The rst stage in cryptanalysis is to look for sequences of letters that appear more than once in the ciphertext. Взломщик кода шифратора «Энигма» Алан Тюринг, покончивший с собой после обвинения в непристойном поведении в соответствии с законом против гомосексуализма, |. Cryptanalysis of the Enigma. Криптоанализ «Энигмы» — статья из Интернет-энциклопедии для
Взлом «Энигмы»: история, которую мы не должны были узнать
Первым вариантом «Энигмы» считается разработка инженера-электрика и доктора технических наук Артура Шербиуса. The rst stage in cryptanalysis is to look for sequences of letters that appear more than once in the ciphertext. Благодаря влиянию, оказанному на ход войны, взлом Энигмы стал возможно самым ярким моментом в многовековой истории криптоанализа. Считается, что расшифровка кода Энигмы британскими криптографами сократила сроки войны примерно на 2 года и сберегла много миллионов жизней. Во многом именно поляки первыми поняли важность привлечения специалистов-математиков для криптоанализа вражеских шифров.
2023-10-20.Линейный криптоанализ
В Третьем рейхе считали, что «Энигму» невозможно взломать, поскольку она предполагала 2×10 в 145-й степени вариантов кодирования. Turing returned to Bletchley in March 1943, where he continued his work in cryptanalysis. Всё это значительно затруднило будущий криптоанализ Энигмы. С началом войны и падением Польши исследователи успели передать свои успехи французам, которые попытались развить.
Диск Джефферсона: первый в Новом времени
- Проект Enigma откладывает запуск протокола Discovery в основной сети Эфириума
- Алан Тьюринг - Криптоанализ "Энигмы"
- «Слив», не превратившийся во взлом
- Код энигма кто расшифровал. Криптоанализ «Энигмы
Уэлчман, Гордон: биография
В фильме Майкла Аптеда "Энигма", вышедшего в 2001 году, рассказывается история математика Тома Джерико, которому предстоит всего за четыре дня разгадать обновленный код немецкой шифровальной машинки. Конечно, в реальной жизни на расшифровку кодов ушло гораздо больше времени. Сначала этим занималась криптологическая служба Польши. И группа математиков — Мариан Реевский, Генрих Зыгальский и Ежи Рожицкий, — изучая вышедшие из употребления немецкие шифры, установили, что так называемый дневной код, который меняли каждый день, состоял из настроек коммутационной панели, порядка установки роторов, положений колец и начальных установок ротора. Случилось это в 1939 году, еще перед захватом Польши нацистской Германией. Также польское "Бюро шифров", созданное специально для "борьбы" с Enigma, имело в своем распоряжении несколько экземпляров работающей машинки, а также электромеханическую машинку Bomba, состоявшую из шести спаренных немецких устройств, которая помогала в работе с кодами. Именно она впоследствии стала прототипом для Bombe — изобретения Алана Тьюринга. Свои наработки польская сторона сумела передать британским спецслужбам, которые и организовали дальнейшую работу по взлому "загадки". Кстати, впервые британцы заинтересовали Enigma еще в середине 20-х годов, однако, быстро отказались от идеи расшифровать код, видимо, посчитав, что сделать это невозможно. Однако с началом Второй мировой войны ситуация изменилась: во многом благодаря загадочной машинке Германия контролировала половину Атлантики, топила европейские конвои с продуктами и боеприпасами.
В этих условиях Великобритании и другим странам антигитлеровской коалиции обязательно нужно было проникнуть в загадку Enigma. Сэр Элистер Деннисон, начальник Государственной школы кодов и шифров, которая располагалась в огромном замке Блетчли-парк в 50 милях от Лондона, задумал и провел секретную операцию Ultra, обратившись к талантливым выпускникам Кембриджа и Оксфорда, среди которых был и известный криптограф и математик Алан Тьюринг. Работе Тьюринга над взломом кодов машинки Enigma посвящен вышедший в 2014 году фильм "Игра в имитацию". Еще в 1936 году Тьюринг разработал абстрактную вычислительную "машину Тьюринга", которая может считаться моделью компьютера — устройства, способного решить любую задачу, представленную в виде программы — последовательности действий. В школе кодов и шифров он возглавлял группу Hut 8, ответственную за криптоанализ сообщений ВМФ Германии и разработал некоторое количество методов взлома немецкого шифратора. Помимо группы Тьюринга, в Блетчли-парке трудились 12 тысяч сотрудников. Именно благодаря их упорному труду коды Enigma поддались расшифровке, но взломать все шифры так и не удалось. Например, шифр "Тритон" успешно действовал около года, и даже когда "парни из Блетчли" раскрыли его, это не принесло желаемого результата, так как с момента перехвата шифровки до передачи информации британских морякам проходило слишком много времени. Все дело в том, что по распоряжению Уинстона Черчилля все материалы расшифровки поступали только начальникам разведслужб и сэру Стюарту Мензису, возглавлявшему МИ-6.
Такие меры предосторожности были предприняты, чтобы немцы не догадались о раскрытии шифров. В то же время и эти меры не всегда срабатывали, тогда немцы меняли варианты настройки Enigma, после чего работа по расшифровке начиналась заново. В "Игре в имитацию" затронута и тема взаимоотношений британских и советских криптографов. Официальный Лондон действительно был не уверен в компетенции специалистов из Советского Союза, однако по личному распоряжению Уинстона Черчилля 24 июля 1941 года в Москву стали передавать материалы с грифом Ultra. Правда, для исключения возможности раскрытия не только источника информации, но и того, что в Москве узнают о существовании Блетчли-парка, все материалы маскировались под агентурные данные. Однако в СССР узнали о работе над дешифровкой Enigma еще в 1939 году, а спустя три года на службу в Государственную школу кодов и шифров поступил советский шпион Джон Кэрнкросс, который регулярно отправлял в Москву всю необходимую информацию. Многие задаются вопросами, почему же СССР не расшифровал радиоперехваты немецкой "Загадки", хотя советские войска захватили два таких устройства еще в 1941 году, а в Сталинградской битве в распоряжении Москвы оказалось еще три аппарата. По мнению историков, сказалось отсутствие в СССР современной на тот момент электронной техники. На счету сотрудников отдела было много не очень, по понятным причинам - отдел работал на разведку и контрразведку, — афишируемых побед.
Например, раскрытие уже в двадцатых годах дипломатических кодов ряда стран. Был создан и свой шифр — знаменитый "русский код", который, как говорят, расшифровать не удалось никому. Немецкая шифровальная машинка была названа «Загадкой» не для красного словца. История шифрования уходит корнями в глубь веков - один из самых известных шифров называется шифром Цезаря. Потом предпринимались попытки механизации процесса шифрования и дешифрования: до нас дошел диск Альберти, созданный в 60-х годах XV века Леоном Баттиста Альберти, автором «Трактата о шифрах» - одной из первых книг об искусстве шифровки и дешифровки. Но от аналогичных устройств, взятых на вооружение другими странами, она отличалась относительной простотой и массовостью использования: применить ее можно было практически везде - и в полевых условиях, и на подводной лодке. История Enigma берет начало в 1917 году - тогда голландец Хьюго Коч получил на нее патент. С другой стороны режиссер фильма Джонатан Мостов заявил, что его лента «представляет собой художественное произведение». В фильме Майкла Аптеда «Энигма», вышедшего в 2001 году, рассказывается история математика Тома Джерико, которому предстоит всего за четыре дня разгадать обновленный код немецкой шифровальной машинки.
