервые использованном П.

Ферхюльстом в 1838 г. Согласно этой модели, общее число х n особей n-го поколения пропорционально числу х n-1 особей предыдущего поколения с коэффициентом пропорциональности, линейно убывающем в зависимости от этого числа особей. Подобной динамикой обладает и изменение банковского вклада по закону сложного процента, когда начисление линейно зависит от самого вклада. Более того, оказалось, что свойства логистического отображения универсальны, они характерны для динамики любой системы, поведение которой описывается гладкой функцией вблизи ее минимума. Развитие систем, описываемых логистическим отображением, очень напоминает античные натурфилософские и мифологические сценарии рождения мира.

Сначала, при некотором значении коэффициента пропорциональности, в системе имеется только одно устойчивое положение равновесия - Единое еще не начало свой путь творения. При изменении коэффициента наступает момент, когда точка равновесия раздваивается, возникают два устойчивых состояния, в которых система пребывает по очереди, то в одном, то в другом, шаг за шагом во времени. Потом каждая из этих точек вновь раздваивается, и ситуация повторяется, сохраняя общий рисунок. Рано или поздно множество точек равновесия плотно заполняют все множество состояний, система переходит к хаосу, полностью разрушая свою структуру. Но затем, при дальнейшем росте параметра, из хаоса вновь возникает некоторое конечное число упорядоченных состояний, которые в конце концов "схлопываются" в единственное, и все начинается сначала.

В математической модели этого явления обнаружено множество подобных, скейлинговых элементов; эти свойства в науке носят названия универсальности Фейгенбаума. Здесь переменная z и константа с - комплексные числа, отображаемые точками на координатной плоскости, где и формируется пространственный образ множества. Работа алгоритма состоит в последовательном вычислении сумм, причем в формулу каждый раз подставляется значение z, полученное на предыдущем шаге. Ясно, что в этом случае алгоритм сводится к бесконечной формуле... Для любого значения числа с возможен один из двух результатов вычислений.

Либо сумма постоянно растет - быстрее или медленнее, но рано или поздно "улетая" в бесконечность, либо она остается конечной, сколько бы шагов ни сделал алгоритм на практике берется не более 1000, что вполне достаточно. По мере роста числа шагов алгоритма выявляются новые и новые причудливые и стройные фрактальные структуры, неисчерпаемое богатство форм. А самое удивительное в том, что многие из них напоминают различные природные объекты: инфузории и снежинки, морские коньки и галактики, раковины и облака... Вот оно, самоподобие! Фрактальная геометрия природы выражается в том, что принцип самоподобия в приближенном виде выполняется во многих проявлениях: в линиях берегов морей и рек, в очертаниях облаков и деревьев, в турбулентном потоке жидкости и иерархической организации живых систем хотя нет ни одной реальной структуры, которую можно было бы последовательно увеличивать бесконечное число раз и которая выглядела бы при этом неизменной.

Фрактальные структуры порождают процессы с обратной связью, когда одна и та же операция выполняется снова и снова, и результат одной операции является начальным значением для следующей. Проблемы, связанные с итерациями, возникают при изучении эволюции любой системы в любой области знания, от астрономии до биологии и экологии.

Созерцание великого фрактального подобия

Фракталы. Чудеса природы. Поиски новых размерностей фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов.
Фракталы в природе - презентация онлайн фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике.

9 Удивительных фракталов, найденных в природе

Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Фото подборка встречающихся в природе или искусственно созданных фракталов. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. Фракталы в природе (53 фото). Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала.

Любопытные фото природы, которые успокоят

А написана она на языке математики, и ее буквами являются треугольники, окружности, другие геометрические фигуры, без которых человеку невозможно разобрать ни единого слова, без них он подобен блуждающему во тьме. Галилей, 1623 г. Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сфера, горы - это не конусы, линия берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой... Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно.

Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные, - задачи исследования морфологии аморфного. Математики однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать. Если мы описываем увиденное и известное по опыту на языке логики - это наука; если же предоставляем в формах, внутренние взаимосвязи которых недоступны нашему сознанию, но которые интуитивно воспринимаются как осмысленные, - это искусство. И для искусства, и для науки общим является увлечение чем-то стоящим выше личного, свободным от условного. В космическом хаосе, говоря словами Гете, есть "законы, охраняющие сокровища жизни, которыми украшает себя Вселенная".

