Новости фрактал в природе

Посмотрите потрясающие примеры фракталов в природе. Если посмотреть на фрактал с близкого или дальнего расстояния, можно увидеть, как повторяются одни и те же узоры. Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений.

Фракталы вокруг нас

чудо природы, с которым я предлагаю вам познакомиться. Часто говорят, что мать-природа чертовски хороший дизайнер, а фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи вместе. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что можно замереть от восхищения. А разнообразие видов фракталов в природе значительно больше того, что могут дать результаты компьютерных вычислений. Смотрите 51 фото онлайн по теме фракталы в природе фото.

Фракталы в природе: красота бесконечности вокруг нас

Фракталы в природе (53 фото). Это и есть яркое проявление фрактальной геометрии в природе. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас. фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. В ней он впервые заговорил о фрактальной природе нашего многомерного мира.

1 из 9: Романеско

  • Идеи для фен-шуй
  • Исследовательская работа: «Фракталы в нашей жизни». | Образовательная социальная сеть
  • Фракталы в природе |
  • Фракталы в природе (102 фото)

2 из 9: Сосновые шишки

  • Фрактал. 5 вопросов
  • Фрактальность в трейдинге
  • Фракталы в природе. Мир вокруг нас. Ч.2
  • Фракталы в Природе
  • 1 из 9: Романеско
  • ФРАКТАЛ • Большая российская энциклопедия - электронная версия

Любопытные фото природы, которые успокоят

Фото сделано снизу, чтобы разглядеть это во всей красе. Брокколи - хоть брокколи не так лихо геометрична, как романессу, но тоже фрактальна. Павлины - всем известны своим красочным оперением, в котором спрятаны сплошные фракталы. Ананас - необычный плод это есть, фактически, фрактал. Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии.

Облака - Посмотрите в окно. Практически в любой момент вы можете увидеть фракталы на небе. Кристаллы - Лед, морозные узоры на окнах это тоже фракталы.

Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. В движении Фракталы бесподобны! Если сложить два фрактала вместе, то получится два фрактала, сложенных вместе. Фрактал — непонятный объект, который обладает весьма любопытными свойствами. Фрактал — с греч.

Фрактал — с лат.

Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным. Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась. При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками.

Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден. Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров — завихрений. Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа Gaston Maurice Julia приложение 6.

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Классификация фракталов Фракталы делятся на группы. Самые большие группы это: - геометрические фракталы; - стохастические фракталы. Геометрические фракталы Фракталы этого класса самые наглядные. Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений.

В двухмерном случае их получают с помощью некоторой ломаной или поверхности в трехмерном случае , называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную - генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Примерами геометрических фракталов могут служить: 1 Кривая Коха — фрактальная кривая , описанная в 1904 году шведским математиком Хельге фон Кохом. Три копии кривой Коха, построенные остриями наружу на сторонах правильного треугольника , образуют замкнутую кривую бесконечной длины, называемую снежинкой Коха приложение 7. Предложен французским математиком П.

Инициатором является отрезок , а генератором является ломаная из восьми звеньев два равных звена продолжают друг друга приложение 9.

Автор: Designer Фракталы — это геометрические фигуры, обладающие свойством самоподобия. Их структура повторяется на всех масштабах, от мельчайших деталей до общей формы. В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Но на молекулярном уровне, в мире белков и атомов, фракталы казались невозможными. До сих пор. Встреча с треугольником Серпинского Цитратсинтаза — фермент, участвующий в жизненно важных процессах обмена веществ у цианобактерий.

Казалось бы, что может быть прозаичнее? Но исследователи из Института Макса Планка и Университета Филиппа в Марбурге обнаружили, что молекулы этого фермента способны на удивительное: они самоорганизуются, образуя узор, известный как треугольник Серпинского. Этот фрактал представляет собой бесконечную последовательность треугольников, вложенных друг в друга, с пустыми пространствами, напоминающими звездное небо. На рисунках изображена сборка известных белков CS. Комплексы 6mer не давали обзоров сверху. Таким образом, для представления был использован изолированный 6mer из среднего по классу 18mer.

Фракталы в природе: красота бесконечности вокруг нас

Что такое фрактал? Деревья – один из самых квинтэссенциальных фракталов в природе.
Фракталы в природе | дробленый) - термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Природа зачастую.
Математика в природе: самые красивые закономерности в окружающем мире (с) Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек.
Молния фрактал По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.
Фрактальные закономерности в природе | Северные инновации и управление Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что можно замереть от восхищения.

