Новости температура земли на глубине

Смотрите видео онлайн «Проверим температуру под землей на глубине 50 сантиметров?» на канале «Инженер Андрей» в хорошем качестве и бесплатно, опубликованное 18 декабря 2022 года в 16:09, длительностью 00:03:29, на видеохостинге RUTUBE. Если на поверхности Земли температура 5 градусов, то на глубине 2000 метров она составит 65 градусов. Постепенно экстремальные температуры стали сохраняться лишь на глубине, а наружные слои остыли и затвердели.

Температурные показатели планеты Земля

Таким образом, более глубокая нижняя мантия с достаточно высокой температурой должна иметь минералогический состав, отличный от менее глубокой нижней мантии. Поскольку недра ранней Земли были намного теплее, большая часть нижней мантии содержала одну перовскитную фазу, и ее минералогия значительно отличалась от современной. Однако пока неизвестно, могло ли это повлиять на важные глобальные процессы, такие как тектоника плит или Великое кислородное событие 2,45 миллиарда лет назад.

В системах, использующих низкопотенциальное тепло грунтовых вод, происходит постоянное пополнение водных запасов за счет воды, просачивающейся с поверхности, и воды, поступающей из более глубоких слоев грунта.

Таким образом, теплосодержание грунтовых вод увеличивается как «сверху» за счет тепла атмосферного воздуха , так и «снизу» за счет тепла Земли ; величина теплопоступлений «сверху» и «снизу» зависит от толщины и глубины залегания водоносного слоя. За счет этих теплопоступлений температура грунтовых вод остается постоянной в течение всего сезона и мало меняется в процессе эксплуатации. В системах с вертикальными грунтовыми теплообменниками ситуация иная. При отводе тепла температура грунта вокруг грунтового теплообменника понижается.

На понижение температуры влияет как особенности конструкции теплообменника, так и режим его эксплуатации. Например, в системах с высокими величинами отводимой тепловой энергии несколько десятков ватт на метр длины теплообменника или в системах с грунтовым теплообменником, расположенным в грунте с низкой теплопроводностью например, в сухом песке или сухом гравии понижение температуры будет особенно заметным и может привести к замораживанию грунтового массива вокруг грунтового теплообменника. Немецкие специалисты провели измерения температуры грунтового массива, в котором устроен вертикальный грунтовой теплообменник глубиной 50 м, расположенный недалеко от Франкфурта-на-Майне. Для этого вокруг основной скважины на расстоянии 2,5, 5 и 10 м от было пробурено 9 скважин той же глубины.

Во всех десяти скважинах через каждые 2 м устанавливались датчики для измерения температуры — всего 240 датчиков. На рис. В конце отопительного сезона хорошо заметно уменьшение температуры грунтового массива вокруг теплообменника. Возникает тепловой поток, направленный к теплообменнику из окружающего грунтового массива, который частично компенсирует снижение температуры грунта, вызванное «отбором» тепла.

Схемы распределения температур в грунтовом массиве вокруг вертикального грунтового теплообменника в начале и в конце первого отопительного сезона Поскольку относительно широкое распространение вертикальные теполообменники стали получать примерно 15—20 лет назад, во всем мире ощущается недостаток экспериментальных данных, полученных при длительных несколько десятков лет сроках эксплуатации систем с теплообменниками такого типа. Возникает вопрос об устойчивости этих систем, об их надежности при длительных сроках эксплуатации. Является ли низкопотенциальное тепло Земли во- зобновляемым источником энергии? Каков период «возобновления» этого источника?

С 1986 года в Швейцарии неподалеку от Цюриха проводились исследования системы с вертикальными грунтовыми теплообменниками. В грунтовом массиве был устроен вертикальный грунтовой теплообменник коаксиального типа глубиной 105 м. Этот теплообменник использовался в качестве источника низкопотенциальной тепловой энергии для теплонасосной системы, установленной в одноквартирном жилом доме. Вертикальный грунтовой теплообменник обеспечивал пиковую мощность примерно 70 Вт на каждый метр длины, что создавало значительную тепловую нагрузку на окружающий грунтовой массив.

Годовое производство тепловой энергии составляет около 13 МВт ч На расстоянии 0,5 и 1 м от основной скважины были пробурены две дополнительных, в которых на глубине в 1, 2, 5, 10, 20, 35, 50, 65, 85 и 105 м установлены датчики температуры, после чего скважины были заполнены глинисто-цементной смесью. Температура измерялась каждые тридцать минут. Кроме температуры грунта фиксировались и другие параметры: скорость движения теплоносителя, потребление энергии приводом компрессора теплового насоса, температура воздуха и т. Первый период наблюдений продолжался с 1986 по 1991 год.

Измерения показали, что влияние тепла наружного воздуха и солнечной радиации отмечается в поверхностном слое грунта на глубине до 15 м. Ниже этого уровня тепловой режим грунта формируется главным образом за счет тепла земных недр. За первые 2—3 года эксплуатации температура грунтового массива , окружающего вертикальный теплообменник, резко понизилась, однако с каждым годом понижение температуры уменьшалось, и через несколько лет система вышла на режим, близкий к постоянному, когда температура грунтового массива вокруг теплообменника стала ниже первоначальной на 1—2 оC. Осенью 1996 года, через десять лет после начала эксплуатации системы, измерения были возобновлены.