И группа математиков - Мариан Реевский, Генрих Зыгальский и Ежи Рожицкий, - изучая вышедшие из употребления немецкие шифры, установили, что так называемый дневной код, который меняли каждый день, состоял из настроек коммутационной панели, порядка установки роторов, положений колец и начальных установок ротора. Также польское «Бюро шифров», созданное специально для «борьбы» с Enigma, имело в своем распоряжении несколько экземпляров работающей машинки, а также электромеханическую машинку Bomba, состоявшую из шести спаренных немецких устройств, которая помогала в работе с кодами. Именно она впоследствии стала прототипом для Bombe - изобретения Алана Тьюринга. Свои наработки польская сторона сумела передать британским спецслужбам, которые и организовали дальнейшую работу по взлому «загадки». Кстати, впервые британцы заинтересовались Enigma еще в середине 20—х годов, однако, быстро отказались от идеи расшифровать код, видимо, посчитав, что сделать это невозможно. Однако,с началом Второй мировой войны ситуация изменилась: во многом благодаря загадочной машинке Германия контролировала половину Атлантики, топила европейские конвои с продуктами и боеприпасами. Сэр Элистер Деннисон, начальник Государственной школы кодов и шифров, которая располагалась в огромном замке Блетчли -парк в 50 милях от Лондона, задумал и провел секретную операцию Ultra, обратившись к талантливым выпускникам Кембриджа и Оксфорда, среди которых был и известный криптограф и математик Алан Тьюринг. Работе Тьюринга над взломом кодов машинки Enigma посвящен вышедший в 2014 году фильм «Игра в имитацию». Еще в 1936 году Тьюринг разработал абстрактную вычислительную «машину Тьюринга», которая может считаться моделью компьютера - устройства, способного решить любую задачу, представленную в виде программы - последовательности действий.
Помимо группы Тьюринга, в Блетчли—парке трудились 12 тысяч сотрудников. Например, шифр «Тритон» успешно действовал около года, и даже когда «парни из Блетчли» раскрыли его, это не принесло желаемого результата, так как с момента перехвата шифровки до передачи информации британских морякам проходило слишком много времени. В «Игре в имитацию» затронута и тема взаимоотношений британских и советских криптографов. Правда, для исключения возможности раскрытия не только источника информации, но и того, что в Москве узнают о существовании Блетчли—парка, все материалы маскировались под агентурные данные. Многие задаются вопросами, почему же СССР не расшифровал радиоперехваты немецкой «Загадки», хотя советские войска захватили два таких устройства еще в 1941 году, а в Сталинградской битве в распоряжении Москвы оказалось еще три аппарата. На счету сотрудников отдела было не очень много, по понятным причинам — отдел работал на разведку и контрразведку, - афишируемых побед. Был создан и свой шифр - знаменитый «русский код», который, как говорят, расшифровать не удалось никому. Почти в любое время года английская деревня выглядит одинаково: зеленые луга, коровы, средневекового вида домики и широкое небо - иногда серое, иногда - ослепительно-голубое. Оно как раз переходило от первого режима к более редкому второму, когда пригородная электричка мчала меня до станции Блетчли.
Сложно представить, что в окружении этих живописных холмов закладывались основы компьютерной науки и криптографии. Впрочем, предстоящая прогулка по интереснейшему музею развеяла все возможные сомнения. Такое живописное место, конечно, было выбрано англичанами не случайно: неприметные бараки с зелеными крышами, расположенные в глухой деревне, - это как раз то, что было нужно, чтобы спрятать сверхсекретный военный объект, где непрерывно трудились над взломом шифров стран «оси». Пусть со стороны Блетчли-парк и не впечатляет, но та работа, которую здесь выполняли, помогла переломить ход войны. Криптохатки В военные времена в Блетчли-парк въезжали через главные ворота, предъявляя охране пропуск, а теперь покупают билетик на проходной. Я задержался там еще чуть-чуть, чтобы посмотреть на прилегающий магазин сувениров и временную экспозицию, посвященную технологиям разведки Первой мировой кстати, тоже интереснейшая тема. Но главное ждало впереди. Собственно Блетчли-парк - это около двадцати длинных одноэтажных построек, которые на английском называют hut, а на русский обычно переводят как «домик». Я про себя называл их «хатками», совмещая одно с другим.
Соответственно, количество возможных комбинаций возросло с шести до ста двадцати. Впрочем, и самих «Бомб» к тому времени уже не существовало: после немецкого вторжения 1 сентября 1939 года работники Бюро шифров были вынуждены уничтожить все свои разработки и бежать из Варшавы. Центр борьбы с «Энигмой» переместился в Блетчли-парк, Великобритания. Руководителем проекта стал ветеран военной разведки Алистер Деннистон. К подбору кадров он подошёл нестандартно, привлекая в первую очередь людей с высоким интеллектом, независимо от профессии. В его штате были лингвисты и шахматисты, чемпионы по решению кроссвордов, египтологи и даже палеонтологи. Но ключевую роль сыграли, естественно, математики — и в первую очередь, гениальный Алан Тьюринг, работавший там с самого начала. Алан Тьюринг бежит марафонскую дистанцию в 1946 году Фото: Science Photo Library К тому времени Тьюринг был уже именитым специалистом по информатике и вычислительной технике — достаточно вспомнить предложенную им машину Тьюринга, которую можно считать математической моделью компьютера общего назначения. Первую сконструированную им «Бомбу» запустили в Блетчли 18 марта 1940 года. С её помощью разгадали код люфтваффе, а чуть позже — кригсмарине.
Тьюринг понял, что текущая методика расшифровки — тупиковая: она требовала всё больших затрат труда и времени, а противник быстро исправлял свои ошибки и увеличивал число комбинаций. Тогда Тьюринг предложил более эффективный способ: поиск буквенных последовательностей на основе подобранного открытого текста. Идея была в следующем: ежедневно разгадывать небольшой отрывок из сообщения и механическим перебором 26 символов латиницы находить точное место этого отрывка в зашифрованном тексте. Первый шаг был сравнительно простым: несмотря на сложности шифров и параноидальную секретность, немецкие военные всё же общались между собой довольно стереотипными фразами. Второй шаг был сложнее, но и тут Тьюринг выкрутился — он предложил осуществить его на основании ещё одной известной к тому времени уязвимости «Энигмы»: машинка могла заменить букву на любую другую букву, но только не на саму себя. Всё получалось на редкость изящно. Смещаем шифр дальше — и так до тех пор, пока не получим полностью не совпадающий вариант: Итак, половина дела сделана: мы знаем, что R расшифровывается как W на первой позиции, и так далее: А вот то же самое, только в виде диаграммы: Расшифровка «Энигмы» Изображение: Wikimedia Commons Теперь оставалось реализовать всё в железе. Для каждой возможной настройки ротора «Бомба» Тьюринга производила ряд логических предположений, определяла противоречие, сбрасывала набор параметров и переходила к следующему. Однако и этого было недостаточно: ресурсов Блетчли не хватало, а попытки получить больше людей и денег для постройки новых «Бомб» ни к чему не приводили. Поэтому 28 октября того же года, нарушая все правила, Тьюринг с коллегами отправили Черчиллю письмо и объяснили, что их запросы ничтожны по сравнению с возможной выгодой ещё одно доказательство важности софт-скиллов и умения общаться на языке бизнеса.