Фракталы: бесконечность внутри нас

Фрактальные чернильные шарики низкой сложности сделали этот процесс счастливым, заставляя наблюдателей видеть изображения, которых там нет. Поллоку не понравилась идея, что зрители его картин были отвлечены такими воображаемыми фигурами, которые он назвал «дополнительным грузом». Он интуитивно увеличил сложность своих работ, чтобы предотвратить это явление. Коллега по абстрактному экспрессионизму Поллока Виллем де Кунинг также рисовала фракталы. Когда ему поставили диагноз слабоумие, некоторые искусствоведы призывали уйти в отставку на фоне опасений, что это уменьшит воспитательную составляющую его работы. Все же, хотя они предсказывали ухудшение его картин, его более поздние работы передали спокойствие, отсутствующее в его более ранних частях. Недавно было показано, что сложность фрактала его картин неуклонно снижается, когда он впадает в слабоумие. Исследование было сосредоточено на семи художниках с различными неврологическими состояниями и выявило потенциал использования произведений искусства в качестве нового инструмента для изучения этих заболеваний. Для меня самое вдохновляющее сообщение заключается в том, что, борясь с этими болезнями, художники все еще могут создавать прекрасные произведения искусства. Признание того, как взгляд на фракталы уменьшает стресс, означает, что можно создавать имплантаты сетчатки, имитирующие механизм. Изображение Nautilus через www.

На первый взгляд эта цель кажется далекой от искусства Поллока. Тем не менее, именно его работа дала мне первый ключ к беглости фракталов и той роли, которую фракталы природы могут сыграть в контроле уровня стресса людей. Чтобы мои био-вдохновленные имплантаты вызывали такое же снижение стресса при взгляде на фракталы природы, как нормальные глаза, они близко имитируют дизайн сетчатки. Когда я начинал свое исследование Поллока, я никогда не думал, что это послужит основой для создания искусственных глаз. Это, однако, сила междисциплинарных усилий - мышление «из коробки» приводит к неожиданным, но потенциально революционным идеям. Эта статья была первоначально опубликована на разговор.

Все мы знаем, как выглядит часть этого растения — треугольник, состоящий из листьев они называются вайи , которые в свою очередь тоже образуют треугольник, подобный самому большому. Существуют даже математические фракталы в виде папоротника. Например, британский математик Майкл Барнсли в своем труде «Фракталы повсюду» описал «фрактал-папоротник», который при приближении даёт воспроизведение начальной формы. Лист папоротника — типичный фрактал в природе mirzhvetov.

А ведь этот «мягкий настил» — тоже фрактал! Особенно хорошо это видно на длинном мхе: его структура самоподобна. Попробуйте заняться макро-съёмкой: вы увидите, что фракталы не только рядом, но и у нас под ногами. Посмотрите, как мох разветвляется: этот природный фрактал, пожалуй, один из самых красивых krasivoe-foto. Однако на листьях фрактальность теряется — хотя, если не брать в счёт «мякоть» листа и оставить только прожилки, это можно считать продолжением «древесного» фрактала. Кстати, а корневая система — это уже другое самоподобное множество. Но у всех них в основе строения лежит фрактальное подобие lensscaper. Его не сразу можно обнаружить. Существует такое явление, как парадокс береговой линии. Измерить её!

Так ли это просто? Вовсе нет, ведь береговая линия длинна, и измерить её простой рулеткой не получится. Поэтому берётся мера измерения — например, в 100 км. Получили сумму всех сторон — 2800 км. Но если мы возьмём меру поменьше, например, 50 км, то измерения будут учитывать больше нервностей и мелких особенностей береговой линии — и соответственно, длина увеличится до 3200 км. Разница измерения в 400 километров! А это нельзя посчитать за погрешность. И чем меньше мы будем брать меру, тем больше получится длина береговой линии. Фракталы беспокоят не только математиков и художников, но и географов vjcx. Сосуды, сохраняя свою форму, утончаются и разветвляются.

Оно играло существенную роль уже в мировоззрении философов древности. По их представлениям хаос - состояние материи при отсутствии всех факторов, влияющих на нее и позволяющих выявить ее свойства и структуру. При действии разных факторов из хаоса может рождаться все, что состовляет строение Мироздания, т.

Таким образом, Хаос противопоставляется Порядку. Отсюда и представление о хаосе как о беспорядочном движении. В физику понятие хаоса было введено Л.

Больцманом и Дж. В качестве меры хаотичности движения они использовали понятие энтропии. В странном мире хаоса и турбулентности начиная с 70-х г.

XX века ученые стали находить непривычную, но вполне определенную упорядоченность, образуемую путем бесконечного в принципе повторения какой-либо исходной формы во все уменьшающемся масштабе по определенному алгоритму, инструкции или формуле фрактальные закономерности. В современной науке фрактальность поведения сложных нелинейных систем считается их неотъемлемым свойством как строго доказанный математический факт. Оказывается, что если система достаточно сложна, то она в своем развитии обязательно проходит через чередующиеся этапы устойчивого и хаотического развития.