Эти измерения показали, что температура грунта существенным образом не изменилась. В последующие годы были зафиксированы незначительные колебания температуры грунта в пределах 0,5 градусов C в зависимости от ежегодной отопительной нагрузки. Таким образом, система вышла на квазистационарный режим после первых нескольких лет эксплуатации. На основании экспериментальных данных были построены математические модели процессов, проходящих в грунтовом массиве, что позволило сделать долгосрочный прогноз изменения температуры грунтового массива.

Математическое моделирование показало, что ежегодное понижение температуры будет постепенно уменьшаться, а объем грунтового массива вокруг теплообменника, подверженного понижению температуры, с каждым годом будет увеличиваться. По окончании периода эксплуатации начинается процесс регенерации: температура грунта начинает повышаться. Характер протекания процесса регенерации подобен характеру процесса «отбора» тепла: в первые годы эксплуатации происходит резкое повышение температуры грунта, а в последующие годы скорость повышения температуры уменьшается. Продолжительность периода «регенерации» зависит от продолжительности периода эксплуатации.

Эти два периода примерно одинаковы. В рассматриваемом случае период эксплуатации грунтового теплообменника равнялся тридцати годам, и период «регенерации» также оценивается в тридцать лет. Таким образом, системы тепло- и холодоснабжения зданий, использующие низкопотенциальное тепло Земли, представляют собой надежный источник энергии, который может быть использован повсеместно. Этот источник может использоваться в течение достаточно длительного времени, и может быть возобновлен по окончании периода эксплуатации.

Литература 1. Rybach L. International course of geothermal heat pumps, 2002 2. Васильев Г.

Энергоэффективная сельская школа в Ярославской области. Sanner B. Ground Heat Sources for Heat Pumps classification, characteristics, advantages. International course of geothermal heat pumps, 2002 5.

IGA News no. Ground-source heat pump systems — the European experience. GeoHeat- Center Bull. Maxi Brochure 08.

Atkinson Schaefer L. Georgia Institute of Technology, 2000 9. Morley T. The reversed heat engine as a means of heating buildings, The Engineer 133: 1922 10.

Fearon J. The history and development of the heat pump, Refrigeration and Air Conditioning. Энергоэффективные здания с теплонасосными системами теплоснабжения. Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии.

Энергоэффективный жилой дом в Москве. Энергоэффективный экспериментальный жилой дом в микрорайоне Никулино-2. Оказывается, в суровых сибирских условиях можно получать тепло прямо из земли. Первые объекты с геотермальными системами отопления появились в Томской области в прошлом году, и хотя они позволяют снизить себестоимость тепла по сравнению с традиционными источниками примерно в четыре раза, массового хождения «под землю» пока нет.

Но тренд заметен и главное - набирает обороты. По сути, это наиболее доступный альтернативный источник энергии для Сибири, где не всегда могут показать свою эффективность, например, солнечные батареи или ветряные генераторы. Геотермальная энергия, по сути, просто лежит у нас под ногами. Температура земли ниже этой отметки остается одинаковой и зимой и летом в диапазоне от плюс одного до плюс пяти градусов Цельсия.

Работа теплового насоса построена на этом свойстве, - говорит энергетик управления образования администрации Томского района Роман Алексеенко. В системе труб циркулирует теплоноситель - этиленгликоль. Внешний горизонтальный земляной контур сообщается с холодильной установкой, в которой циркулирует хладагент - фреон, газ с низкой температурой кипения. При плюс трех градусах Цельсия этот газ начинает закипать, и когда компрессор резко сжимает кипящий газ, температура последнего возрастает до плюс 50 градусов Цельсия.

Нагретый газ направляется в теплообменник, в котором циркулирует обычная дистиллированная вода. Жидкость нагревается и разносит тепло по всей системе отопления, уложенной в полу». Чистая физика и никаких чудес Детский сад, оборудованный современной датской системой геотермального отопления открылся в поселке Турунтаево под Томском летом прошлого года. По словам директора томской компании «Экоклимат» Георгия Гранина , энергоэффективная система позволила в несколько раз снизить плату за теплоснабжение.

За восемь лет это томское предприятие уже оснастило геотермальными системами отопления около двухсот объектов в разных регионах России и продолжает заниматься этим в Томской области. Так что в словах Гранина сомневаться не приходится. По сути это был первый опыт такого рода. И он оказался вполне успешным.

Если все-таки в будущем окажется, что большинство тепла в ядре первичное, то для того, чтобы оно остыло потребуется уж точно не один миллиард лет, а если подтвердится, что тепло вырабатывается благодаря процессам, описанным выше, то для его остывания потребуется более десятка миллиардов лет. Что касается температуры ядра Земли, то измерить её не так-то и просто. Поскольку сделать это нельзя привычными методами, для этого необходимо множество исследований и экспериментов. Чтобы получить максимально достоверные данные французскими учеными в 2013 году был успешно проведен уникальный эксперимент, в котором поместили чистое железо в условия давления как внутри ядра Земли. Объясняется это тем, что в ядре имеется экстремальное давление, котору подвергается железо. Ядро Земли, как известно, самая горячая часть всей планеты, которая до сих пор таит в себе множество тайн и загадок. Постепенно ядро, конечно, остывает, но ни один из не сможет пронаблюдать процесс остывания до конца, даже Солнце погибнет значительно раньше.

На этом все. Всем спасибо за внимание. Сама в ахуе!

Якутске — в марте, в г.

Сочи — в марте, в г. Владивостоке — в апреле. Таким образом, очевидно, что к моменту наступления минимальных температур в грунте нагрузка на теплонасосную систему теплоснабжения теплопотери здания снижается. Этот момент открывает достаточно серьезные возможности для снижения установочной мощности ГТСТ экономии капитальных затрат и обязательно должен учитываться при проектировании.

