Подводный беспилотник "подкрадывается" в вражьему берегу и замирает там до получения боевой команды.
НПО машиностроения запатентовало новый высокоманевренный реактивный БПЛА
В апреле был представлен Toloka TK-150. Простой дизайн этого дрона делает его малозаметным. Разработка все еще находится на ранней стадии. TLK-150 - это довольно маленький дрон, длиной всего 2,5 метра. У него два двигателя, установленных на маленьких стабилизаторах в форме крыльев, и большой киль. В сочетании с отдельным рулем и расположенными спереди планерами это должно обеспечить высокую маневренность. На его корме расположен очень высокая мачта с камерами и устройствами связи. Киль, возможно, служит для балансировки этой мачты. Возможно, она может использоваться как перископ для выполнения заданий по сбору разведданных недалеко от береговой линии. Он также может позволить координировать атаки. Кроме того, группой Brave1 были представлены проекты двух более крупных морских подводных беспилотника.
TLK-400 в два раза длиннее - от 4 до 6 метров. У него также гораздо больший диаметр корпуса, что указывает на больший диапазон и полезную нагрузку. TLK-1000 будет еще больше, до 12 метров в длину и с четырьмя двигателями. Тем не менее, оба варианта пока что находятся в стадии проекта. Россия также представила свой собственный дизайн морских беспилотников. Дизайн морского дронов Сарган намного меньше украинских аналогов и, по-видимому, не был типом, использованным для атаки на мост в Затоке. Его применение неясно и может быть, он так и не войдет в эксплуатацию.
Отмечается, что безэкипажные катера и суда за счет большой модульности целевых нагрузок смогут выполнять широкий спектр задач. Вариант будущей подводной системы, связанной с платформой. Будут ли задачи исключительно гражданскими или же в них будет и военный компонент, не уточняется. Вариант будущего дрона, связанного с платформой.
Возможно, потому, на тот момент больших опасений этот аппарат не вызвал: шпионом больше-шпионом меньше. Аппарат изучили, а затем оттащили подальше в море и взорвали. Как опять-таки, тогда сообщил Михаил Развожаев, при этом взрыве «никто не пострадал». Однако утром 29 октября, когда был нанесен массированный удар по Севастополю аналогичными дронами, пострадавшие уже были. Пусть и незначительно. По данным Минобороны, взрывные повреждения, получил морской тральщик «Иван Голубец», входящий в состав 68-й бригады кораблей охраны водного района. А также боново-сетевые заграждения, прикрывавшие подходы к корабельным причалам. Тогда было официально заявлено, что США передают Украине роботизированные корабли. Тогда представитель Пентагона Джон Кирби подробно объяснял, что такие корабли-беспилотники абсолютно необходимы Украине, как в Черном, так и в Азовском морях. Но особенно, по его словам, они будут нужны Киеву для обороны Одессы. На вопрос, как именно, он отвечать не стал. Ушел от ответа, заявив, что он не собирается вдаваться в конкретные детали и рассказывать о возможностях таких аппаратов. Он не назвал их точную марку, только заметил, что этими морскими беспилотниками с ВСУ поделится американский флот. Чуть позже уже более откровенно на эту же тему высказался директор Центра оборонных концепций и технологий Института Хадсона Брайан Кларк. Он даже не стал заморачиваться рассуждениями о какой-то там обороне побережья, а прямо и честно заявил: США поставили Киеву морские беспилотники, чтобы те могли начинять их взрывчаткой и таранить русские корабли. В этой связи он даже привел пример. Вспомнил, как в октябре 2000 года террорист-смертник направил свой катер со взрывчаткой в американский эсминец USS Cole, проделав в его обшивке пробоину размерами 9 на 12 метров. О поставках каких именно дронов могла идти речь? Они же рассказали, что в штате Вирджиния на военно-морской базе в Литтл-Крик украинские военные весной этого года проходили специальную подготовку, где могли отрабатывать приемы работы с этими морскими дронами. Это довольно простые в изготовлении аппараты. Известно, что всего существует порядка восьми различных модификаций дрона MANTAS с