Удостоверьтесь, что у них есть всё, что нужно, и отчитайтесь мне о выполнении».
Например, перед выходом очередного полярного конвоя проводилось демонстративное минирование определённого участка моря. Если противник докладывал результаты разминирования с указанием заранее известных координат, это давало искомую подсказку. Тьюринг[ ] Одним из основных теоретиков Блетчли-парка был Алан Тьюринг. После изучения польских материалов Тьюринг пришёл к выводу, что использовать прежний подход с полным перебором сообщений уже не получится. Во-первых, это потребует создания более 30 машин польского типа, что во много раз превышало годовой бюджет «Station X», во-вторых, можно было ожидать, что Германия может исправить конструктивный недостаток, на котором основывался польский метод. Поэтому он разработал собственный метод, основанный на переборе последовательностей символов исходного текста. Вскоре немцы добавили в конструкцию Энигмы коммутирующее устройство, существенно расширив этим количество вариантов кода. Возникшую для англичан задачу решил Гордон Уэлчман , предложив конструкцию «диагональной доски». В результате этой работы в августе 1940 года была построена криптоаналитическая машина Bombe [Прим.
Со временем в Блетчли-Парке было установлено более 200 машин [1] , что позволило довести темп расшифровки до двух-трёх тысяч сообщений в день [9] [Прим. Хотя Bombe претерпевала некоторые изменения в деталях, её общий вид оставался прежним: шкаф весом около тонны, передняя панель два на три метра и 36 групп роторов на ней, по три в каждой. Использование машины требовало специальных навыков, и сильно зависело от квалификации обслуживающего персонала — девушек-добровольцев из англ. Впоследствии, когда часть работ была перенесена в США, вместе с технологиями была направлена и часть сотрудниц [1]. В таких случаях криптоаналитики из Блетчли-парка оказывались бессильными, и для дальнейшей работы срочно требовалось найти описание изменений или хотя бы новые экземпляры инструкций и машин «Энигма» [1]. В 1940 году морской флот Германии внёс некоторые изменения в машину. Лишь после захвата 9 мая 1941 года подводной лодки U-110 вместе с несколькими новыми экземплярами машины, британские криптоаналитики смогли разобраться в изменениях [1].
Помог полицейский, отогнавший легковушку к обочине. Если бы бобби догадался проверить документы у сидевших в салоне, то наверняка удивился бы: почему гражданин СССР оказался в машине английского государственного служащего?
А уж если бы попросил шофера открыть набитый чем-то секретными документами портфель… Не со всеми кураторами находил общий язык. Ему претили невежливость, излишнее давление, не выносил он командного безапелляционного тона. Джон был силен совсем не вымуштрованностью. А еще Кернкросс неважно видел. Зрение резко ухудшилось, когда во время войны он по совету советского резидента приступил к работе в шифровальном центре британской разведки в Блетчли. Его, простолюдина, никак не связанного с разведкой английской , вообще брать туда были не должны. Но Кернкросс, в отличие от сограждан-англосаксов, прекрасно говорил по-французски, по-немецки, объяснялся по-итальянски и по-испански, читал на шведском, а к концу войны даже на русском. В шифровальном центре на него навалили столько работы. Кому ее доверить, как не этому полиглоту.
Он видел все хуже и хуже. Неудивительно: ведь старательнейший сотрудник успевал обработать столько шифровок. Самые ценные тут же попадали в руки советских друзей. Плюс ко всему он и слышал плохо. Эти его физические недостатки замечали английские коллеги по службе и советские друзья. При личной встрече с агентом к нему тактично подходили "под верное" ухо. Впоследствии разведка даже выделяла деньги на лечение. Помогало, честно говоря, неважно. С возрастом оглох на одно ухо.
Зато Кернкросс преуспел в написании информационных сводок. Как и Филби, был тут великолепен: составляя для отправки шифровкой в Центр резюме какого-то доклада или важного сообщения , умел сделать донесение кратким, сжатым, доступным для понимания Москвы. Лаконичность Кернкросса экономила время, сложностей с переводом его сообщений не возникало. И это было очень важно. Ведь Джон передал в годы войны тысячи страниц секретнейших бумаг, некоторые из которых и сегодня не рассекречены. Он не отличался открытостью и друзей имел немного. Замкнутый по натуре, Кернкросс всегда с трудом, в отличие от Филби, входил в новую компанию. Круг его общения был им же сознательно ограничен. Все это не вяжется с привычным обликом агента, источника, разведчика, который просто обязан быстро находить общий язык со всеми.
Но Кернкросс, надеюсь, это понятно, и отдаленно не походил на типичного представителя второй древнейшей профессии. Был он исключительно скрытным. Даже о членстве Кернкросса в компартии догадывались немногие. Как известно, в советской разведке принадлежность к коммунистическим организациям афишировать запрещалось. И Кернкросс, не подозревая в молодости об уготованном ему поприще разведчика, делал все правильно, словно по наитию скрывая свои убеждения. К тому же Джон дисциплинированно подчинился указанию советских товарищей: все внимание сосредотачивал именно на тех материалах, что нужны были сейчас, сегодня. Подчиняясь требованиям разведки, отошел, к разочарованию хорошо его знавших соратников, от коммунистической партии. Не поддерживал отношений и с бывшими знакомцами по левым митингам и прочим сходкам. От него нечего было ожидать каких-то эксцентричных выходок.
Он мало пил - тоже редкость, и, что высоко ценимо, совсем не болтал. Его надежность потрясала. Надо ли было заниматься перевоспитанием ценного агента? Излишние нотации, нравоучения могли обидеть или, еще страшнее, оттолкнуть. Кернкросса принимали таким, какой он есть. Его роль в атомной разведке понятна. Вторая веха: добыча бесценных сведений, что помогли выиграть танковое сражение на Курской дуге. Это Кернкросс еще в 1942-м передал попавшие к англичанам технические характеристики нового немецкого танка "Тигр". Смысл заключался в том, что стала известна толщина его брони, которую конструкторы из Германии не без оснований считали непробиваемой для советской артиллерии.
К счастью, благодаря вовремя полученным данным у советских оружейников хватило сил и знаний для быстрого изготовления новых, гораздо более мощных, чем прежде, снарядов. Ким Филби 25 лет провел в Москве. Он был счастлив с женой Руфиной. Фото: Из архива "Тигров" уничтожали с размахом, который вгонял фашистов в панику. К тому же Джон уведомил резидентуру о том, что немецкое командование полностью ознакомлено с дислокацией советских войск на Курской дуге. В результате нашему руководству удалось в последние перед битвой под Прохоровкой дни произвести их скрытую переброску, что явилось полной неожиданностью для немцев. Один из безымянных, но авторитетнейших рассказчиков в больших чинах говорил мне о коробочках с орденами, хранящихся в личных и навечно засекреченных делах некоторых наших помощников. Можно смело предположить, что такой есть и в папке Кернкросса. Как раз за Курскую дугу он и был награжден орденом Красного Знамени.