Для оценки эффективности применения геотермальных теплонасос-ных систем теплоснабжения в климатических условиях России было выполнено районирование территории РФ по эффективности использования геотермального тепла низкого потенциала для целей теплоснабжения. Районирование выполнялось на основе результатов численных экспериментов по моделированию эксплуатационных режимов ГТСТ в климатических условиях различных регионов территории РФ. Численные эксперименты проводилось на примере гипотетического двухэтажного коттеджа с отапливаемой площадью 200 м2, оборудованного геотермальной теплонасосной системой тепло-снабжения. При проведении численных экспериментов рассматривались: — система сбора тепла грунта с низкой плотностью потребления геотермальной энергии; — горизонтальная система теплосбора из полиэтиленовых труб диаметром 0,05 м и длиной 400 м; — система сбора тепла грунта с высокой плотностью потребления геотермальной энергии; — вертикальная система тепло-сбора из одной термоскважины диаметром 0,16 м и длиной 40 м.

Проведенные исследования показали, что потребление тепловой энергии из грунтового массива к концу отопительного сезона вызывает вблизи регистра труб системы теплосбора понижение температуры грунта, которое в почвенно-климатических условиях большей части территории РФ не успевает компенсироваться в летний период года, и к началу следующего отопительного сезона грунт выходит с пониженным температурным потенциалом. Потребление тепловой энергии в течение следующего отопительного сезона вызывает дальнейшее снижение температуры грунта, и к началу третьего отопительного сезона его температурный потенциал еще больше отличается от естественного. И так далее... Однако, огибающие теплового влияния многолетней эксплуатации системы теплосбора на естественный температурный режим грунта имеют ярко выраженный экспоненциальный характер, и к пятому году эксплуатации грунт выходит на новый режим, близкий к периодическому, т.

Таким образом, при проведении районирования территории РФ необходимо было учитывать падение температур грунтового массива, вызванное многолетней экс-плуатацией системы теплосбора, и использовать в качестве расчетных параметров температур грунтового массива температуры грунта, ожидаемые на 5-й год эксплуатации ГТСТ. Коэффициент трансформации теплонасосной системы теплоснабжения Ктр представляет собой отношение полезного тепла, отводимого в систему теплоснабжения потребителя, к энергии, затрачиваемой на работу ГТСТ, и численно равен количеству полезного тепла, получаемого при температурах То и Ти на единицу энергии, затраченной на привод ГТСТ.

Информация:

  • Тепловое состояние внутренних частей земного шара
  • Популярное
  • Наши проекты
  • Ученые выявили значительные перепады температуры в недрах Земли
  • Какая температура в центре Земли? |

Температуру вечной мерзлоты измерят на глубине 15 метров

На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года. Если он положительный, то есть недра Земли излучают тепло, то температура должна повышаться с глубиной. Как сообщили ученые, находка доказывает, что жизнь способна существовать при температуре 122 °С и давлении, в десять тысяч раз превышающее давление на поверхности Земли. Таблица температуры на разных глубинах Земли. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15–20 м.

Тема 2: температура в недрах земли.

Адиабатический закон в простом выражении позволяет правильно определять лишь градиенты температуры и только в однородном сжимаемом веществе. Если же в этом веществе под влиянием высоких давлений происходят фазовые полиморфные перестройки минеральных ассоциаций к более плотным кристаллическим структурам, то на этих же глубинах в конвектирующей мантии обязательно возникнут температурные скачки. Если известны возникающие при этом скачки плотности например, по экспериментальным данным , то нетрудно определить и такие температурные перепады. Фазовые переходы к более плотным кристаллическим модификациям мантийного вещества сложного состава развиваются при разных давлениях и соответственно на разных глубинах. Например, переход плагиоклазового лерцолита в пироксеновый наблюдается на глубинах около 25 км, а переход от пироксенового к гранатовому лерцолиту при температурах горячей мантии — на глубинах около 85 км.

Полиморфные преобразования мантийного вещества в переходном слое С на глубинах около 400 и 670 км более значительны, сопровождаются существенными изменениями плотности мантийного вещества и чётко выявляются по сейсмическим данным. Первый из этих переходов связан с перекристаллизацией оливина в шпинелевую фазу, а второй — с распадом силикатов на простые окислы. По оценкам А. В переходной зоне мантии до глубин около 900-1000 км могут происходить и другие кристаллические перестройки, например переход энстатита в структуру ильменита или перовскита.

Глубже 900-1000 км других резких границ с фазовыми переходами мантийного вещества в более плотные кристаллические структуры, судя по сейсмическим данным, ожидать трудно. В последние годы появилась серия интереснейших работ Р. Изучение плавления этих веществ проводилось в статических экспериментах с использованием алмазных ячеек в прессах и разогрева образцов лазерными лучами. При этом расчётная температура плавления энстатита-перовскита на границе с ядром по разным оценкам достигает значений от 7 000 до 8 500 К.

Бёлер сделал предположение, что и температура плавления мантийного вещества должна быть близкой к этим же значениям температуры. Полученные Бёлером результаты по фазовым переходам в железе при высоких давлениях до 2 Мбар приведены на фазовой диаграмме состояний железа, изображённой на рис.

Данные были получены со станций по всему миру. Когда сейсмические волны достигают верхней части астеносферы, то значительно замедляются, и это говорит о том, что ее верхний слой расплавлен больше, чем соседние. Материал с большей текучестью обычно обеспечивает более легкое передвижение, но в данном случае это не обязательно так. Карта астеносферы, составленная учеными, не совпадает с движением тектонических плит наверху — связь непрямая. Любопытно, что существует несколько полос расплавленных пород, пронизывающих всю астеносферу, а не только верхнюю ее часть.