На каждой новой ступени организации материи вступают в силу новые правила. Это не означает, что известные до сих пор законы природы неверны, но это лишь означает, что трудно обнаружить все скрытое в них. Приведем примеры. Долгосрочный прогноз солнечной системы невозможен уравнения являются неинтегрируемыми. Невозможность осуществления до настоящего времени управляемого термоядерного синтеза связана с тем, что нет адекватного представления о хаотическом движении заряженных частиц в системе магнитных линз.

Изучение развития яиц насекомых показывает, что морфогенез невозможно понять только из знания молекулярного строения соответствующего генома. Нелинейные процессы приводят к ветвлению. Система может выбрать ту или иную ветвь, последствия выбора однозначно предсказать невозможно, поскольку для каждого из этих решений характерно усиление отклонений. Хотя в каждый отдельный момент причинная связь сохраняется, но после нескольких ветвлений она уже не видна. Рано или поздно начальная информация о состоянии системы становится бесполезной.

В ходе эволюции генетическая информация генерируется и запоминается. Законы природы допускают множество различных исходов, но наш мир имеет одну единственную историю. Хаос - фундаментальное понятие философии, социологии и естествознания. Оно играло существенную роль уже в мировоззрении философов древности. По их представлениям хаос - состояние материи при отсутствии всех факторов, влияющих на нее и позволяющих выявить ее свойства и структуру.

При действии разных факторов из хаоса может рождаться все, что состовляет строение Мироздания, т. Таким образом, Хаос противопоставляется Порядку. Отсюда и представление о хаосе как о беспорядочном движении. В физику понятие хаоса было введено Л. Больцманом и Дж.

Вся классическая математика связана с таким вот свойством. К фракталам, как мы видим, ниточку не доприкладываешься. С точки зрения классической механики, также возникают проблемы в взаимодействии с фракталами. Скорость — это вектор. У вектора должны быть направление и величина. Если мы погоним точку по любой неспрямляемой кривой, то мы увидим, что у ее скорости не будет ни направления, ни величины. Капуста Романеско Реальность такова: все, с чем мы имеем дело в школе: прямые, параболы, синусоиды, — это лишь красивое исключение из правил, которое в природе встречается крайне редко. Мир состоит из «монстров» - из фракталов и других неспрямляемых кривых. А нам хочется все уметь считать, — продолжает Давид. В этом деле наблюдается прогресс, но еще есть куда стремиться.

Сейчас используется следующий метод: мы берем конкретный фрактал и даем ему некую числовую характеристику. Моя научная деятельность та, которую я начал еще в магистратуре непосредственно связана с разработкой одного из типов характеристик этих самых фракталов. Ведется работа по двум основным направлениям. Первое — это интегрирование. Взятие интегралов по неспрямляемым кривым. Второе: у меня введены конкретные характеристики этих фракталов, они у меня называются «Показатели Марцинкевича» в честь польского математика Йозефа Марцинкевича, а не российского националиста. Эти показатели помогают лучше справляться с некоторыми краевыми задачами. До этого были либо несчитаемые характеристики, либо менее точные. Есть надежда, что в будущем мы переведем всю математику на рельсы неспрямляемых кривых, и это даст прибавку везде.

Как следствие, фракталы не могут появиться на самом правом краю графика. Для его образования, нужно, как минимум, 5 баров. С целью построения стратегии торговли, основанной на фракталах, Билл Уильямс вводит также правила сигнального и стартового фракталов. По классике Билла Уильямса, фракталы предлагается торговать на пробой идея отображена на картинке ниже. Своей карьерой трейдера, и многочисленными примерами успехов последователей, Билл Уильямс подтвердил состоятельность подхода, основанного на фрактальности и подобию окружающему миру. Можно улучшить ли торговлю по фракталам, используя современные программные решения для анализа рынков? Прибыльная торговля по фракталам с помощью анализа объемов Основная проблема торговли по фракталам — это многочисленные пробои фракталов-экстремумов. По классической теории, трейдерам рекомендуется располагать стоп-лоссы за максимумы и минимумы на текущем графике. Для этого требуется анализировать объемы с целью поиска тренда, который формируется важными участниками рынка. Тогда придет понимание, в каком направлении, вероятнее всего, направится цена. В том же направлении и открывать свои сделки.