различными возможностями, в зависимости от того, для каких целей его планируют использовать. Показанный там аппарат за гладкий профиль и гидродинамический корпус, обеспечивающий этому «малышу» довольно большую скорость в 40 узлов и высокую маневренность, по аналогии с морскими скатами, получил прозвище «морской дьявол». Его размеры: длина — 3,6 м, ширина — О. Максимальный вес — 95 кг. Мореходность до 4 баллов волнения моря. Дальность плавания — свыше 220 км. При этом, имея осадку в 18 см, он способен нести полезную боевую нагрузку 63,5 кг. Двигатель электрический. Работает от высокопроизводительных батарей, поставляемых американской фирмой Oakridge Global Energy Solutions, позволяющих аппарату двигаться с крейсерской скоростью 20 миль в час. Станция может находиться на корабле, на берегу — где угодно, и способна контролировать одновременно сразу несколько аппаратов, выполняющих различные задачи. Когда в американском Конгрессе обосновывали поставки этих морских дронов Украине, одним из главных аргументов был тот, что морская акватория возле украинских портов заминирована, и эти аппараты очень нужны Киеву, чтобы освободить черноморскую акваторию от мин для свободного прохода судов с зерном.
По форм-фактору можно различать устройства, схожие с подводными лодками, батискафами, торпедами, глайдерами, а также роботизированные всплывающие капсулы. Существуют также роботизированные подводные мины, "настроенные" на ту или иную военную технику, например, на корабль определенного классаа или даже на конкретную модель. По назначению подводные военные аппараты делятся на устройства для обследования морского дна и других объектов - автономно или в режиме телеуправления. Одна из основных задач - противодействие минированию, обнаружение, классификация и локализация мин.
Другие новости
- Gladius Mini
- Каталог подводных военных роботизированных аппаратов
- Страшнее, чем удар с орбиты
- Надводные и подводные беспилотные аппараты будут впервые состязаться в России
- ГНОМ — телеуправляемый подводный аппарат
Морские беспилотные аппараты: будущее морской войны
Рабочей группе впервые были представлены разработки в области искусственного интеллекта на базе отечественного автономного подводного манипуляторного комплекса с когнитивным типом системы автоматического управления для установки на автономные, телеуправляемые и гибридные необитаемые подводные аппараты классического и резидентного исполнения. АНПА 24-25 апреля в пос. Практическую работу системы технического зрения участники семинара смогут увидеть на натурном робототехническом стенде, который также будет представлен на вставочной экспозиции. Особенностью ведущихся работ являются операции манипуляторного комплекса с КСТЗ без использования машиночитаемых знаков, а также обеспечение на втором этапе работ имитации подвижности НПА будет продемонстрировано на экспозиции OMR-2024 и на третьем этапе - недетерминированных воздействий на НПА будет продемонстрировано на форуме "Российский промышленник 2024".
Стандартная глубина для робота аппарата составляет 350 м, а скорость движения составляет приблизительно 2,5 уз. Этот аппарат движется и маневрирует с помощью шести двигателей. По этому кабелю операторы получают телеметрические данные и изображение от системы расположенной на аппарате, а также от датчиков и камер. Интегрированное изображение выводится на дисплей , на него накладываются текущие параметры и местоположение дрона на морском участке. Вручения свидетельства По данным РМРС, новое направление классификации создано и внедрено на апрель 2024 г. Развитие направления идет в тесном сотрудничестве с участниками рынка морской робототехники, что способствует совершенствованию нормативной базы, отвечающей запросам большинства клиентов РМРС.
Предоставление клиентам РМРС обратной связи, будет способствовать динамичному развитию отрасли морской робототехники с 2024 г. Tetis-pro АО « Тетис Про » 15 января 2024 г. По результатам освидетельствования установлено, что НПА соответствует требованиям «Правил классификации и постройки необитаемых подводных аппаратов» за 2023 г.