Награду еще во время войны доставили в Англию. Резидент встретился с Кернкроссом, зачитал Указ о награде, вручил ее Джону. Тот был благодарен и тронут. Однако согласно неписаным или писаным правилам орден тут же был возвращен резиденту, вложен в коробочку и снова проделал неблизкий путь - теперь от Лондона до Москвы, где и суждено было боевой награде навсегда осесть в недоступном хранилище. Кернкросс же поменял Блетчли на другой род секретной деятельности. В центральном аппарате СИС он анализировал расшифрованные телеграммы немцев о работе ее разведки в Советском Союзе и на Балканском полуострове. Знал многих немецких агентов и разведчиков по именам и псевдонимам. Надо ли говорить, что "знакомилась" с ними и советская разведка. Тут Кернкросс попал в свою стихию.
Множество материалов, поток информации, четкий анализ, передача документов связнику. В СИС ему было легче, чем в Блетчли-парке. Отработанные коллегами материалы по инструкции должны были бы сжигаться. Но указание выполнялось далеко не всегда. Да и учета расшифрованных и уничтоженных телеграмм не велось. Так что Джон часто передавал в резидентуру оригиналы, которые можно было и не возвращать обратно. Подчас его коллеги по СИС допускали и другие явные небрежности. Раз в неделю на своих вечерних дежурствах он просматривал материалы, получаемые другими работниками из самых разных регионов. Так, однажды ему прямо в руки приплыл список английских агентов в балканских странах.
В другом случае пришлось дико рисковать. Кернкросс сумел достать ключи от сейфа собственного начальника, и когда тот отсутствовал, знакомился с материалами, которые для глаз рядовых сотрудников вообще не предназначались. Наверно, вот в такой папке и хранится орден Джона. Фото: Из архива Осенью 1944-го Центр особенно заинтересовали директивы Гиммлера, которые не прошли мимо Кернкросса. Фашисты при отступлении предполагали создавать у себя в Германии и в других освобождаемых союзниками странах крупные подпольные группировки. Во главе - офицеры СС и преданные нацисты. А для большей достоверности будущие руководители фашистского подполья могли уже в 1944-м для видимости подвергаться арестам, заключаться в тюрьмы и концентрационные лагеря. Гиммлер, Кальтенбруннер и Борман управляли бы всем этим адовым механизмом из своры головорезов, обученных изготовлению и применению химических ядовитых веществ, бомб, взрывчатки и прочих средств саботажа. Но в полной мере наладить нечто вроде партизанской борьбы на собственной территории не получилось.
В чем помогло и предупреждение, переданное Кернкроссом. Ему не хватало гениальности Филби. Но он никогда не был скромным винтиком в отлаженном разведывательном механизме. Извлекал, исчерпывал до дна все ресурсы, до которых добирался с риском и с усилиями раба на галерах. Его невысокое положение чиновника среднего ранга компенсировалось смелостью и усердием. В разведке он совершил то же, что и в профессиональной карьере. Вопреки всему добирался до нужного результата. Его рисуют бережливым от рождения шотландцем низкого происхождения. Но почему тогда Джон пользовался таким успехом у прекрасного пола?
Среди его подруг жизни и красивая американка, затем игривая англичанка, а потом и верная жена. И если он был настолько скуп, то почему, как и четверо остальных, конечно же, и не подозревая об их отказе, отверг установленную ему товарищем Сталиным в 1945-м пожизненную пенсию в тысячу фунтов стерлингов в год, сумму по тем временам солидную. Между прочим, другим его сотоварищам денег предложили все же чуть-чуть побольше. Даже Советы, возможно, и без всякого умысла капельку сэкономили на своем вернейшем друге. Последние годы провел во Франции. На склоне лет Кернкросс заявил, что, возможно, придет день, когда люди поймут, почему молодой англичанин, обладающий интеллектом, решился на им совершенное. Из всей "Кембриджской пятерки" один лишь Кернкросс оказался долгожителем.
Уэлчман, Гордон: биография
Правительство Великобритании, несмотря на неоценимый вклад Тьюринга в науку, осудило его за преступление, которое с точки зрения современности считается абсурдным. Уголовное преследование подорвало репутацию математика на долгие годы. Наказание В 1952 году Тьюринг обратился в полицию с заявлением, что его дом обокрал 19-летний рабочий Арнольд Мюррей. В ходе расследования ученый признался, что состоял с обвиняемым в гомосексуальной связи. В то время в Великобритании половой контакт между мужчинами считался противозаконным, поэтому Тьюрингу и Мюррею предъявили обвинения в непристойном поведении [3].
Ученый выбрал последнее, потому что не хотел останавливать работу над своими проектами. Стоит отметить, что уголовное преследование за гомосексуализм в Англии отменили только в 1967 году. Взлом «Энигмы» Одним из главных научных достижений Тьюринга было устройство, которое позволило «взломать» код немецкого шифровальщика «Энигмы» — электромеханической роторной машины, изобретенной немецким инженером-электриком Артуром Шербиусом в 1918 году. В годы Второй мировой войны Тьюринг работал в британской Правительственной школе шифров и кодов, которая располагалась в особняке Блетчли в графстве Бакингемшир в центре Англии.
В этой школе ученые трудились над поиском методов, позволяющих «взломать» шифры и коды, используемые странами нацистского блока Германией, Японией, Италией и т. Математик возглавлял группу Hut 8, отвечающую за криптоанализ сообщений военно-морского флота нацистов [5]. Они охотились на корабли антигитлеровской коалиции, которые доставляли груз для сухопутных войск. Немецкий флот для шифровки сообщений использовал машину «Энигма» [6].
При помощи нее немцы обменивались закодированными сообщениями и передавали схемы маршрутов. Великобритания и союзники пытались «взломать» машину, чтобы защититься от угрозы со стороны немецких подводных лодок. Поэтому капитаны судов полагались на группу Тьюринга и ждали, когда те создадут дешифратор. Как и другие роторные машины, «Энигма» состояла из комбинации механических и электрических подсистем.
Механическая часть включала в себя клавиатуру, набор вращающихся дисков — роторов, — которые были расположены вдоль вала и прилегали к нему, и ступенчатого механизма, двигающего один или несколько роторов при каждом нажатии на клавишу. Электрическая часть, в свою очередь, состояла из электрической схемы, соединяющей между собой клавиатуру, коммутационную панель, лампочки и роторы для соединения роторов использовались скользящие контакты [7]. Для военной версии «Энигмы» специалисты изготовили 8 роторов и 4 рефлектора. Каждый ротор имел 26 сечений, что соответствовало отдельной буквы алфавита, а также 26 контактов для взаимодействия с соседними роторами.
Как только оператор нажимал на нужную букву, замыкалась электрическая цепь и появлялся зашифрованный символ. За замыкание цепи отвечали рефлекторы. У машины было 159 квинтиллионов 158,962,555,217,826,360,000 различных комбинаций символов и цифр.