Причем сценарии перехода от порядка к хаосу и обратно поддаются классификации, и вновь все многообразие природных процессов распадается на небольшое число качественно подобных. Один из таких сценариев может быть описан с помощью наглядного геометрического образа, рисунка, являющегося фракталом. Речь идет о так называемом логистическом отображении, впервые использованном П.

Ферхюльстом в 1838 г. Согласно этой модели, общее число х n особей n-го поколения пропорционально числу х n-1 особей предыдущего поколения с коэффициентом пропорциональности, линейно убывающем в зависимости от этого числа особей. Подобной динамикой обладает и изменение банковского вклада по закону сложного процента, когда начисление линейно зависит от самого вклада.

Более того, оказалось, что свойства логистического отображения универсальны, они характерны для динамики любой системы, поведение которой описывается гладкой функцией вблизи ее минимума. Развитие систем, описываемых логистическим отображением, очень напоминает античные натурфилософские и мифологические сценарии рождения мира. Сначала, при некотором значении коэффициента пропорциональности, в системе имеется только одно устойчивое положение равновесия - Единое еще не начало свой путь творения.

При изменении коэффициента наступает момент, когда точка равновесия раздваивается, возникают два устойчивых состояния, в которых система пребывает по очереди, то в одном, то в другом, шаг за шагом во времени. Потом каждая из этих точек вновь раздваивается, и ситуация повторяется, сохраняя общий рисунок. Рано или поздно множество точек равновесия плотно заполняют все множество состояний, система переходит к хаосу, полностью разрушая свою структуру.

Но затем, при дальнейшем росте параметра, из хаоса вновь возникает некоторое конечное число упорядоченных состояний, которые в конце концов "схлопываются" в единственное, и все начинается сначала. В математической модели этого явления обнаружено множество подобных, скейлинговых элементов; эти свойства в науке носят названия универсальности Фейгенбаума. Здесь переменная z и константа с - комплексные числа, отображаемые точками на координатной плоскости, где и формируется пространственный образ множества.

Работа алгоритма состоит в последовательном вычислении сумм, причем в формулу каждый раз подставляется значение z, полученное на предыдущем шаге. Ясно, что в этом случае алгоритм сводится к бесконечной формуле... Для любого значения числа с возможен один из двух результатов вычислений.

Либо сумма постоянно растет - быстрее или медленнее, но рано или поздно "улетая" в бесконечность, либо она остается конечной, сколько бы шагов ни сделал алгоритм на практике берется не более 1000, что вполне достаточно.

Приятного просмотра! Фрактал лат. В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность в смысле Минковского или Хаусдорфа , либо метрическую размерность, отличную от топологической. На свете существует около 13000 определений термину фрактал. Но лишь одно из них считается верным.

Слово «фрактал» может употребляться не только как математический термин. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств: Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур таких, как окружность, эллипс, график гладкой функции : если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой.

Что такое фрактал? Фракталы в природе

Если сложить два фрактала вместе, то получится два фрактала, сложенных вместе. Фрактал — непонятный объект, который обладает весьма любопытными свойствами. Фрактал — с греч. Фрактал — с лат. Фрактал — очень умное слово современной науки. Как сказано в определении фрактал — это самоподобное… Действительно, вы можете взять в руки фрактал, и вы тут же заметите что он остается подобным самому себе бесконечно длительное время. Фрактал можно продифференцировать и получить производную фрактала, проинтегрировав которую можно получить фрактал, продифференцировав который можно снова получить производную фрактала! Фрактал очень самокритичен.

Поэтому берётся мера измерения — например, в 100 км. Получили сумму всех сторон — 2800 км. Но если мы возьмём меру поменьше, например, 50 км, то измерения будут учитывать больше нервностей и мелких особенностей береговой линии — и соответственно, длина увеличится до 3200 км. Разница измерения в 400 километров! А это нельзя посчитать за погрешность. И чем меньше мы будем брать меру, тем больше получится длина береговой линии. Фракталы беспокоят не только математиков и художников, но и географов vjcx. Сосуды, сохраняя свою форму, утончаются и разветвляются. Они гонят кровь по всему нашему телу, «доставляя» кислород и другие необходимые для биологического процесса элементы до клеток. Фракталы даже у нас внутри: кровеносная система — тоже самоподобное множество gb5kirov. Там фракталы «помягче»: теперь структура самоподобия заключается в том, что из мелких облачков состоят большие белые «кучи». Кстати, для предсказания погоды используют фракталы. Чтобы рассчитать площадь тени от большой «сахарной ваты в небе», которая получится в результате слияния двух средних, нужно учитывать, что облако — не какая-то конкретная геометрическая фигура, а множество. Более того, облака даже не трёхмерны — их размерность равна 2,3. Мы уже говорили о снежинке Коха, но и природные снежинки каждая из которых, как мы знаем, уникальна имеют структуру самоподобия. Парадокс, но снежинки, что так романтично могут попасть вам на ресницы, — это самые что ни на есть математические объекты. Снежинки настолько же прекрасны, насколько симметричны. Фракталы в природе — это настоящее чудо! Как выглядит «домик» улитки мы знаем с детства, но тогда мы вряд ли знали, что это фрактал. Для подобного бесконечного множества существует даже определённое название — круговой фрактал. Это завиток, который бесконечно стремится к какой-то точке. Хоть жизнь улитки не вечна, зато её ракушка фрактально бесконечна. Эта улитка ползёт познавать фрактальное подобие. Не будем её мешать!