Это самая большая торпеда в мире, она тяжелее стандартной в 30 раз. Мощность ядерной боеголовки - десятки мегатонн.
Главное назначение "Посейдона" - уничтожение ключевых военно-морских баз противника и крупных промышленных объектов в прибрежной зоне. Подводный беспилотник "подкрадывается" в вражьему берегу и замирает там до получения боевой команды. После взрыва его ядерной боеголовки уничтожаются все прибрежные объекты в районе нескольких километров а также авианосцы, надводные корабли и подводные лодки. Взрыв вызовет цунами, при котором высота волн по подсчетам самих же ученых США может достигать от 20 до 50 метров, эти разрушительные бешеные волны на равнинной местности могут проникнуть на глубину до 50 километров. Кроме того, все живое будет повергнуто высокой дозе радиации.
Российское министерство обороны называет "Посейдоны" многоцелевым оружием и утверждает, что этот аппарат можно будет применять против авианосных ударных групп ВМС США. В государственных контрактах проект фигурирует под названием «Цефалопод» от лат. Cephalopoda — «Спрут».
В техзадании DARPA указано, что дроны должны обладать высокой автономностью для длительных походов в любых климатических условиях. Разумеется, из-за постоянного контакта с морской водой им необходима защита от коррозии и биологических загрязнений макро- и микроорганизмами. Система управления беспилотников должна различать и классифицировать все потенциально опасные для дрона объекты, будь то водоросли, рифы или расселины в леднике. Такие «скаты» смогут плавать месяцами независимо от судов сопровождения и инфраструктуры.
Подводные роботы: как будет выглядеть флот будущего
Во время операций он управляется с помощью дистанционного пульта на борту корабля-носителя. Корпус таких моделей в длину достигает метра, вес аппарата — около 3,7 тонны, он может эксплуатироваться модернизированными атомными подлодками проекта 949М, а также БС-64 "Подмосковье" и К-329 "Белгород". Необитаемые подводные средства "Клавесин" могут изучать морское дно, делать снимки высокого разрешения и передавать их на наземные приемные станции. Россия неоднократно использовала их в целях исследования географии Северного полюса, определения границ высокоширотного арктического шельфа, геологической разведки для нефтегазовых компаний и мониторинга состояния подводных трубопроводов и коммуникационных линий. Тогда образец "Суррогата-В" выставили на том же стенде, что и атомный подводный крейсер "Арктур", оснащенный баллистическими ракетами. В хвостовой части последнего расположен специальный отсек для перевозки и развертывания различных беспилотных подводных средств, в том числе крупногабаритных.
По информации, опубликованной в то время российской стороной, выходило, что водоизмещение аппарата составляет 60 тонн, длина — 17 метров, запас хода — 520 морских миль, или пять узлов, а максимальная скорость достигает 24 узлов. Средство подзаряжается с помощью литий-ионного аккумулятора, обеспечивающего от 15 до 16 часов непрерывной работы. В то же время он способен выполнять некоторые разведывательные задачи. Он оснащен несколькими буксируемыми гидролокаторами, полезными при подготовке к противолодочному бою, а также при разработке и испытаниях новых сонарных систем, устройств обнаружения торпедных и других субмарин и комплексов вооружения. Благодаря этому риски при создании новых подводных лодок и их себестоимость снижаются.
По сравнению со своими ранними версиями, "Суррогат-В" отличается меньшим водоизмещением — 40 тонн, длина осталась 17 метров.
Беспилотные надводные системы способны выполнять максимальный диапазон задач в зависимости от установленного оборудования: патрулирование территорий, целеуказание, разведывательные и поисковые операции и др. Для создания беспилотников в промышленных масштабах необходим спрос со стороны потребителей, требуются квалифицированные кадры и налаженное производство, утверждает Майстро. Кроме того, нужна государственная поддержка: она может быть предоставлена в виде заказа на оснащение службы навигации и океанографии современными гидрографическими робототехническими комплексами «Атлас», которые сейчас разрабатываются СПбПУ. В условиях дефицита кадров практически каждого специалиста приходится проводить через внутреннюю школу СПбПУ, обучать всем технологическим и конструкторским приемам, так как в разработке беспилотников много специфики, сообщил Майстро. Однако, выразил сожаление эксперт, остаются работать в Центре технологических проектов СпбПУ не все.