Стоит отметить, что подобные разработки существовали не только в Германии. Так, в 1917 году американский криптограф и инженер Эдвард Хепберн создал свою шифровальную машину. Его система представляла собой две пишущие машинки, которые соединялись проводами. При нажатии клавиши первой машинки на второй печаталась буква шифротекста. Несмотря на относительно слабый метод шифрования, данная система заинтересовала американские спецслужбы. Первые немецкие шифраторы более компактных и дешёвых моделей поступили в армию и флот Германии лишь в 1926 году. Вместе с этим началась работа по модернизации существующих вариантов шифровальной машины. Спустя два года сухопутная армия получила новую «Энигму G», которая впоследствии активно использовалась во время войны вермахтом и различными немецкими службами и организациями. Одним из главных отличий нового варианта «Энигмы» от первой коммерческой модели являлось улучшенное качество шифрования. Немецкий пункт связи. Слева — шифровальная машина «Энигма» В 1934 году на вооружение военно-морского флота была принята новая «Энигма М», качество шифрования которой благодаря дополнительным роторам значительно возросло. Позже защита шифрования данной модели была ещё раз усилена. На следующий год шифровальные машины поступили и в Люфтваффе. Немецкая военная разведка Абвер использовала свою модель шифратора. Всего было выпущено около 100 тысяч машин «Энигма», большинство из которых были уничтожены немцами для сохранения секретности. Конструкция и принцип работы «Энигма» — это роторная машина, состоящая из механических и электрических систем. К главным деталям, осуществляющим непосредственно шифрование и дешифрование, относятся вращающиеся диски — роторы, ступенчатый механизм, рефлектор и электрическая схема. Ротор представлял собой зубчатый диск диаметром 10 см, максимальное число которых в немецких шифраторах достигало восьми. Каждый диск имеет 26 сечений, одно на каждую букву латинского алфавита, и 26 контактов для взаимодействия с другими роторами. Один ротор производит шифрование путём обычной замены. Однако при использовании двух и более роторов надёжность шифра возрастает по мере увеличения числа дисков, так как производится многократная замена: на первом роторе «A» заменялась на «G», на втором — «G» на «F», на третьем — «F» на «K». После всех замен на панели загорается лампочка с буквой «K». Процесс повторяется с каждым нажатием на клавишу клавиатуры, но замена производится абсолютно по-иному. Само движение роторов обеспечивает ступенчатый механизм. Главной особенностью «Энигмы» является наличие рефлектора. Рефлектор замыкает цепь, благодаря чему электрический ток, пройдя через все роторы, идёт в обратном направлении. Но при этом роторы вновь смещаются относительно друг друга, тем самым меняя его маршрут. Есть и существенный недостаток данного механизма, который впоследствии помог взломать код «Энигмы» — рефлектор не позволяет зашифровать букву на саму себя, то есть буква «E» заменяется на любую другую, кроме самой «E».
Немецкий изобретатель Артур Шербиус Важно отметить, что во времена Второй мировой войны «Энигма» считалась самым сильным криптографическим шифром в мире. Изобретатель Артур Шербиус умер в 1929 году в результате несчастного случая на лошадях. Он прославился своим изобретением лишь посмертно. В том, что шифровальная машина пригодилась именно в военной сфере, нет ничего удивительного. Сокрытие информации во все времена было обязательным условием успешного ведения войны. Благодаря шифрам, военные подразделения и командиры могли постоянно держать связь. Даже если данные перехватывались вражескими силами, они были бесполезными, потому что прочитать их могли только те, кто умеет их расшифровывать. Принцип работы шифровальной машины «Энигма» Текст, который нужно было зашифровать, печатался прямо на «Энигме». Перед началом использования оператор открывал крышку аппарата и запоминал настроечную позицию — три номера, которые впоследствии будут нужны для расшифровки сообщения. После этого писался секретный текст, в котором каждый символ менялся на другой, в результате чего сообщения выглядело как случайный набор букв. Механизм замены символов имел алгоритм, который менялся в зависимости от установленных внутрь шестерен. Клавиатура «Эниигмы» После написания сообщения, автор передавал записанные заранее три номера радисту, который отправлял их получателю при помощи азбуки Морзе. Человек с другой стороны, имевший такую же «Энигму», ставил машину на ту же настроечную позицию и печатал на аппарате непонятный набор букв. В результате этого действия он получал расшифрованный текст.
Это было дружеская шифрограмма одного скучающего немецкого оператора своему другу, состоящее только из букв Z. Затем шифр вскрыли, а следом и конструкцию роторов аппарата. На самом деле криптоанализ «Энигмы» представлял сложную работу, в которой помогали и английские математики во главе с Аланом Тьюрингом. Но именно польским криптографам принадлежит первенство. Они первыми догадались привлечь математиков к расшифровке ещё в середине 30-х, когда в Великобритании этим занимались лингвисты. Поляки же построили первые электромеханические машины криптологические бомбы , которые симулировали работу «Энигмы», перебирая все возможные настройки в поиске текущей комбинации роторов. Все наработки поляков отдали группе Алана Тьюринга, который и довёл их до логического конца. Выяснилось, что шифры немцев меняются раз в день: А цифровые коды для шифров соотносились с тремя первыми символами сообщения: Предполагалось, что первые три буквы указываются случайным образом в каждом сообщении, но операторы часто забывали их менять так часто. Вот так после нескольких лет интеллектуальной работы совместного коллектива шифровальщиков и математиков Польши и Великобритании при помощи французской агентуры, доставшей чертежи конструкции была восстановлена шифровальная машина немцев, что сыграло очень важную роль в победе союзников во Второй мировой войне.
Как работала шифровальная машина «Энигма» и используется ли она сегодня?
Сами исследователи пишут, что данный случай сопоставим только "с криптоанализом Энигмы во время Второй Мировой". Dr. George Lasry will present the evolution of modern cryptanalysis of Enigma, including results from his own research, starting with some technical and historical background. Важную роль сыграли криптографы, которые осуществили криптоанализ немецкой шифровальной машины «Энигма». В конце 1920-х «Энигма» получила известность в мире как шифровальная машина, способная обеспечить сохранность коммерческих и военных тайн. Чтобы осложнить криптоанализ, сообщения делали не длиннее 250 символов; более многословные разбивали на части, для каждой из которых использовался свой ключ.
Взлом «Энигмы»: история, которую мы не должны были узнать
Впоследствии, когда часть работ была перенесена в США, вместе с технологиями была направлена и часть сотрудниц [1]. В таких случаях криптоаналитики из Блетчли-парка оказывались бессильными, и для дальнейшей работы срочно требовалось найти описание изменений или хотя бы новые экземпляры инструкций и машин «Энигма» [1]. В 1940 году морской флот Германии внёс некоторые изменения в машину. Лишь после захвата 9 мая 1941 года подводной лодки U-110 вместе с несколькими новыми экземплярами машины, британские криптоаналитики смогли разобраться в изменениях [1].
В 1942 году , после ввода в строй четырёхроторной машины, Блетчли-парк не смог расшифровывать сообщения в течение полугода, пока 30 октября 1942 года противолодочный корабль Petard , ценой жизни двух моряков, не захватил «Энигму» с подводной лодки U-559 [1]. Секретность «Это моя курочка-ряба, которая несет золотые яйца, но никогда не кудахчет. С этой целью все действия, основанные на данных программы «Ультра» должны были сопровождаться операциями прикрытия, маскирующими истинный источник информации [Прим.