В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Но на молекулярном уровне, в мире белков и атомов, фракталы казались невозможными. До сих пор. Встреча с треугольником Серпинского Цитратсинтаза — фермент, участвующий в жизненно важных процессах обмена веществ у цианобактерий. Казалось бы, что может быть прозаичнее? Но исследователи из Института Макса Планка и Университета Филиппа в Марбурге обнаружили, что молекулы этого фермента способны на удивительное: они самоорганизуются, образуя узор, известный как треугольник Серпинского. Этот фрактал представляет собой бесконечную последовательность треугольников, вложенных друг в друга, с пустыми пространствами, напоминающими звездное небо. На рисунках изображена сборка известных белков CS. Комплексы 6mer не давали обзоров сверху. Таким образом, для представления был использован изолированный 6mer из среднего по классу 18mer. Схемы изображений справа. Данные представлены в виде средних значений трех различных положений сетки, а столбцы погрешности соответствуют s.

Фракталы в природе

Посмотрите больше идей на темы «фракталы, природа, закономерности в природе». Фрактальная геометрия природы. Деревья – один из самых квинтэссенциальных фракталов в природе.

Феномен жизни во фрактальной Вселенной

Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Анимация фракталов, изменение фракталов в пространстве, медитация, фрактальная графика. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. дробленый) - термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Природа зачастую.

Фракталы вокруг нас

Папоротник является хорошим примером фрактала среди флоры. Каждое соцветие копируется точно таким же только меньше. Фото сделано снизу, чтобы разглядеть это во всей красе. Брокколи - хоть брокколи не так лихо геометрична, как романессу, но тоже фрактальна.

Павлины - всем известны своим красочным оперением, в котором спрятаны сплошные фракталы. Ананас - необычный плод это есть, фактически, фрактал. Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии.

Облака - Посмотрите в окно.

Еще одним примером фракталов в природе является грозовая туча. Грозовые тучи имеют сложную структуру, которая может быть разделена на множество более мелких туч, каждая из которых является копией всей тучи. Эта структура позволяет грозовым тучам эффективно переносить воду из одного места в другое.

Фракталы - это не просто геометрические фигуры, они имеют множество интересных свойств и приложений в науке и технологии. Например, фракталы используются в компьютерной графике и анимации для создания реалистичных текстур и эффектов. Они также используются в медицине для анализа сложных структур, таких как легкие или кровеносные сосуды. Фракталы имеют свойство самоподобия, что означает, что они выглядят одинаково на разных масштабах.

Это свойство делает фракталы очень полезными для анализа сложных систем, таких как погода или финансовые рынки. Фрактальный анализ может помочь выявить скрытые закономерности и предсказать будущие изменения.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютер Показать больше.

Посмотрите потрясающие примеры фракталов в природе. Морские раковины.

Фракталы в природе. Мир вокруг нас. Ч.2

Поскольку она тесно связана с визуализацией самоподобных образов, неудивительно, что первыми, кто взял на вооружение алгоритмы и принципы построения необычных форм, были художники. Carpenter в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов. В 1977 году он создавал презентации с прототипами летающих моделей. В обязанности Лорена входила разработка изображений проектируемых самолетов. Он должен был создавать картинки новых моделей, показывая будущие самолеты с разных сторон. В какой-то момент в голову будущему основателю Pixar Animation Studios пришла в голову креативная идея использовать в качестве фона изображение гор. Сегодня такую задачу может решить любой школьник, но в конце семидесятых годов прошлого века компьютеры не могли справиться со столь сложными вычислениями — графических редакторов не было, не говоря уже о приложениях для трехмерной графики.

В 1978 году Лорен случайно увидел в магазине книгу Бенуа Мандельброта «Фракталы: форма, случайность и размерность». В этой книге его внимание привлекло то, что Бенуа приводил массу примеров фрактальных форм в реальной жизни и доказывал, что их можно описать математическим выражением. Такая аналогия была выбрана математиком не случайно. Дело в том, что как только он обнародовал свои исследования, ему пришлось столкнуться с целым шквалом критики. Главное, в чем упрекали его коллеги, — бесполезность разрабатываемой теории. Практической ценности теория фракталов не имеет».

Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике. Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере. Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж.

Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера. Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений. Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм. Одна из первых визуализаций 3D по фрактальному алгоритму Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте.

Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году. Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm. Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» The Wrath of Khan Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности. В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур.

Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось? Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью. Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям.

Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы. Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее.

Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн Nathan Cohen после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью. Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше.

Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох Helge von Koch придумал эту кривую еще в 1904 году.

Благодаря спутниковым снимкам мы также можем полюбоваться красотой нашей планеты и необычными рисунками, сделанными природой в разных странах. Для ученых это, конечно, больше, чем просто красивая картинка, но сейчас не об этом. Фрактал — геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.

Фракталы это геометрические фигуры, состоящие из более мелких структур, которые сами по себе напоминают целое. На практике это означает, что если вы увеличите часть фрактала, вы увидите аналогичную структуру, а если вы увеличите часть этой части, вы опять увидите аналогичную структуру, и так далее, по существу, до бесконечности. В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. Молекулы могут показаться идеальным местом, где можно их найти, поскольку они могут принимать самые разные формы, но среди всех существующих каталогов молекул никогда не было ни одного правильного фрактала тех, которые почти точно совпадают по масштабам. Но теперь ученые из Института Макса Планка и Университета Филиппса обнаружили первый регулярный молекулярный фрактал. Это фермент, используемый видами цианобактерий для производства цитрата, который, как было обнаружено, естественным образом собирается в определенный фрактальный узор, называемый треугольником Серпинского. Развитие фрактальной модели треугольника Серпинского.

Автор: Sendker, F. Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024. Ученые, изучая структуру цитратсинтазы, были поражены изображениями, полученными с помощью электронного микроскопа. Вместо ожидаемой регулярной решетки молекул они увидели завораживающий фрактальный узор. Секрет асимметрии Разгадка тайны фрактального белка кроется в его асимметрии. Обычно при самоорганизации белковых молекул каждая цепь занимает одинаковое положение относительно своих соседей. Это приводит к формированию симметричных, упорядоченных структур. Но в случае с цитратсинтазой все иначе. Различные белковые цепи взаимодействуют друг с другом по-разному, создавая сложный и непредсказуемый узор, подобный треугольнику Серпинского. Эволюционная игра Зачем же цианобактерии понадобился фрактальный фермент? Удивительно, но, похоже, это всего лишь игра случая, эволюционный каприз.

Откройте свой Мир!

При этом они деликатно забывают сообщить, что всё это — экстраполяция, базирующаяся на гипотезе о макро однородности Вселенной. В такой Вселенной часть наша Метагалактика и на самом деле подобна целому Вселенной. Однако наблюдения последних лет говорят о фрактальности распределения материи во всем объеме наблюдаемого мира, что делает более правдоподобной гипотезу о фрактальности Вселенной. В такой Вселенной часть может существенно отличаться от целого. Верю — не верю... Это падение описывается эмпирическим законом Эдвина Карпентера 1938 : плотность сферического участка космической структуры пропорциональна его радиусу R в степени D — 3 , где D приблизительно равно 1,23. Структуры такого рода сегодня называют фрактальными, а величину D — их фрактальной размерностью. Существенно, что D меньше 3, то есть размерности нашего трехмерного пространства. Представления о фрактальности космического мира противоречат гипотезе об однородности Вселенной.

Чтобы спасти ее, космологи перешли к гипотезе о макрооднородности Вселенной, полагая, что она Вселенная однородна на расстояниях примерно равных или больших 300 млн световых лет. Более точное определение верхнего порога масштабов расстояний, за которым распределение галактик однородно, потребовало составления трехмерных карт распределения галактик на возможно большую глубину. Эта работа принесла неожиданные результаты: были открыты гигантские космические структуры, размеры которых вполне сравнимы с радиусом горизонта видимости 13,8 млрд св. Мы укажем здесь четыре таких объекта с их размерами: 1. Великая стена Слоуна, около 1,38 млрд св. Громадная группа квазаров светящихся ядер галактик , имеющая размер около 4 х 2,1 х 1,2 млрд св. Великая стена Геркулес — Северная Корона, более 10 млрд св. Гигантская кольцеобразная структура, около 5 млрд св.