И здесь тоже помогла бы господдержка, в частности, в виде грантов, за счет которых можно финансировать практику для студентов и стажировки для молодых специалистов, например, в Центре технологических проектов, полагает он. Важно готовить не только операторов беспилотников, но и инженеров-эксплуатантов, техников, материаловедов в области беспилотных технологий. В решении этой задачи могут посодействовать отечественные университеты, участники программы Минобрнауки «Приоритет-2030», где были созданы соответствующие центры компетенций. Форсировать развитие беспилотников поможет создание научно-производственных центров в стране, а также господдержка при вводе в эксплуатацию отечественных разработок, полагает эксперт. Практическое применение беспилотного транспорта — уже реальность. Так, в мае 2023 года «Газпром нефть» запустила перевозки грузов в Арктике беспилотным автотранспортом.
Первые беспилотные «Камазы» вышли на маршрут на Восточно-Мессояхском месторождении, расположенном на Гыданском полуострове в Ямало-Ненецком автономном округе. В компании ожидают, что применение беспилотников повысит эффективность логистики северных месторождений «Газпром нефти» и увеличит объемы поставок необходимого оборудования и материалов. Развивается не только коммерческий беспилотный автотранспорт, но и гражданский.
Какие явления можно исследовать при помощи подводного дрона Биологи, геологи, сейсмологи, океанологи — только малая часть узкопрофильных специалистов, которым пригодится беспилотный подводный аппарат. С помощью дрона можно следить за состоянием воды и морского дна, температурными колебаниями, изменениями течений.
Главное и неоспоримое преимущество такого оборудования — наличие высокочувствительной видеокамеры, способной производить трансляцию и запись качественного изображения в режиме реального времени. Если исследования проводит группа специалистов, допускается разграничивать сферу деятельности: одна команда может заниматься мониторингом естественной среды водоема дистанционно например, управляя дроном через дисплей, находясь на берегу ; другая — проводить анализ и обработку полученных данных в стационарной лаборатории.
Подводный дрон с рыбообразным корпусом оснащен и технологиями ИИ, посредством которых он и перемещается под водой, параллельно производя мониторинг вод. Как утверждает один из разработчиков роботизированного окуня Евгений Татаренко, дрон в виде большой рыбы весит порядка 1,5 кг, поэтому его легко можно использовать вместо привычных подводных беспилотных аппаратов небионического типа. Работать робот может на глубине до пяти метров.
Комплекс Посейдон: на что способен российский подводный беспилотник?
Второе — управляемый подрыв на дистанции от корпуса. Третье — скорость, маневренность и скрытность, позволяющие обойти корабельные артсистемы. И четвертое — управляемость, позволяющая работать в условиях волнения не ниже четырех баллов. Ни одному такому параметру катера ВСУ не соответствуют. Отсюда окончательный вердикт. Все подобные атаки их уже более десятка проводятся исключительно ради создания медийного повода для военной пропаганды Украины.
Между тем широкое распространение получает и обратное мнение. Безэкипажные катера могут активно использоваться ВМФ России для выполнения ряда военных задач в силу своей маневренности. Но для этого, полагают эксперты, имеющиеся аппараты должны пройти дополнительную модернизацию.
Форма корпуса аппарата говорит о том, что он имеет малую радиолокационную заметность, видимо, потому и сумел незаметно проскочить мимо морских патрулей в погранзоне. Заметно, что корпус дрона оснащен датчиками. Более всего на носу. С их помощью можно отслеживать обстановку, находить цель для тарана и выбирать оптимальный маршрут. То есть аппарат способен действовать по принципу брандера, то есть корабля, начиненного взрывчаткой и легковоспламеняющимися веществами. Они активно применялись японцами во время русско-японской войны в гавани Порт-Артура.