Так, для передачи сведений «Ультра» в СССР использовалась швейцарская организация Lucy , располагавшая по легенде источником в верхах немецкого руководства. Для маскировки «Ультра» применялись фиктивные разведывательные полеты, радиоигра и т. О существовании программы «Ультра» было известно строго ограниченному кругу лиц, число которых составляло порядка десяти человек.
Необходимые сведения передавались по назначению сетью подразделений разведки, прикомандированных к штабам командующих армии и флота. Источник сведений при этом не раскрывался, что иногда приводило к недооценке британским командованием вполне надёжных сведений «Ультры» и крупным потерям См. Гибель авианосца «Глориес».
Несмотря на риск раскрытия источника, сведения были переданы советскому правительству [10]. Однако Сталин не поверил в возможность нападения [11] [12] [Прим.
Так, в 1923 году шифровальный аппарат стал экспонатом съезда Международного почтового союза, но успеха не снискал.
Причина была в высокой цене «Энигмы» и внушительных габаритах машины Шербиуса. И все же несколько экземпляров были проданы армиям различных стран и компаниям связи. Британцы впервые столкнулись с устройством «Энигмы» в июне 1924 года, когда производитель предложил англичанам закупить партию аппаратов по немалой для того времени цене 200 долларов за штуку.
Правительство Великобритании в ответ предложило зарегистрировать шифровальную новинку в патентном бюро, что автоматически вело к предоставлению полной документации на технику. Немцы пошли на этот шаг и британские криптографы получили в свое распоряжение все технические нюансы «Энигмы» задолго до Второй мировой войны. Патент на "Энигму".
Восхождение немецкой шифровальной машин на Олимп началось с приходом к власти Адольфа Гитлера в 1933 году, когда началось перевооружение армии. Общее количество выпущенных аппаратов «Энигма» до конца Второй мировой войны, по разным источникам, варьируется от 100 тыс. Использовали их повсеместно — в вермахте, в кригсмарине, в абвере, в люфтваффе и в фашистских службах безопасности.
Источник: w-dog. В самой первой генерации это были три вращающихся в одной плоскости барабана диска или колеса , на каждой из сторон которых имелись 26 электрических контактов — ровно по числу букв в латинском алфавите. Контакты с обеих сторон соединялись внутри диска 26 проводами, которые формировали замену символов при наборе текста.
Три диска в процессе сборки складывались вместе, касались друг друга контактами, что обеспечивало прохождение электрических импульсов сквозь весь набор барабанов на регистрирующее устройство. Сам латинский алфавит был нанесен на боковой поверхности каждого барабана. Начало работы с «Энигмой»-передатчиком ознаменовывалось набором кодового слова из букв на барабанах.
Важно, чтобы приемное устройство также было настроено аналогичным кодовым словом. Полевая шифровальная машина "Энигма". Источник: musee-armee.
После того как левый диск проворачивался на один оборот, в дело вступал центральный барабан и так далее. Такое вращение дисков создавало для каждого символа текста свой уникальный контур для прохождения электрического импульса. Далее сигнал проходил через рефлектор, который представлял из себя 13 проводников, соединявших пары контактов на задней стороне третьего диска.
Рефлектор разворачивал электрический сигнал обратно в барабаны, но уже совсем по другому пути. И только вот тут загоралась лампочка около буквы уже шифрованного текста. Такие «приключения» электрического сигнала обеспечивали уникальную защищенность канала связи для своего времени.
Военная версия "Энигмы" с четырьмя барабанами. Источник: e-board. С «Энигмой» на первых порах работали три человека: один читал текст, второй набирал на клавиатуре, а третий записывал по всполохам лампочек шифровку.
Со временем, размеры шифровального аппарата уменьшились до габаритов печатной машинки, что позволило отправлять сообщения буквально из каждого окопа. Также немцы в ходе модернизации добавили печатающее устройство для набора зашифрованного текста. Что же еще инженеры-криптографы Третьего рейха добавили в «Энигму»?
В 1930 году появилась коммутационная панель из 26 пар розеток и штепселей, которая дополнительно заменяла знаки открытого текста после основного шифрования на барабанах. Это было чисто военное усовершенствование — на коммерческих вариантах такое отсутствовало. Долговременный ключ шифратора, который формировала коммутация дисков за счет перестановки 26 элементов, составляет астрономические 4х1026 вариантов!
Сейчас программные возможности ЭВМ позволяют с легкостью перебрать такое число вариантов, но для 30-40-х это было маловероятно и долго. Также усложнял картину шифрования набор из пяти дисков «Энигмы» они все были разными из которых только три устанавливались на аппарат единовременно. Их можно тасовать в произвольном порядке, то есть всего было 10 вариантов установки на одну машину.
И, наконец, регулярно сменяемая схема коммутации штепсельной панели совсем усложняла работу для криптоаналитических служб врагов фашистской Германии. Позже стали добавлять дополнительные барабаны в конструкцию. Однако, несмотря на это, «Энигму» научились полноценно «читать» уже в самом начале Второй мировой войны.
Одними из лучших криптоаналитиков перед большой войной были поляки. Еще во время гражданской войны в России и советско-польского конфликта поляки успешно дешифровали сообщения советской армии и дипломатов. Так, 2-й отдел криптоанализ польского Генерального штаба за август 1920 года «перевел» с шифрованного на польский 410 телеграмм, подписанных Троцким, Тухачевским, Гаем и Якиром.
Он и в университете был весьма способным студентом, но только в польском Бюро шифров нашел свое истинное призвание. Здесь он проходил обучение, разгадывая обычные шифры, прежде чем перейти к более неприступной задаче «Энигмы». Трудясь в полном одиночестве, он полностью сосредоточился на запутанности машины Шербиуса. Будучи математиком, он постарался всесторонне проанализировать работу машины, изучая влияние шифраторов и кабелей штепсельной коммутационной панели. Но, как и все в математике, его работа требовала не только вдохновения, но и логического мышления. Как сказал один из военных математиков-криптоаналитиков, творческий дешифровальщик должен «волей-неволей ежедневно общаться с темными духами, чтобы совершить подвиг интеллектуального джиу-джитсу». Реевский разработал стратегию атаки на «Энигму» исходя из того, что повторение является врагом безопасности: повторения приводят к возникновению характерного рисунка — структуры сообщения, и криптоаналитики благоденствуют на структурах.
Самым явным повторением при шифровании с использованием «Энигмы» был разовый ключ, который зашифровывался дважды в начале каждого сообщения. Немцы требовали такого повторения, чтобы избежать ошибок вследствие радиопомех или оплошности оператора. Но они не предполагали, что из-за этого возникнет угроза безопасности машины. Каждый день Реевскому передавали новую пачку перехваченных сообщений. Все они начинались шестью буквами повторяющегося трехбуквенного разового ключа, все были зашифрованы с использованием одного и того же ключа текущего дня. Например, он мог получить четыре сообщения, начинающихся со следующих зашифрованных разовых ключей: В каждом из этих случаев 1-я и 4-я буквы являются одной и той же зашифрованной буквой — первой буквой разового ключа. Точно так же 2-я и 5-я буквы являются одной и той же зашифрованной буквой — второй буквой разового ключа, а 3-я и 6-я буквы — третьей буквой разового ключа.