После этих открытий ничто уже не противоречит гипотезе о фрактальности всего наблюдаемого мира. Эта гипотеза на наших глазах приобретает статус подтвержденного эмпирического факта, который ничто уже не мешает экстраполировать на всю Вселенную. Некоторые космологи и в этих «нечеловеческих» условиях продолжают отстаивать гипотезу о макрооднородности Вселенной. Их можно понять. Практически во всех своих теоретических выкладках космологи опираются не на уравнения общей теории относительности в общем виде из-за их чрезвычайной сложности, а на получаемые из них в предположении однородности Вселенной достаточно простые уравнения Фридмана. Отказ от этой гипотезы будет означать и отказ от этих уравнений. И с чем тогда останутся космологи?! Однако правде нужно смотреть в глаза: после открытия гигантских космических структур гипотеза о фрактальности Вселенной стала более правдоподобной, чем гипотеза о ее макрооднородности.

Сделаем терминологическое уточнение. Природные фракталы, расположенные в нашем трехмерном мире, будем называть идеальными, если их плотность равна нулю. Единственным таким фракталом может оказаться Вселенная, если она бесконечна: устремляя в законе Карпентера радиус к бесконечности, получаем нулевую плотность. Мы включаем в гипотезу о фрактальности Вселенной предположение о ее бесконечности. Делаем это по двум соображениям. Во-первых, это предположение — простейшее из возможных для фрактальной Вселенной. Во-вторых, Альберт Эйнштейн ввел в оборот модель замкнутой Вселенной 1917 , чтобы избавиться от ее нестационарности, возникающей в предположении однородности Вселенной. Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует.

Но затем, при дальнейшем росте параметра, из хаоса вновь возникает некоторое конечное число упорядоченных состояний, которые в конце концов "схлопываются" в единственное, и все начинается сначала. В математической модели этого явления обнаружено множество подобных, скейлинговых элементов; эти свойства в науке носят названия универсальности Фейгенбаума. Здесь переменная z и константа с - комплексные числа, отображаемые точками на координатной плоскости, где и формируется пространственный образ множества. Работа алгоритма состоит в последовательном вычислении сумм, причем в формулу каждый раз подставляется значение z, полученное на предыдущем шаге. Ясно, что в этом случае алгоритм сводится к бесконечной формуле... Для любого значения числа с возможен один из двух результатов вычислений.

Либо сумма постоянно растет - быстрее или медленнее, но рано или поздно "улетая" в бесконечность, либо она остается конечной, сколько бы шагов ни сделал алгоритм на практике берется не более 1000, что вполне достаточно. По мере роста числа шагов алгоритма выявляются новые и новые причудливые и стройные фрактальные структуры, неисчерпаемое богатство форм. А самое удивительное в том, что многие из них напоминают различные природные объекты: инфузории и снежинки, морские коньки и галактики, раковины и облака... Вот оно, самоподобие! Фрактальная геометрия природы выражается в том, что принцип самоподобия в приближенном виде выполняется во многих проявлениях: в линиях берегов морей и рек, в очертаниях облаков и деревьев, в турбулентном потоке жидкости и иерархической организации живых систем хотя нет ни одной реальной структуры, которую можно было бы последовательно увеличивать бесконечное число раз и которая выглядела бы при этом неизменной. Фрактальные структуры порождают процессы с обратной связью, когда одна и та же операция выполняется снова и снова, и результат одной операции является начальным значением для следующей.

Проблемы, связанные с итерациями, возникают при изучении эволюции любой системы в любой области знания, от астрономии до биологии и экологии. Например, прочитать генетическую информацию ДНК человека в принципе возможно, не расшифровывая последовательно год за годом три миллиарда буквенных обозначений, а установив ключ, лежащий в основе кода. Несмотря на внешнее разнообразие встречающихся в природе самоподобных структур, все они обладают общей количественной мерой - фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов, на котором он рассматривается. Сложные биологические структуры и сигналы могут быть численно охарактеризованы всего лишь одним параметром - показателем фрактальной размерности 1993г. Первая международная конференция "Фракталы в естественных науках". Как уже отмечалось, фрактальным строением обладает огромное число объектов и процессов в окружающем нас мире.