Я, неофиксист и как геолог верен традициям отечественной геотектонической школы, разработанной в трудах В. Белоусова, который один из немногих ученых не поддался западному новомодному учению глобальной тектоники литосферных плит и ушел из жизни, не запятнав свое доброе имя. Современное шаткое положение учения глобальной тектоники литосферных плит поддерживается лишь благодаря инерции послушного большинства как правило не мыслящих, а лишь подхватывающих чужие идеи и активного лоббистского воздействия на мировое общественное мнение англо-сакского научного истеблишмента. В среде уважающих себя ученых к классическому мобилизму относятся как недоразумению, навязанному нам со стороны и господствующему в официальной науке по директивной установке. Полная аналогия с учением об органической нефти. Но, не об этом речь.

Преимущества технологий теплоснабжения, использующих в сравнении с их традиционными аналогами, связаны не только со значительными сокращениями затрат энергии в системах жизнеобеспечения зданий и сооружений, но и с их экологической чистотой, а также новыми возможностями в области повышения степени автономности систем жизнеобеспечения. По всей видимости, в недалеком будущем именно эти качества будут иметь определяющее значение в формировании конкурентной ситуации на рынке теплогенерирующего оборудования. Анализ возможных областей применения в экономике России технологий энергосбережения, использующих нетрадиционные источники энергии , показывает, что в России наиболее перспективной областью их внедрения являются системы жизнеобеспечения зданий. При этом весьма эффективным направлением внедрения рассматриваемых технологий в практику отечественного строительства представляется широкое применение теплонасосных систем теплоснабжения ТСТ , использующих в качестве повсеместно доступного источника тепла низкого потенциала грунт поверхностных слоев Земли. При использовании тепла Земли можно выделить два вида тепловой энергии — высокопотенциальную и низкопотенциальную. Источником высокопотенциальной тепловой энергии являются гидротермальные ресурсы — термальные воды, нагретые в результате геологических процессов до высокой температуры, что позволяет их использовать для теплоснабжения зданий. Однако использование высокопотенциального тепла Земли ограничено районами с определенными геологическими параметрами. В России это, например, Камчатка, район Кавказских минеральных вод; в Европе источники высокопотенциального тепла есть в Венгрии, Исландии и Франции. В отличие от «прямого» использования высокопотенциального тепла гидротермальные ресурсы , использование низкопотенциального тепла Земли посредством тепловых насосов возможно практически повсеместно. В настоящее время это одно из наиболее динамично развивающихся направлений использования нетрадиционных возобновляемых источников энергии. Низкопотенциальное тепло Земли может использоваться в различных типах зданий и сооружений многими способами: для отопления, горячего водоснабжения, кондиционирования охлаждения воздуха, обогрева дорожек в зимнее время года, для предотвращения обледенения, подогрева полей на открытых стадионах и т. В англоязычной технической литературе такие системы обозначаются как «GHP» — «geothermal heat pumps», геотермальные тепловые насосы. Климатические характеристики стран Центральной и Северной Европы, которые вместе с США и Канадой являются главными районами использования низкопотенциального тепла Земли, определяют главным образом потребность в отоплении; охлаждение воздуха даже в летний период требуется относительно редко. Поэтому, в отличие от США, тепловые насосы в европейских странах работают в основном в режиме отопления. В США тепловые насосы чаще используются в системах воздушного отопления , совмещенного с вентиляцией, что позволяет как подогревать, так и охлаждать наружный воздух. В европейских странах тепловые насосы обычно применяются в системах водяного отопления. Поскольку эффективность тепловых насосов увеличивается при уменьшении разности температур испарителя и конденсатора, часто для отопления зданий используются системы напольного отопления, в которых циркулирует теплоноситель относительно низкой температуры 35—40 оC. Большинство тепловых насосов в Европе, предназначенных для использования низкопотенциального тепла Земли, оборудовано компрессорами с электрическим приводом. За последние десять лет количество систем, использующих для тепло- и холодоснабжения зданий низкопотенциальное тепло Земли посредством тепловых насосов , значительно увеличилось. Наибольшее число таких систем используется в США. Швейцария лидирует по величине использования низкопотенциальной тепловой энергии Земли на душу населения. В Москве в микрорайоне Никулино-2 фактически впервые была построена теплонасосная система горячего водоснабжения многоэтажного жилого дома. В качестве низкопотенциального источника тепловой энергии для испарителей тепловых насосов используется тепло грунта поверхностных слоев Земли , а также тепло удаляемого вентиляционного воздуха. Установка для подготовки горячего водоснабжения расположена в подвале здания. Она включает в себя следующие основные элементы: парокомпрессионные теплонасосные установки ТНУ ; системы сбора низкопотенциальной тепловой энергии грунта и низкопотенциального тепла удаляемого вентиляционного воздуха; циркуляционные насосы, контрольно-измерительную аппаратуру Основным теплообменным элементом системы сбора низкопотенциального тепла грунта являются вертикальные грунтовые теплообменники коаксиального типа, расположенные снаружи по периметру здания. Эти теплообменники представляют собой 8 скважин глубиной от 32 до 35 м каждая, устроенных вблизи дома. Поскольку режим работы тепловых насосов, использующих тепло земли и тепло удаляемого воздуха, постоянный, а потребление горячей воды переменное, система горячего водоснабжения оборудована баками-аккумуляторами. Данные, оценивающие мировой уровень использования низкопотенциальной тепловой энергии Земли посредством тепловых насосов, приведены в таблице. Таблица 1. Мировой уровень использования низкопотенциальной тепловой энергии Земли посредством тепловых насосов Грунт как источник низкопотенциальной тепловой энергии В качестве источника низкопотенциальной тепловой энергии могут использоваться подземные воды с относительно низкой температурой либо грунт поверхностных глубиной до 400 м слоев Земли. Теплосодержание грунтового массива в общем случае выше. Тепловой режим грунта поверхностных слоев Земли формируется под действием двух основных факторов — падающей на поверхность солнечной радиации и потоком радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15—20 м. Температурный режим слоев грунта, расположенных ниже этой глубины «нейтральной зоны» , формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата рис. График изменения температуры грунта в зависимости от глубины С увеличением глубины температура грунта возрастает в соответствии с геотермическим градиентом примерно 3 градуса С на каждые 100 м. Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. В эксплуатационный период массив грунта, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта системы теплосбора , вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае как в жидкой, так и в твердой и газообразной фазах одновременно. Иначе говоря, грунтовый массив системы теплосбора, независимо от того, в каком состоянии он находится в мерзлом или талом , представляет собой сложную трехфазную полидисперсную гетерогенную систему, скелет которой образован огромным количеством твердых частиц разнообразной формы и величины и может быть как жестким, так и подвижным, в зависимости от того, прочно ли связаны между собой частицы или же они отделены друг от друга веществом в подвижной фазе. Промежутки между твердыми частицами могут быть заполнены минерализованной влагой, газом, паром и льдом или тем и другим одновременно. Моделирование процессов тепломассопереноса, формирующих тепловой режим такой многокомпонентной системы, представляет собой чрезвычайно сложную задачу, поскольку требует учета и математического описания разнообразных механизмов их осуществления: теплопроводности в отдельной частице, теплопередачи от одной частицы к другой при их контакте, молекулярной теплопроводности в среде, заполняющей промежутки между частицами, конвекции пара и влаги, содержащихся в поровом пространстве, и многих других. Особо следует остановиться на влиянии влажности грунтового массива и миграции влаги в его поровом пространстве на тепловые процессы, определяющие характеристики грунта как источника низкопотенциальной тепловой энергии. В капилярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые прежде всего связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. До сих пор не выяснены природа сил связи влаги с частицами скелета, зависимость форм связи влаги с материалом на различных стадиях увлажнения, механизм перемещения влаги в поровом пространстве. При наличии в толще грунтового массива температурного градиента молекулы пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков , а также грунтовые воды. Основные факторы, под воздействием которых формируются температурный режим грунтового массива систем сбора низкопотенциального тепла грунта, приведены на рис. Факторы, под воздействием которых формируются температурный режим грунта Виды систем использования низкопотенциальной тепловой энергии Земли Грунтовые теплообменники связывают теплонасосное оборудование с грунтовым массивом. Кроме «извлечения» тепла Земли, грунтовые теплообменники могут использоваться и для накопления тепла или холода в грунтовом массиве. В общем случае можно выделить два вида систем использования низкопотенциальной тепловой энергии Земли : открытые системы: в качестве источника низкопотенциальной тепловой энергии используются грунтовые воды, подводимые непосредственно к тепловым насосам; замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса или, при использовании теплоносителя с повышенной относительно грунта температурой, его охлаждение. Основная часть открытых систем — скважины, позволяющие извлекать грунтовые воды из водоносных слоев грунта и возвращать воду обратно в те же водоносные слои. Обычно для этого устраиваются парные скважины. Схема такой системы приведена на рис. Схема открытой системы использования низкопотенциальной тепловой энергии грунтовых вод Достоинством открытых систем является возможность получения большого количества тепловой энергии при относительно низких затратах. Однако скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы: достаточная водопроницаемость грунта, позволяющая пополняться запасам воды; хороший химический состав грунтовых вод например, низкое железосодержание , позволяющий избежать проблем, связанных с образованием отло- жение на стенках труб и коррозией. Открытые системы чаще используются для тепло- или холодоснабжения крупных зданий. Самая большая в мире геотермальная теплонасосная система использует в качестве источника низкопотенциальной тепловой энергии грунтовые воды. Эта система расположена в США в г. Луисвилль Louisville , штат Кентукки. Система используется для тепло- и холодоснабжения гостиничноофисного комплекса; ее мощность составляет примерно 10 МВт. Иногда к системам, использующим тепло Земли, относят и системы использования низкопотенциального тепла открытых водоемов, естественных и искусственных.

Ученые выявили сильные неоднородности температуры в центре Земли

В таблице переведены средние значения температуры грунта по месяцам по данным вытяжных термометров на глубине 0,4 0,8, 1,6 метра в крупных городах РФ и СНГ. Ученые пришли к выводу, что в недрах на Земли, на глубине 2900 километров, около внешнего слоя ядра, существуют условия для образования ранее неизвестного минерала. Температуры разных глубин Земли Как выяснили ученые, температура поднимается на 3 градуса каждые 100 метров вглубь Земли.