Последние постепенно сливаются в более крупные вены, самые крупные из них впадают в сердце. Значительно упрощённая схема кровообращения приведена ниже: Рис. Схема кровообращения Такое фрактальное строение обеспечивает максимальное снабжение тканей кислородом и питательными веществами, в том числе и при незначительных повреждениях. Интересный факт: у больного человека часто срабатывают компенсаторные механизмы. К примеру, у пациента, длительное время страдающего частичной закупоркой стенозом сосуда, со временем наблюдается появление новой сети мелких сосудов коллатералей , которые начинают доставлять кровь к обделённому участку в обход закупоренного. Именно поэтому последствия инфаркта миокарда у возрастных больных с историей хронических сердечно-сосудистых заболеваний намного легче, чем у молодых пациентов. У возрастных больных кровоснабжение быстрей восстановится благодаря имеющимся коллатералям. Другими словами инфаркт в молодом возрасте опасней, чем в пожилом. Благодаря фрактальному строению коронарной системы, обеспечивающей кровоснабжение сердечной мышцы, во многих случаях удаётся избежать инфаркта миокарда. К тому же именно фрактальное строение сердечных мышечных волокон при повреждении какой-либо её части инфаркт миокарда зачастую позволяет сердцу продолжать свою работу. Фрактальное строение сердечной мышцы и коронарных сосудов. Дыхательная система Дыхательная система ещё один яркий пример фрактала. Её структурными элементами являются трахея, бронхи, бронхиолы, которые в совокупности образуют бронхиальное дерево; а также альвеолы, соединяющиеся в пирамидальные дольки, из которых и состоит лёгкое. Удивительно, но благодаря фрактальному принципу строения лёгких, в человеческой грудной клетке возможно разместить площадь теннисного корта. Именно столько занимает дыхательная поверхность лёгких. Сами же дыхательные пути искусно пронизаны артериями и венами в виде лабиринтов. Строением бронхиальное дерево напоминает H-фрактал, о котором мы говорили в предыдущей части «Что такое фракталы? Мир вокруг нас. Часть первая»: Рис. Изображение Н-фрактала и бронхиального дерева На рисунке 14 мы видим переплетение двух фрактальных систем — лёгочной слева и кровеносной справа. Говорить про фрактальное строение человеческого организма можно много.

Фрактал — термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Фракталы в природе: красота бесконечности вокруг нас

Молекулярная основа фрактальной сборки Авторство: Sendker, F. Асимметрия и случайность могут играть ключевую роль в формировании структур с уникальными свойствами. Переосмысление эволюции: возникновение фрактальной структуры как нейтрального признака ставит под сомнение принцип адаптационизма, согласно которому все биологические структуры должны иметь эволюционное преимущество. Случайность и нейтральные мутации могут быть не менее важными факторами эволюционного процесса.

Биомиметика и нанотехнологии: фрактальные структуры обладают уникальными физическими и химическими свойствами, такими как высокая площадь поверхности, фрактальная размерность и самоподобие. Изучение молекулярного фрактала цитратсинтазы может открыть новые пути для создания биомиметических материалов с улучшенными характеристиками, например, для катализа, доставки лекарств или сенсорики.

В противном случае управлять государством будет уже не она. Здесь мы коснулись очень важного вопроса. Поскольку средняя сила связей является суммарным параметром, в который входят как материальные связи, так и информационные, то это значит, что ослабление одних из них может быть компенсировано усилением других. Простейший пример - замена реальных товаров на бумажные или даже электронные деньги. В этом случае поставщику, по сути, вместо материального продукта поступает информация об изменении на его счете - и такой обмен его вполне устраивает.