Хрестоматийный пример фрактала - крона дерева. Крона имеет ветвящуюся многомасштабную структуру с отчетливо выраженным самоподобием: ветви разных масштабов похожи между собой и на дерево в целом. Примерами фракталов являются поверхность облаков и гор, разветвленные системы рек, траектории броуновских частиц, турбулентные вихри в атмосфере и в воде, контуры электрических разрядов и многие другие объекты и явления. Наше ощущение прекрасного возникает под влиянием гармонии порядка и хаоса в объектах природы - тучах, деревьях, горных грядах и кристалликах снега. Их очертания - динамические процессы, застывшие в физических формах, и определенное чередование порядка и беспорядка характерно для них. В 1992 году вышла книга М.

Маковского "Лингвистическая генетика". В ней автор доказывает, что человеческие языки развиваются по законам Менделя. У многочисленных "братьев" и "сестер" родительские признаки расщепляются по закону Менделя в соотношении 3:1. Дурная наследственность порождает мутации - появляются слова уродцы. Иногда часть слова перепрыгивает с места на место - происходит транспозиция. Лингвист Геннадий Гриневич писал, что языки мира подобны ветвям дерева, то есть имеют общий корень.

Математик-лингвист Ноам Хомский доказал, что грамматики всех языков универсальны имеют общие стратегические черты.

Слайд 3 Описание слайда: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: 1. Обладает нетривиальной структурой на всех масштабах.

В этом отличие от регулярных фигур таких как окружность, эллипс, график гладкой функции : если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой.

Он базируется на математических формулах, например, Мандельброта. Фигуры строятся с помощью комплексной динамики. Эти фигуры создают методом хаотичного изменения параметров, применяют дизайне, художестве. Изображения получаются природными, абстрактными. Такие фигуры нашли популярность в кинематографе, компьютерной графике, нейрографике дизайне при создании эффекта «плазмы» природы: молний, пламени, северного сияния, береговой линии и даже ионосферы. Концептуальные фракталы и их дизайн. А эти фигуры уже выходят за рамки геометрии.

Многоуровневое самоподобие ищи в стихах, музыке, изобразительном искусстве. Сказка «Репка», где «бабка за дедку, внучка за бабку, а Жучка за внучку» — яркий тому пример. Внепространственные фракталы также применяются в разделении общества на группы, организации поселений, социокультурной сфере. Фрактал — это бесконечная цепочка самопостроения Первые изображения найдены на керамике Трипольской культуры 2700 год. Гипнотические фигуры в природе и науке преображают хаос, создают матрицу. Они перестают быть синонимами беспорядка, обретая тонкую и четкую структуру. Фракталы выстраивают свой дизайн посредством простых алгоритмов. Математика, современные технологии, дизайн, экономика и другие сферы давно обратили внимание на подобные закономерности.

Фрактал упорядочивает хаос Картины с изображением фракталов способствуют глубокой медитации От общего к частному: из природы в архитектуру Архитектура обожает прием совершенной геометрии. К примеру, индуистские храмы обладают схожими друг на друга структурами. В их дизайне некоторые части напоминают концепт в целом. Согласно индуистской космологии, центральная башня зачастую олицетворяет бога Шиву, а подобные меньшие — бесконечные повторы вселенной. Не страшно разгадать глубинные секреты Вселенной? Дизайн фракталов также имеет схема линий парижского метрополитена, индийская мандала , соборы и храмы и природные объекты. Дизайн повторяющихся фрагментов отражается в общем облике здания и отдельно взятых деталях фасада. Наиболее чаще они встречаются в западной и отечественной архитектурах: исторический музей в Москве, древние индийские и ацтекские ступенчатые храмы, многофункциональный комплекс Federation Square в Мельбурне, мексиканский бутик Liverpool Insurgentes и другие.

Физики нашли фракталы в лазерах

Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической». Деревья – один из самых квинтэссенциальных фракталов в природе. Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского.

Фракталы. Чудеса природы. Поиски новых размерностей

Фрактальная геометрия природы. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Самым известным примером фракталов в природе является снежинка.

Похожие новости:

Оцените статью
Добавить комментарий