Экипаж направлял его на русский корабль, в середине пути покидал брандер, тот двигался дальше, врезался в противника и взрывался, поражая противника. Найденный на севастопольском пляже беспилотник, скорее всего, действовал так же. То есть был оснащен устройством для детонации боеприпаса. При этом возможности такого дрона намного шире, чем у японских кораблей-брандеров. Телекамера, работающая в инфракрасном диапазоне, используется для управления аппаратом и обзора местности. Оснащена лодка и аппаратурой спутниковой связи. Небольшой плоский объект по форме напоминает плоскую спутниковую интернет-антенну SpaceX Starlink — привет от Илона Маска. А это значит, что дрон имеет выход в Интернет со всеми вытекающими. Почему этот аппарат в сентябре оказался на Крымском берегу, сказать трудно.
Скорее всего, он потерял управление. Либо ему не хватило зарядки аккумуляторов для дальнейшей работы. Тогда решили, что этот дрон выполнял задачи разведки, так как найден он был на пляже неподалеку от военно-морской базы Севастополя. Бухта, где аппарат вынесло на берег, совсем мелкая. Корабли и суда с большой осадкой в нее не заходят. Возможно, потому, на тот момент больших опасений этот аппарат не вызвал: шпионом больше-шпионом меньше. Аппарат изучили, а затем оттащили подальше в море и взорвали. Как опять-таки, тогда сообщил Михаил Развожаев, при этом взрыве «никто не пострадал». Однако утром 29 октября, когда был нанесен массированный удар по Севастополю аналогичными дронами, пострадавшие уже были.
Пусть и незначительно. По данным Минобороны, взрывные повреждения, получил морской тральщик «Иван Голубец», входящий в состав 68-й бригады кораблей охраны водного района. А также боново-сетевые заграждения, прикрывавшие подходы к корабельным причалам. Тогда было официально заявлено, что США передают Украине роботизированные корабли. Тогда представитель Пентагона Джон Кирби подробно объяснял, что такие корабли-беспилотники абсолютно необходимы Украине, как в Черном, так и в Азовском морях. Но особенно, по его словам, они будут нужны Киеву для обороны Одессы. На вопрос, как именно, он отвечать не стал.
Подводные кабели связи передают много конфиденциальной информации, а страны заинтересованы в защите этих данных. Безопасность инфраструктуры этих объектов контролируется подводными дронами. Рост добычи нефти и газа. Традиционные наземные ресурсы истощаются, поэтому добыча нефти и газа перемещается под воду. Обслуживают такие объекты с помощью дронов и специальной подводной оптики. При этом сдерживать рост рынка будут высокие затраты на эксплуатацию и техническое обслуживание таких аппаратов.
Стандартная глубина для робота аппарата составляет 350 м, а скорость движения составляет приблизительно 2,5 уз. Этот аппарат движется и маневрирует с помощью шести двигателей. По этому кабелю операторы получают телеметрические данные и изображение от системы расположенной на аппарате, а также от датчиков и камер. Интегрированное изображение выводится на дисплей , на него накладываются текущие параметры и местоположение дрона на морском участке. Вручения свидетельства По данным РМРС, новое направление классификации создано и внедрено на апрель 2024 г. Развитие направления идет в тесном сотрудничестве с участниками рынка морской робототехники, что способствует совершенствованию нормативной базы, отвечающей запросам большинства клиентов РМРС. Предоставление клиентам РМРС обратной связи, будет способствовать динамичному развитию отрасли морской робототехники с 2024 г. Tetis-pro АО « Тетис Про » 15 января 2024 г. По результатам освидетельствования установлено, что НПА соответствует требованиям «Правил классификации и постройки необитаемых подводных аппаратов» за 2023 г.