Подобным же образом путем биржевых операций ежедневно приобретаются или теряются громадные суммы, которые, в конечном счете, кто-то должен компенсировать реальными продуктами или услугами. Как может происходить разрушение синхронизованного состояния? Об одной возможности мы уже упомянули. Это ослабление связей. Другая причина - неадекватное воздействие "ритмоводителя" на ансамбль. Действительно, если "ритм", диктуемый пейсмейкером, будет слишком противоречить естественному поведению компонент системы, то даже при достаточной силе связи ему не удастся навязать ансамблю свою линию поведения. Однако прежнее поведение также не сохранится.

В результате синхронизация будет разрушена. Фрактальность и устойчивость Мы уже убедились, что теорию динамического хаоса можно применить ко многим системам, в том числе к государству и обществу в целом. А какую роль играет при этом фрактальная структура хаоса? Ведь образ хаоса в фазовом пространстве - странный аттрактор - геометрически представляет собой фрактал. Несмотря на то, что каждая отдельная хаотическая траектория чрезвычайно чувствительна к малейшим возмущениям, странный аттрактор совокупность всех возможных траекторий является очень устойчивой структурой. Таким образом, динамический хаос подобен двуликому Янусу: с одной стороны, он проявляет себя как модель беспорядка, а с другой - как стабильность и упорядоченность на разных масштабах. Если задуматься, то легко увидеть, что в обществе, как и в природе, многие системы построены по принципу фракталов: из малых элементов образуются некоторые комплексы, они в свою очередь служат элементами для более крупных комплексов и т.

Как, например, организованы жизнеспособные экономические и производственные структуры? Две крайние позиции: крупные транснациональные компании и "мелкий бизнес". Каждая из них в отдельности нежизнеспособна. Большие компании, обладая огромной экономической мощью, малоподвижны и не могут быстро реагировать на изменения в окружающей экономической среде. Где же золотая середина? В средних по размеру предприятиях? Устойчивая экономическая инфраструктура обеспечивается при необходимой подкачке нужных ресурсов совокупностью разномасштабных вот он фрактал!

У основания ее находится множество мелких компаний и фирм, выше по пирамиде размер предприятий постепенно увеличивается, а их число, соответственно, сокращается, и, наконец, наверху находятся самые крупные компании. Такая структура характерна, например, для экономики США. При этом мелкие предприятия наиболее мобильны: они часто рождаются и умирают, являясь основными поставщиками новых идей и технологий. Нововведения, получившие достаточное развитие, позволяют ряду предприятий вырасти до следующего уровня либо передать продать накопленные инновации более крупным компаниям. При достаточной восприимчивости среды такой механизм способен создать новые отрасли промышленности и экономики за несколько лет. Недаром в так называемой "новой экономике" основную массу даже крупных предприятий составляют компании, которые 15-20 лет назад либо вообще не существова ли, либо находились в разряде мелких. Другой пример.

Во времена перестройки много писалось и говорилось о "неправильном" устройстве СССР, в котором государство имело сложную иерархическую структуру, организованную по принципу матрешки. Что было предложено взамен? Каждому народу свою туземную армию, свой язык, свою "элиту", своих племенных вождей. Звучит неплохо. С точки зрения теории устойчивости, идея однородного устройства российского государства - идея двоечника. Принцип матрешки - это, по сути, фрактальный принцип, благодаря которому хаотическая система обретает структуру и устойчивость. СССР и Российская империя были построены по принципу фрактальных систем, и это обеспечивало их стабильность как государств.

На разных уровнях в общую систему были вкраплены естественные государственные, этнические, территориальные и другие образования с отлаженными механизмами внутреннего функциониро вания, со своими правами и обязанностями. Хаос порождает информацию Мы уже установили, что поведение хаотических систем не может быть предсказано на большие интервалы времени. По мере удаления от начальных условий положение траектории становится все более и более неопределенн ым. С точки зрения теории информации это означает, что система сама порождает информацию, причем скорость этого процесса тем выше, чем больше степень хаотичности. Отсюда, согласно теории хаотической синхрониза ции, рассмотренной ранее, следует интересный вывод: чем интенсивнее система генерирует информацию, тем труднее ее синхронизировать, заставить вести себя как-то иначе. Это правило, видимо, справедливо для любых систем, производящих информацию. Например, если некий творческий коллектив генерирует достаточное количество идей и а активно работает над способами их реализации, ему труднее навязать извне какую-то линию поведения, неадекватную его собственным воззрениям.