Суша Земли стала нагреваться в 20 раз быстрее: чем это грозит

Такие аномалии вызваны тем, что в пределах поднятий развит преимущественно песчаный разрез, обладающий повышенной теплопроводностью. В пределах синклинальных прогибов и впадин преимущественно глинистые породы, обладающие меньшей теплопроводностью. Зоны глубинных разломов на картах изотерм выделяются положительными аномалиями. По замерам температур в скважинах составляются карты геотермических градиентов, выявляются геотермические аномалии. В Западной Сибири повышенными температурами недр отличается Салымский нефтеносносный район, пониженными температурами — недра Северных областей. Вертикальная геотермическая зональность определяет глубинную углеводородную зональность в условиях земных недр.

Ранее исследователи думали, что скорость распространения сейсмических волн на таких расстояниях гораздо меньше. Карта же показала обратное. Скорее всего, подобный феномен связан с теплообменом между мантией и ядром. Ученые надеются, что их исследование позволит детально изучить механизм обмена теплом между поверхностью и недрами Земли.

Отметки в 12 262 м исследователи достигли только в 1992 году — спустя 22 года после начала бурения. После серии аварий работы приостановили, а в 1995 году проект закрыли. Снос буровой вышки. Древний планктон и залежи золота До бурения Кольской сверхглубокой исследования Земли в значительной степени ограничивались наземными наблюдениями и сейсмическими исследованиям, но бурение скважины позволило непосредственно взглянуть на структуру земной коры и проверить теории геологов. Одним из главных открытий советских ученых стало отсутствие границы между гранитами и базальтами или разрыва Конрада. Хотя ранее геологи считали, что граница проходит под всеми континентами, на Балтийском щите ее не оказалось, а буровая установка так и не столкнулась со слоем базальта. Башня над скважиной. Исследователи обнаружили, что граниты простираются за пределы отметки в 12,2 км. Это натолкнуло ученых на мысль, что результаты сейсмических исследований на этой глубине были обусловлены повышением температуры и давления, а не изменением типа пород. С глубины 7 тыс. Эти ископаемые стали одним из самых древних свидетельств жизни на Земле. На отметке в 9 км геологи обнаружили полезные ископаемые — концентрация золота в породе на этой глубине составила 78 г на тонну. Добыча золота считается целесообразной при концентрации в 34 г на тонну, однако человеку вряд ли удастся извлечь драгоценный металл с такой глубины. Что дальше Кольская скважина до сих является самым глубоким вторжением человека в земную кору под прямым углом и одним из главных достижений советской науки. До 2008 года сверхглубокая была самой длинной в мире — пока нефтяники в Катаре не пробурили под прямым углом скважину Maersk Oil BD-04A 12 290 м.

Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые прежде всего связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. До сих пор не выяснены природа сил связи влаги с частицами скелета, зависимость форм связи влаги с материалом на различных стадиях увлажнения, механизм перемещения влаги в поровом пространстве. При наличии в толще грунтового массива температурного градиента молекулы пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков, а также грунтовые воды. Основные факторы, под воздействием которых формируются температурный режим грунтового массива систем сбора низкопотенциального тепла грунта, приведены на рис. Факторы, под воздействием которых формируются температурный режим грунта Виды систем использования низкопотенциальной тепловой энергии Земли Грунтовые теплообменники связывают теплонасосное оборудование с грунтовым массивом. Кроме «извлечения» тепла Земли, грунтовые теплообменники могут использоваться и для накопления тепла или холода в грунтовом массиве. В общем случае можно выделить два вида систем использования низкопотенциальной тепловой энергии Земли : открытые системы: в качестве источника низкопотенциальной тепловой энергии используются грунтовые воды, подводимые непосредственно к тепловым насосам; замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса или, при использовании теплоносителя с повышенной относительно грунта температурой, его охлаждение. Основная часть открытых систем — скважины, позволяющие извлекать грунтовые воды из водоносных слоев грунта и возвращать воду обратно в те же водоносные слои. Обычно для этого устраиваются парные скважины. Схема такой системы приведена на рис. Схема открытой системы использования низкопотенциальной тепловой энергии грунтовых вод Достоинством открытых систем является возможность получения большого количества тепловой энергии при относительно низких затратах. Однако скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы: достаточная водопроницаемость грунта, позволяющая пополняться запасам воды; хороший химический состав грунтовых вод например, низкое железосодержание , позволяющий избежать проблем, связанных с образованием отло- жение на стенках труб и коррозией. Открытые системы чаще используются для тепло- или холодоснабжения крупных зданий. Самая большая в мире геотермальная теплонасосная система использует в качестве источника низкопотенциальной тепловой энергии грунтовые воды. Эта система расположена в США в г. Луисвилль Louisville , штат Кентукки. Система используется для тепло- и холодоснабжения гостиничноофисного комплекса; ее мощность составляет примерно 10 МВт. Иногда к системам, использующим тепло Земли, относят и системы использования низкопотенциального тепла открытых водоемов, естественных и искусственных. Такой подход принят, в частности, в США. Системы, использующие низкопотенциальное тепло водоемов, относятся к открытым, как и системы, использующие низкопотенциальное тепло грунтовых вод. Замкнутые системы, в свою очередь, делятся на горизонтальные и вертикальные. Горизонтальный грунтовой теплообменник в англоязычной литературе используются также термины «ground heat collector» и «horizontal loop» устраивает- ся, как правило, рядом с домом на небольшой глубине но ниже уровня промерзания грунта в зимнее время. Использование горизонтальных грунтовых теплообменников ограничено размерами имеющейся площадки. В странах Западной и Центральной Европы горизонтальные грунтовые теплообменники обычно представляют собой отдельные трубы, положенные относительно плотно и соединенные между собой последовательно или параллельно рис. Для экономии площади участка были разработаны усовершенствованные типы теплообменников, например, теплообменники в форме спирали, расположенной горизонтально или вертикально рис 4д, 4е. Такая форма теплообменников распространена в США. Виды горизонтальных грунтовых теплообменников а — теплообменник из последовательно соединенных труб; б — теплообменник из параллельно соединенных труб; в — горизонтальный коллектор, уложенный в траншее; г — теплообменник в форме петли; д — теплообменник в форме спирали, расположенной горизонтально так называемый «slinky» коллектор; е — теплообменник в форме спирали, расположенной вертикально Если система с горизонтальными теплообменниками используется только для получения тепла, ее нормальное функционирование возможно только при условии достаточных теплопоступлений с поверхности земли за счет солнечной радиации. По этой причине поверхность выше теплообменников должна быть подвержена воздействию солнечных лучей. Вертикальные грунтовые теплообменники в англоязычной литературе принято обозначение «BHE» — «borehole heat exchanger» позволяют использовать низкопотенциальную тепловую энергию грунтового массива, лежащего ниже «нейтральной зоны» 10—20 м от уровня земли. Системы с вертикальными грунтовыми теплообменниками не требуют участков большой площади и не зависят от интенсивности солнечной радиации, падающей на поверхность. Вертикальные грунтовые теплообменники эффективно работают практически во всех видах геологических сред, за исключением грунтов с низкой теплопро- водностью, например, сухого песка или сухого гравия. Системы с вертикальными грунтовыми теплообменниками получили очень широкое распространение. Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником приведена на рис. Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником Теплоноситель циркулирует по трубам чаще всего полиэтиленовым или полипропиленовым , уложенным в вертикальных скважинах глубиной от 50 до 200 м. Обычно используется два типа вертикальных грунтовых теплообменников рис. В одной скважине располагаются одна или две реже три пары таких труб. Преимуществом такой схемы является относительно низкая стоимость изготовления. Двойные U-образные теплообменники — наиболее широко используемый в Европе тип вертикальных грунтовых теплообменников. Коаксиальный концентрический теплообменник. Простейший коаксиальный теплообменник представляет собой две трубы различного диаметра. Труба меньшего диаметра располагается внутри другой трубы. Коаксиальные теплообменники могут быть и более сложных конфигураций. Сечение различных типов вертикальных грунтовых теплообменников Для увеличения эффективности теплообменников пространство между стенками скважины и трубами заполняется специальными теплопроводящими материалами. Системы с вертикальными грунтовыми теплообменниками могут использоваться для тепло- и холодоснабжения зданий различных размеров. Для небольшого здания достаточно одного теплообменника; для больших зданий может потребоваться устройство целой группы скважин с вертикальными теплообменниками. Вертикальные грунтовые теплообменники этого колледжа располагают- ся в 400 скважинах глубиной 130 м. В Европе наибольшее число скважин 154 скважины глубиной 70 м используются в системе тепло- и холодоснабжения центрального офиса Германской службы управления воздушным движением «Deutsche Flug-sicherung». Частным случаем вертикальных замкнутых систем является использование в качестве грунтовых теплообменников строительных конструкций, например фундаментных свай с замоноличенными трубопроводами. Сечение такой сваи с тремя контурами грунтового теплообменника приведено на рис. Схема грунтовых теплообменников, замоноличенных в фундаментные сваи здания и поперечное сечение такой сваи Грунтовой массив в случае вертикальных грунтовых теплообменников и строительные конструкции с грунтовыми теплообменниками могут использоваться не только как источник, но и как естественный аккумулятор тепловой энергии или «холода», например тепла солнечной радиации. Существуют системы , которые нельзя однозначно отнести к открытым или замкнутым. Например, одна и та же глубокая глубиной от 100 до 450 м скважина, заполненная водой, может быть как эксплуатационной, так и нагнетательной. Диаметр скважины обычно составляет 15 см. В нижнюю часть скважины помещается насос, посредством которого вода из скважины подается к испарителям теплового насоса. Обратная вода возвращается в верхнюю часть водяного столба в ту же скважину. Происходит постоянная подпитка скважины грунтовыми водами, и открытая система работает подобно замкнутой. Системы такого типа в англоязычной литературе носят название «standing column well system» рис. Схема скважины типа «standing column well» Обычно скважины такого типа используются и для снабжения здания питьевой водой. Однако такая система может работать эффективно только в почвах, которые обеспечивают постоянную подпитку скважины водой, что предотвращает ее замерзание. Если водоносный горизонт залегает слишком глубоко, для нормального функционирования системы потребуется мощный насос, требующий повышенных затрат энергии. Большая глубина скважины обуславливает достаточно высокую стоимость подобных систем, поэтому они не используются для тепло- и холодоснабжения небольших зданий. Одно из перспективных направлений — использование в качестве источника низкопотенциальной тепловой энергии воды из шахт и туннелей. Температура этой воды постоянна в течение всего года. Вода из шахт и туннелей легко доступна. Потребление энергии в течение следующего отопительного сезона вызывает еще большее понижение температуры грунта, и его температурный потенциал еще больше снижается. Это заставляет при проектировании систем использования низкопотенциального тепла Земли рассматривать проблему «устойчивости» sustainability таких систем. Часто энергетические ресурсы для снижения периода окупаемости оборудования эксплуатируются очень интенсивно, что может привести к их быстрому истощению. Поэтому необходимо поддерживать такой уровень производства энергии, который бы позволил эксплуатировать источник энергетических ресурсов длительное время. Эта способность систем поддерживать требуемый уровень производства тепловой энергии длительное время называется «устойчивостью» sustainability. Для систем использования низкопотенциального тепла Земли дано следующее определение устойчивости : «Для каждой системы использования низкопотенциального тепла Земли и для каждого режима работы этой системы существует некоторый максимальный уровень производства энергии; производство энергии ниже этого уровня можно поддерживать длительное время 100—300 лет ». Проведенные в ОАО «ИНСОЛАР-ИНВЕСТ» исследования показали, что потребление тепловой энергии из грунтового массива к концу отопительного сезона вызывает вблизи регистра труб системы теплосбора понижение температуры грунта, которое в почвенно-климатических условиях большей части территории России не успевает компенсироваться в летний период года, и к началу следующего отопительного сезона грунт выходит с пониженным температурным потенциалом. Потребление тепловой энергии в течение следующего отопительного сезона вызывает дальнейшее снижение температуры грунта, и к началу третьего отопительного сезона его температурный потенциал еще больше отличается от естественного. И так далее. Однако огибающие теплового влияния многолетней эксплуатации системы теплосбора на естественный температурный режим грунта имеют ярко выраженный экспоненциальный характер, и к пятому году эксплуатации грунт выходит на новый режим, близкий к периодическому, то есть, начиная с пятого года эксплуатации, многолетнее потребление тепловой энергии из грунтового массива системы теплосбора сопровождается периодическими изменениями его температуры. Таким образом, при проектировании теплонасосных систем теплоснабжения представляется необходимым учет падения температур грунтового массива, вызванного многолетней эксплуатацией системы теплосбора, и использование в качестве расчетных параметров температур грунтового массива, ожидаемых на 5-й год эксплуатации ТСТ. В комбинированных системах , используемых как для тепло-, так и для холодоснабжения, тепловой баланс устанавливается «автоматически»: в зимнее время требуется теплоснабжение происходит охлаждение грунтового массива, в летнее время требуется холодоснабжение — нагрев грунтового массива. В системах, использующих низкопотенциальное тепло грунтовых вод, происходит постоянное пополнение водных запасов за счет воды, просачивающейся с поверхности, и воды, поступающей из более глубоких слоев грунта. Таким образом, теплосодержание грунтовых вод увеличивается как «сверху» за счет тепла атмосферного воздуха , так и «снизу» за счет тепла Земли ; величина теплопоступлений «сверху» и «снизу» зависит от толщины и глубины залегания водоносного слоя.