Так, в первом сообщении, L и R являются одной и той же зашифрованной буквой — первой буквой разового ключа. Причина, почему одна и та же буква зашифровывается по-разному, вначале как L, а затем как R, заключается в том, что между двумя зашифровываниями первый шифратор «Энигмы» продвинется на три шага и способ шифрования изменится. То, что L и R являются одной и той же зашифрованной буквой, позволило Реевскому вывести еле уловимую связь с начальной установкой машины. При некотором начальном положении шифратора, которое неизвестно, первая буква ключа текущего дня, который опять-таки неизвестен, зашифровывается в L, а затем, при другом положении шифратора, который передвинулся на три шага от начального, по-прежнему неизвестного положения, та же буква ключа текущего дня, который также по-прежнему неизвестен, преобразуется в R. Эта связь представляется смутной, так как здесь полно неизвестностей, но она хотя бы показывает, что буквы L и R неразрывно связаны с исходной установкой «Энигмы» — с ключом текущего дня. При перехвате новых сообщений можно найти другие соответствия между 1-й и 4-й буквами повторяющегося разового ключа. Все они отражают исходную установку «Энигмы».
Например, из второго сообщения видно, что существует связь между М и X, из третьего — между J и М и из четвертого — между D и Р. Реевский начал суммировать эти соответствия, сводя их в таблицу. Для четырех сообщений, которые мы пока имеем, таблица дает наличие связей между L, R , М, X , J, М и D, Р : Если бы у Реевского было достаточное количество сообщений, отправленных в какой-нибудь один из дней, то он смог бы завершить составление алфавита соответствия. Ниже приведена заполненная таблица соответствий: У Реевского не было никаких догадок ни о ключе текущего дня, ни о том, какие выбирались разовые ключи, но он знал, что они есть в этой таблице соответствий. Если бы ключ текущего дня был другим, то и таблица соответствий была бы совершенно отличной. Следующий вопрос заключался в том, можно ли найти ключ текущего дня из этой таблицы соответствий. Реевский приступил к поиску в таблице характерных рисунков — структур, которые могли бы послужить признаком ключа текущего дня.
В итоге он начал изучать один частный тип структуры, который характеризовал цепочку букв. В таблице, к примеру, А в верхнем ряду связана с F в нижнем ряду. Перейдя в верхний ряд и найдя там F, Реевский выяснил, что F связана с W. Снова перейдя в верхний ряд и отыскав там W, он обнаружил, что, оказывается, связана с А, то есть он вернулся к тому месту, откуда начал поиск. Цепочка завершена. Рис 42. Мариан Реевский Для остальных букв алфавита Реевский создал похожие цепочки.
Он выписал все цепочки и отметил в каждой из них количество связей: До сих пор мы рассматривали только соответствия между 1-й и 4-й буквами шестибуквенного повторяющегося ключа. В действительности же Реевский проделал то же самое для соответствий между 2-й и 5-й буквами и между 3-й и 6-й буквами определяя в каждом конкретном случае цепочки и количество связей в каждой из них. Реевский обратил внимание, что каждый день цепочки изменялись. Иногда встречалось множество коротких цепочек, иногда лишь несколько длинных. И разумеется, в цепочках менялись буквы. То, какими были эти цепочки, зависело, несомненно, от параметров установки ключа текущего дня — совокупного влияния установок на штепсельной коммутационной панели, взаимного расположения и ориентации шифраторов.
Особенность полного варианта таблицы заключалась в том, что пока дневной ключ остаётся без изменений, содержимое таблицы также не меняется. И, с большой степени вероятности, наоборот. Можно было бы составить каталог таблиц… однако их количество равно 26!
Криптофронт Второй Мировой Войны, часть 2
Была ли расшифрована энигма. Криптоанализ «Энигмы | В конце 1920-х «Энигма» получила известность в мире как шифровальная машина, способная обеспечить сохранность коммерческих и военных тайн. |
Криптоанализ «Энигмы»(укроверсия) | Криптоанализ «Энигмы» — мероприятия по чтению сообщений Германии, зашифрованных с помощью электромеханической машины «Энигма» во время Второй мировой войны. |
Криптоанализ «Энигмы» - Википедия | Несмотря на то что криптоанализом шифровальной машины "Энигма" с конца 30-х годов занимались польские специалисты, наиболее известным этапом "взлома" шифра немецкой. |
В Кембридже воссоздали «Циклометр Реевского», при помощи которого была взломана «Энигма» | Техкульт | В течение нескольких недель после прибытия в Тьюринг написал спецификации к электромеханической машине Bombe, которые помогли со взломом «Энигмы» более. |
Была ли расшифрована энигма. Криптоанализ «Энигмы | Тегиэнигма криптография, шифр энигма на python, прохождение энигма бокс, как расшифровывать коды энигмы в wolfenstein, взломщик 2005 прохождение. |
Сообщить об опечатке
- Криптоанализ Энигмы. Часть третья: Блетчли-парк. Операция Ультра
- «Школа для него — пустая трата времени»
- Откройте свой Мир!
- Enigma: последние новости - Bits Media
- Криптофронт Второй Мировой Войны, часть 2
Уэлчман, Гордон: биография
Криптоанализ «Энигмы» — "Энциклопедия. Что такое Криптоанализ «Энигмы» | В конце 1920-х «Энигма» получила известность в мире как шифровальная машина, способная обеспечить сохранность коммерческих и военных тайн. |
Совершенно секретно: история шифровальных устройств | Криптоанализ Энигмы. |
Криптофронт Второй Мировой Войны, часть 2 | Всё это значительно затруднило будущий криптоанализ Энигмы. С началом войны и падением Польши исследователи успели передать свои успехи французам, которые попытались развить. |
Учёные Кембриджа решили снова взломать Энигму
Ученые рассказали, как АНБ "слушает" зашифрованный трафик | После этого случая немецкие инженеры усложнили «Энигму» и в 1938 году выпустили обновленную версию, для «взлома» которой требовалось создать более сложные механизмы [6]. |
Машина энигма во времена второй мировой войны | В конце 1920-х «Энигма» получила известность в мире как шифровальная машина, способная обеспечить сохранность коммерческих и военных тайн. |
«Бомба» Алана Тьюринга, или как взломали шифромашину «Энигма» [1] - Конференция | Основную лепту в достижения польского периода криптоанализа Энигмы внесли, как и в 1919-21 годах, три математика-криптографа. |
Взлом кода Энигмы
Дешифровка легендарной немецкой машины «Энигма» вошла в мировые учебники криптографии как одно из главных достижений Второй мировой войны. Принцип Работы Криптоанализ Энигмы. The rst stage in cryptanalysis is to look for sequences of letters that appear more than once in the ciphertext. В Третьем рейхе считали, что «Энигму» невозможно взломать, поскольку она предполагала 2×10 в 145-й степени вариантов кодирования. Сами исследователи пишут, что данный случай сопоставим только "с криптоанализом Энигмы во время Второй Мировой". Ниже описаны блоки данных Энигмы и способы их получения.
Коды, шифры и языки: тайны, которые удалось разгадать
Криптоанализ системы шифрования Enigma позволил западным союзникам в мировой войне II для чтения значительного количества кодированных по Морзе радиосвязи Силы Оси. Главный недостаток «Энигмы» — в коде шифруемая буква не могла оставаться самой собой, она обязательно менялась. Dr. George Lasry will present the evolution of modern cryptanalysis of Enigma, including results from his own research, starting with some technical and historical background.