И наоборот, если при наличии тех же материальных потоков и ресурсов коллектив ведет себя пассивно в информационном смысле, не создает идей или не проводит их в жизнь - иными словами, следует принципу "... Хаотические компьютеры Чего нам не хватает в современных компьютерах? Если живой организм для существования в изменчивой среде должен обладать элементами хаотического поведения, то можно предположить, что и искусственные системы, способные адекватно взаимодей ствовать с меняющимся окружением, должны быть в той или иной степени хаотичными. Современные компьютеры таковыми не являются. Они представляют собой замкнутые системы с очень большим, но конечным числом состояний. Возможно, в будущем на основе динамического хаоса создадут компьютеры нового типа - открытые с термодина мической точки зрения системы, способные адаптироваться к условиям внешней среды. Однако уже сегодня хаотические алгоритмы могут успешно применять ся в компьютер ных технологиях для хранения, поиска и защиты информации.

При решении некоторых задач они оказываются более эффективными по сравнению с традиционными методами. Это относится, в частности, к работе с мультимедийными данными. В отличие от текстов и программ мультимедийная информация требует иного способа организации памяти. Голубая мечта пользователей - возможность поиска мелодии, видеосюжета или нужных фотографий не по их атрибутам названию директории и файла, дате создания и т. Оказывается, такой ассоциативный поиск можно осуществить с помощью технологий на основе детерминированного хаоса. Каким образом? Мы уже обсуждали генерацию информации хаотическими системами.

Теперь зададимся вопросом: а нельзя ли поставить в соответствие траектории конкретные данные, записанные в виде определенной последовательностей символов? Тогда часть траекторий системы находилась бы во взаимно однозначном соответствии с нашими информаци онными последовательностями. А поскольку каждая траектория - это решение уравнений движения системы при определенных начальных условиях, то и любую последователь ность символов можно было бы восстановить путем решения этих уравнений, задав в качестве начальных условий небольшой ее фрагмент. Таким образом появилась бы возможность ассоциативного поиска информации, то есть поиска по содержанию. Коллективом сотрудников нашего института были созданы математические модели записи, хранения и поиска информации с помощью траекторий динамических систем с хаосом. Хотя алгоритмы казались очень простыми, их потенциальная информационная емкость значительно превысила объем всей информации, имеющейся в Интернете. Развитие идеи привело к созданию технологии, позволяющей обрабатывать любые типы данных: изображения, текст, цифровую музыку, речь, сигналы и т.

Пример использования технологии - программный комплекс "Незабудка", предназначен ный для работы с архивами неструктурированной информации как на персональных компьютерах, так и на информационных серверах. Вся информация в архиве записывается и хранится в виде траекторий хаотической системы. Для поиска необходимых документов пользователь составляет запрос путем набора в произволь ной форме нескольких строк текста, относящегося к содержанию требуемого документа. В ответ система выдаст искомый документ, если входной информации достаточно для его однозначного поиска, либо предложит набор вариантов. При необходимости можно получить и факсимильную копию найденного документа. Наличие ошибок в запросе не оказывает существенного влияния на качество поиска. Связь с помощью хаоса В большинстве современных систем связи в качестве носителя информации используются гармонические колебания.

Информационный сигнал в передатчике модулирует эти колебания по амплитуде, частоте или фазе, а в приемнике информация выделяется с помощью обратной операции - демодуляции. Наложение информации на носитель осуществляется либо за счет модуляции уже сформированных гармонических колебаний, либо путем управления параметрами генератора в процессе его работы. Аналогичным образом можно производить модуляцию хаотического сигнала.

Минковский в 1908 г. Позже, в 20-х гг. Калуца, О. Клейн, Ю. Румер и др. В развитие этой линии уже относительно недавно в теории возникли 10- и 11-мерные физические пространства, а затем дело дошло и до варианта 506 измерений! Впрочем, в подчеркиваемом формально-математическом смысле, физики уже во второй половине прошлого века, во времена Больцмана и Гиббса, оперировали с фазовыми математическими пространствами размерности порядка 1023 число Авогадро.

Математики же, люди перед Природой куда менее ответственные, чем физики или астрономы, гораздо раньше тех же физиков обжились в многомерных пространствах, а с легкой руки великого математика Давида Гильберта, — и в «бесконечномерных». Однако, в смысле целочисленности и дискретности, сколь угодно большое натуральное число N тождественно 1 или даже 0. И вот мы узнаем, что живем во Вселенной, на каждом шагу, на всех уровнях масштабов заполненной объектами, структурами, системами дробной размерности! Перечислим хотя бы некоторые направления «фрактальных прорывов» в современной науке. Модель динамического хаоса тоже, кстати, фрагмент новой грани научной картины мира и турбулентность в воде, атмосфере и в Космосе 4 ; модели эрозии почвы и сейсмических явлений, организация полимеров и коллоидов, фликкер-шум и химические реакции, флуктуации температуры и плотности, морфология планет и спутников, облаков и горных хребтов; «блуждание пьяницы» и вероятность выживания, модель Изинга в теории кристаллов и «странный аттрактор»; солнечные пятна и «скрытая» масса галактик; структура речных систем и береговая линия моря; электропробой диэлектриков и растрескивание при разрушении; «дьявольская лестница» и теория конечных автоматов; фрагментация протогалактической среды и пыль у звезд типа R Северной Короны; множественное рождение частиц и совокупность ресничек на стенках кишечника; кластеризация во Вселенной и динамика экситонов; переменные звезды и структура рентгеновского источника Геркулес Х-1... Автор сам не очень понимает некоторые из этих терминов — так широка проблема. Фрактальный рост. Отложение цинка при электролизе Рис. Фрактальная структура Фигура Лихтенберга при электрическом разряде Как видим, действительно «природа очень любит фрактальные формы» [ 3 ]. Мандельброт [ 4 ].