Энергия тепла земных глубин

Установлено, что вблизи поверхности Земли возрастание температуры с глубиной составляет примерно 20° на каждый километр. На глубине 5 км исследователи столкнулись с неожиданно высокой температурой — более 700 °С. Через 2 км температура выросла до 1 200 °С. Тогда работы отложили на год — до установки модифицированной версии «Уралмаш-15000» с повышенной термостойкостью. Если на поверхности Земли температура 5 градусов, то на глубине 2000 метров она составит 65 градусов. На глубине всего несколько десятков метров хранится столько же тепла, сколько во всей атмосфере Земли. Чем теплее океан, тем ниже его способность поглощать энергию и сглаживать повышение температур на планете в целом. И тут нет хороших новостей. 4000-5000 o С. По результатам бурения в районе Пулково на глубине 1000 метров температура кристаллических пород составила плюс 30 градусов, то есть в среднем она повышалась на 3 градуса каждые 100 метров.

Температура земли на глубине 100 метров. Температура внутри Земли

Здесь опубликована динамика изменения зимних (2012-13г.г.) температур земли на глубине 130 сантиметров под домом (под внутренним краем фундамента), а. Главная» Новости» Глобальное замерзание земли 2024. В Кольской скважине глубиной 12 км температура достигает 220° C, а чем ниже — тем горячее. Таблица температуры на разных глубинах Земли.

Температура Земли приблизилась к рекордным показателям за 50 млн лет

Недра Земли остывают намного быстрее, чем считалось Установлено, что вблизи поверхности Земли возрастание температуры с глубиной составляет примерно 20° на каждый километр.
Reader1 • Таяние «вечной» мерзлоты. Индийский луноход "Прагьян", доставленный на спутник Земли посадочным модулем миссии "Чандраян-3", передал на Землю первые научные данные, которые во многом меняют представления о южном полюсе Луны.
Энергия тепла земных глубин «К 2300 году средняя глобальная температура может подняться до уровней, каких Земля не видела за 50 миллионов лет», – заявляют ученые.
Какая температура в центре Земли? Петротермальные ресурсы (или использование глубинного тепла Земли) представляют собой часть тепловой энергии, которая заключена в практически водонепроницаемых сухих горячих горных породах, расположенных на глубинах 3-10 км. На этой глубине их температура.
Как Земля держит: Учёные пришли в ужас от последствий подземного изменения климата Таким образом, примерная температура на глубине 40 километров будет равна 1400°С. Мантия на глубине в 300 километров – почти 3000°С. А сам центр нашей планеты нагрет до ~6000°С.

Недра Земли остывают намного быстрее, чем считалось

Аппарат измеряет температуру верхнего слоя лунной почвы. Он оснащен датчиком с механизмом, который может измерять температуру почвы на глубине до 10 см, говорится в сообщении ISRO в соцсети X. В публикации приводится график температур. В частности, измерили температуру поверхности Луны, а также на глубине около 10 сантиметров. Если на поверхности Земли температура 5 градусов, то на глубине 2000 метров она составит 65 градусов. «Прагьян» с помощью датчика измерил температуру почвы на глубине примерно 10 сантиметров.

Похожие новости:

Оцените статью
Добавить комментарий