Надводные и подводные беспилотные аппараты будут впервые состязаться в России
В качестве участников и зрителей будут те, кто разрабатывает и эксплуатирует такие аппараты. Также эксплуатантам будет разрешено пользоваться зарубежными аппаратами, приобретенными ранее. Это даст возможность определить сильные и слабые стороны российских и импортных морских беспилотников. Первый этап соревнований пройдет во Владивостоке среди штатных расчетов подразделений минобороны, МЧС, Росгвардии и других силовых ведомств, а также организаций и предприятий разработчиков автономных необитаемых подводных аппаратов и безэкипажных катеров.
Второй этап в сентябре 2018 года на базе кампуса Дальневосточного федерального университета на острове Русский пройдут состязания среди студенческих команд.
В России разрабатывают новую линейку ударных плавающих беспилотников Читать ren. Отмечается, что подобные дроны смогут поражать объекты на реках, озерах и в прибрежных морских районах, работать как под водой, так и на поверхности, а также самостоятельно менять глубину. В линейку входит ряд аппаратов, которые отличаются друг от друга массой боевой части и дальностью плавания.
Они скользят по воде, близко к песку. И все же эти транспортные средства — не те грациозные животные, которыми можно восхищаться, бороздящих морское дно. На самом деле, они являются проектом DARPA, американского агентства, отвечающего за передовые оборонные исследовательские проекты. С помощью этого исследования DARPA надеется показать, что эти БПА с полезной нагрузкой могут выполнять дальние и продолжительные миссии без помощи человека логистика или техническое обслуживание в океанской среде. Программа Manta Ray была запущена в 2020 году.
На самом деле, они являются проектом DARPA, американского агентства, отвечающего за передовые оборонные исследовательские проекты. С помощью этого исследования DARPA надеется показать, что эти БПА с полезной нагрузкой могут выполнять дальние и продолжительные миссии без помощи человека логистика или техническое обслуживание в океанской среде. Программа Manta Ray была запущена в 2020 году. На первом этапе были проведены предварительные испытания конструкции и реализации, с подходами к управлению питанием, надежности, коррозии, навигации, обходу подводных препятствий и т. Теперь главные подрядчики будут работать над производством и полномасштабными демонстрациями подводных аппаратов.
Комплекс Посейдон: на что способен российский подводный беспилотник?
Тысячи компактных беспилотников будут годами находиться в океане. ГНОМ — это уникальный телеуправляемый подводный аппарат, фактически дистанционная подводная видеокамера. Новейшим обитаемым подводным аппаратом России станет мини-субмарина проекта 03660 «Ясон». Российские инженеры сконструировали автономный малоразмерный беспилотный подводный аппарат, который способен погружаться на глубину до ста метров и проводить там ремонтные работы.
ТОП-8 Лучшие подводные дроны в 2024 году
Предполагается, что, когда дело дойдет до подводной войны, беспилотные аппараты станут необходимыми для доминирования в боевом пространстве под водой. Boeing Defense — подразделение Boeing, которое отвечает за оборонную продукцию — опубликовала первое видео своего сверхбольшого беспилотного подводного аппарата Orca, или XLUUV. Предполагается, что, когда дело дойдет до подводной войны, беспилотные аппараты станут необходимыми для доминирования в боевом пространстве под водой.
Палубные беспилотники
- Комплекс Посейдон: на что способен российский подводный беспилотник?
- Ядерный беспилотник "Посейдон" выйдет на первые морские испытания уже летом
- Подходят на маскировке и включают форсаж: как защитить Севастополь от морских дронов
- Японские военные впервые показали новейший подводный дрон сверхбольшого размера
Специалисты назвали морские дроны, атаковавшие Севастопольскую бухту
Как утверждает один из разработчиков роботизированного окуня Евгений Татаренко, дрон в виде большой рыбы весит порядка 1,5 кг, поэтому его легко можно использовать вместо привычных подводных беспилотных аппаратов небионического типа. Новость о том, что на Дальнем Востоке пройдут соревнования морских беспилотников, предназначенных для решения транспортных задач. Подводные дроны, также известные как телеуправляемый необитаемый подводный аппарат (ТНПА), представляют собой мини-субмарины с дистанционным управлением; позволяет снимать видео даже глубже, чем 40 м, на которые традиционно погружаются аквалангисты.