Но чтобы увидеть это, должен был найтись такой Мандельброт или другой «мальчик», заметивший, что король-то голый! А до этого мы — вслед за нашими интеллектуальными и научными лидерами — столетиями в упор не видели самого очевидного. Когда же, вслед за «пионером», прозревают остальные, картина мира резко изменяется, перестраивается, и ранее невозможное оказывается очевидным. Эсхер Эшер. На математическом языке ее так называемая размерность Хаусдорфа—Безиковича тогда больше привычной топологической. Заметим, кстати, что размерность линии, превосходящая 1, при этом не обязательно будет дробной размерность плоской броуновской траектории равна 2. Видимо, мыслима и размерность линии в трехмерном объеме, превосходящая двойку. Вообще же разнообразие здесь велико, и в ряде случаев размерность «предельного объекта» может быть оценена лишь приближенно численно как итог компьютерного моделирования предельного процесса. В некоторых же объектах она элегантно выражается аналитически. Так, размерность Хаусдорфа—Безиковича знаменитого канторова множества «остаток» от процедуры: из отрезка вырезаем среднюю треть, из оставшихся двух отрезков — тоже, и т.

Математический смысл фрактальности довольно абстрактен, и здесь, пожалуй, не стоит пытаться определить фрактал во всей его математической строгости и сложности. Однако геометрический смысл фрактальности весьма нагляден и прост. Это, схематизируя, бесконечная — вверх и вниз — пирамида единообразно на один и тот же множитель изменяющихся ступеней. Такая лестница масштабов может быть и не откровенно иерархическо-геометрической, а скрытой во временном поведении системы. Например, совокупность броуновских частиц в каждый момент представляется предельно хаотичной. Но траектория броуновского движения каждой частицы в идеале если не подойти слишком близко к характерной величине размера атомов и расстояний между ними выглядит совершенно одинаково при любом масштабе «увеличении микроскопа». Масштабная инвариантность, или самоподобие, фрактальной структуры является ее характернейшим свойством. Она может проявляться бесконечно разнообразно. Любопытно, что именно через это свойство фракталы не называя их так, естественно , значительно раньше их первооткрывателя Мандельброта увидел талантливый голландский художник с острым взглядом — М. Эсхер 1902—1972 иногда, в более ранней и менее точной транскрипции — Эшер.

Физический смысл объекта-фрактала также довольно нагляден. Это структура пространственно-иерархического типа, со все меньшим при удалении от некоторого центра , но убывающим строго закономерно, единообразно, заполнением объема 6. Выразительный пример — крона «зимнего дерева», без листьев. На эволюционно-биологическом уровне аналог — эволюционное древо жизни Земли, а в еще более общем плане — Мировое Древо ряда религиозных космологии. Открытие фракталов Смотрите, как повсюду окружают нас непонятные факты, как лезут в глаза, кричат в уши, но мы не видим и не слышим, какие большие открытия таятся в их смутных очертаниях. Ефремов Осознание фрактальности мира, как почти все крупнейшие обобщения в науке, началось с весьма частного вопроса — с мысленного опыта американского математика Бенуа Мандельброта: длина участка береговой линии между двумя городами оказалась зависящей от того, как ее измерять, то есть от «длины линейки». Можно сказать, что это заранее очевидно и тривиально. Но те, кто так рассуждали и на этом останавливались в бесконечном множестве «аналогичных случаев» до Мандельброта, и не заметили, не открыли фрактальность Вселенной! Мандельброт, между тем, вышел за рамки старой научной картины мира, в которой не было места для фракталов. Впрочем, у математиков, знакомых с хаусдорфовской размерностью еще с 1919 г.

Но к этим разговорам долго не прислушивались, даже некоторое время и после провозглашения Мандельбротом его открытия. Нобелевская премия по физике Кеннету Вилсону за работу, в которой прямо использовались представления о модели физической системы с дробной размерностью, не особенно изменила положение. Но час пробил! Наша Вселенная «изменилась» — она «стала» фрактальной 7. А точнее, барьер в догматическом сознании научного сообщества был-таки преодолен. В итоге необратимо изменилась наша картина мира, в том числе — и астрономическая. Несомненно, какие бы с нею дальше ни происходили изменения, какие бы ни совершались научные революции, аспект фрактальности навсегда вошел в ее «твердое ядро» принципов-постулатов и не будет изъят ни при какой ревизии [ 6 ]. Патологические структуры, которые были изобретены математиками, желавшими оторваться от свойственного XDC веку натурализма, оказались основой множества хорошо знакомых, повсюду нас окружающих объектов», — констатировал выдающийся физик XX века Фримен Дайсон [4]. Концепция «раздувания» в космологии и фрактальность пространства Вселенной? В отличие от устойчивости, неустойчивость устойчива.

Арнольд Все упоминавшиеся системы, сколь ни много их вокруг нас, от микромира до Метагалактики, — все эти материальные объекты, — находящиеся в трехмерном пусть искривленном пространстве, имеют фрактальную структуру, или же дробную размерность. А мыслимо ли, и какой смысл могло бы иметь само пространство такой дробной размерности? Или, в еще более общем случае, — комплексной дробной размерности? Лично меня этот вопрос интересует где-то с начала 50-х гг.

На рисунке эти формы застыли. На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает.

Your browser does not support the video tag.

Фракталы: что это такое и какие они бывают

Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала. Найдите нужное среди 30 986 стоковых фото, картинок и изображений роялти-фри на тему «Fractals In Nature» на iStock. А разнообразие видов фракталов в природе значительно больше того, что могут дать результаты компьютерных вычислений.

Фракталы в природе и в дизайне: сакральная геометрия повсюду

Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией. Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». Просмотрите доску «Фракталы в природе» пользователя Александрина в Pinterest. Фракталы в природе Подготовила Андреева Алина Р-12/9. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике.

Откройте свой Мир!

Немного о фракталах и множестве Мандельброта Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика».
Фракталы в природе: красота бесконечности вокруг нас Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам.
Фракталы в природе исследование чудо природы, с которым я предлагаю вам познакомиться.
ФРАКТАЛ • Большая российская энциклопедия - электронная версия Деревья – один из самых квинтэссенциальных фракталов в природе.
Открыта первая природная фрактальная молекула Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений.

Фракталы вокруг нас

фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения.

ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ.

Сборка белков, как правило, очень симметрична, поскольку белковая цепочка копирует положение своих соседей. В случае с изученным ферментом сборка демонстрирует асимметрию, которая и лежит в основе фрактальной структуры. Историческое развитие фрактального фермента После этого открытия исследователи провели эксперимент, чтобы понять, как и почему фрактальная структура фермента появилась в ходе эволюции. В частности, они попытались проследить ее развитие, чтобы определить, не является ли она результатом эволюционной случайности. Для этого они провели расчеты, чтобы определить последовательность фрактального белка, какой она была миллионы лет назад. Целью было воспроизвести белки биохимически. Результаты эксперимента свидетельствуют о том, что фрактальная структура появилась внезапно в ходе эволюции, после очень небольшого числа мутаций. Поэтому ее развитие не потребовало длинного ряда изменений.

Your browser does not support the video tag. Цикл книг «Фракталы и Хаос».

Это растение называется дипсакус, и у него головокружительный массив листьев: 14. Эту капусту слишком жалко есть: 15.

Очень особенная снежинка. Или они все такие — особенные?.. Чудесные океанские волны: 17.

И напоследок... Удивительный кусочек агата вот за что мы так любим крупные подвески и другие украшения из агата! Агаты выглядят в украшениях волнующе!

Прозрачные слои перемежаются с непрозрачными, отчего кажется, будто удивительные агаты знают какую-то особенную тайну! Кольцо из бижутерного сплава с агатом. Размер кольца регулируется.

Агатовый браслет. Кольцо из меди.

Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. В движении Фракталы бесподобны! Если сложить два фрактала вместе, то получится два фрактала, сложенных вместе. Фрактал — непонятный объект, который обладает весьма любопытными свойствами.

Фрактал — с греч. Фрактал — с лат.

Открытие первой фрактальной молекулы в природе — математическое чудо

ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ. Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского».
Прекрасные фракталы в природе Это и есть яркое проявление фрактальной геометрии в природе.
Фракталы: что это такое и какие они бывают Смотрите 65 фотографии онлайн по теме фракталы в природе животные.
Фракталы: бесконечность внутри нас Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности.

Похожие новости:

Оцените статью
Добавить комментарий