Криптоанализ "Энигмы"
Это был механизм, позволявший, за счет вращения роторов, заменять одни буквы другими. В следующем году Коч продал свое изобретение немцу Артуру Шербиусу, который увидел в механизме перспективу для коммерческого производства. Немецкий инженер доработал конструкцию, а чуть позже добавил рефлектор, находившийся за последним ротором. Рефлектор позволял избегать перестановки крайних роторов для дешифровки и гарантировал инволюцию: расшифровка и шифрование — одинаковы по сути и взаимообратимы. Артур Шербиус и его партнер Рихард Риттер основали компанию «Chiffriermaschinen AG» и стали продвигать свои устройства: электромеханические роторные шифровальные машины «Enigma». Модели «А» и «В» были большими и неудобными модели были без рефлектора. Начиная с модели «С» механизмы стали мобильнее и надежнее.
Модель «D», появившаяся в 1927 году, была закуплена многими странами: Польшей, Англией, Голландией, Италией… Всего, по различным источникам, было изготовлено около ста тысяч разных модификаций «Энигмы». Модели отличались размерами, количеством используемых роторов, количеством используемых букв выемок и контактов на роторах. Наиболее «исторически известная» немецкая военная модификация «Энигмы» использовала двадцать шесть контактов на каждой из сторон ротора. Каждый контакт соответствовал букве алфавита. Для символов использовались сочетания букв. То есть каждый ротор мог обеспечить двадцать шесть разных подстановок каждой буквы — элементарный шифр подмены, не слишком сложный.
Но использование нескольких роторов позволяло значительно усложнить его. Первая трехроторная машинка обеспечивала 17576 вариантов подстановки символа. Используя в следующих моделях три из пяти роторов в случайном порядке, это число возросло до 1054560 вариантов, а после добавления четвертого ротора, переваливает за миллиард. Эта высокая степень вариативности и значительная трудность для дешифровки убедило военное ведомство Германии использовать «Загадку» для передачи шифрованных сообщений в боевых действиях. До появления таких устройств, передачи шифровали «вручную», используя таблицы. Кодировщику даже не надо было знать весь процесс шифрования: он нажимал буквы на клавиатуре типа пишущей машинки , а на выходе получал набор символов, расшифровать который мог только тот, кто имел точно такую же машинку, с таким же количеством роторов, расположенных в тех же местах, в таком же порядке, что и у кодировщика.
А для еще большего усиления шифра в военные модели добавилась коммутационная панель, позволявшая подменивать пары букв до роторов и после. То есть, даже имея «синхронизированную» машинку, невозможно было узнать первоначального послания, не зная положения кабелей в коммутационной панели. Историю декодирования машины Enigma мы знаем в основном по голливудским блокбастерам о подводных лодках.
При совершении полного оборота одного из дисков, следующий диск сдвигается на одну позицию. Это увеличивает длину последовательности до 26n, где n — количество соединенных последовательно роторов. В качестве примера рассмотрим следующее изображение упрощенной роторной машины: Приведенная машина состоит из клавиатуры для ввода символа , трех дисков, индикатора для отображения криптотекста и реализует шифрование 4 символов: A, B, C, D. При нажатии буквы B на клавиатуре замыкается электрическая цепь, зависящая от текущего положения роторов, и на индикаторе загорается лампочка.
В приведенном выше примере буква B будет зашифрована в C. После чего первый ротор сдвинется на одну позицию и настройки машины приобретут следующий вид: Энигма Энигма является наиболее популярным представителем мира шифровальных роторных машин. Она использовалась германскими войсками во время второй мировой войны и считалась практически не взламываемой. Процедура шифрования Энигмы реализована как в приведенном выше примере за исключением некоторых дополнительных штрихов. Во-первых, число роторов в разных версиях Энигмы могло отличаться. Наиболее распространенной была Энигма с тремя роторами, но использовался так же вариант с четырьмя дисками. Во-вторых, процесс расшифровки демонстрационной роторной машины, описанной выше, отличается от процесса шифрования.
Каждый раз для расшифровки придется менять левый и правый ротор местами, что может быть не совсем удобным. Для решения этой проблемы в Энигме был добавлен еще один диск, который назывался рефлектор. В рефлекторе все контакты были соединены попарно, реализуя тем самым повторное прохождение сигнала через роторы, но уже по другому маршруту. В отличие от остальных роторов рефлектор всегда находился в фиксированном положении и не вращался. Добавим рефлектор, реализующий замену A-B; C-D к нашей демонстрационной шифровальной машине.
Однако, если сообщения не были подробными, то два зашифрованных текста сравниваются, как если бы они были случайными, их частота повторения составляет примерно 1 из 26.
Это позволяет дешифратору принимать два сообщения, индикаторы которых различаются только их третьей буквой и слайдом. Два сообщения легче сравнить, если их расшифровать на полосах перфорированного картона шириной 25 см и длиной в несколько метров, в зависимости от длины сообщения. В верхней части столбца карты отверстие представляет собой букву A в этой позиции, другое отверстие в основании представляет букву Z. Две карты накладываются поверх световой панели. Когда свет проходит, происходит повторение. Метод упрощает обнаружение и подсчет повторов.
Отпечатанные в Банбери карты криптоаналитики называют «банбурией», а процедуру - «банбуризмом». Детские кроватки В речи английских школьников шпаргалки - это те коммерчески доступные переводы, которые помогают облегчить утомительную работу с версиями и темами. Метеорологи в море пишут сообщения, которые они отправляют в Германию после шифрования с помощью Enigma. Эти сообщения затем транслируются по всей Кригсмарине, часто с использованием второстепенных кодов. Сообщения о погоде, зашифрованные Enigma, передаются на подводные лодки в строгом формате, характерном для подводников. Однако немецкий прогноз погоды был расшифрован союзниками, которые затем смогли опробовать шпаргалки.
Захват документов Союзники организовали несколько операций по захвату документов Кригсмарине, таких как операция «Клеймор» рейд на Лофотенские острова или высадка на абордаж немецких метеорологических кораблей в Северной Атлантике. Британские и американские группы захвата спустились в недра тонущих немецких подводных лодок, брошенных союзниками, затопленных и брошенных их командой, чтобы обыскать командный пункт и радиорубку. Йоксаллизм Yoxallisme является воображаемым техника Лесли Yoxall в , 26, который помогает читать сообщения о субмарине , когда они зашифрованы дважды. Эти «офицерские» сообщения редко расшифровываются и всегда случайно. Иногда люди из Блетчли-Парка восстанавливают порядок роторов, но не перестановки заглушек на коммутационной панели.
После начала войны и оккупации Польши и Франции эти работы продолжили английские специалисты.
Особенно важными здесь были теоретические работы математика А. Начиная с 1942 года раскрытие шифровальных кодов приобрело чрезвычайно важное значение, так как немецкое командование для передачи своих распоряжений все чаще использовало радиосвязь. Нужно было разработать совершенно новые способы криптологического анализа для дешифровальных машин. Историческая справка. Первым применил шифрование текста Юлий Цезарь. В 9-м веке арабский ученый Аль-Кинди впервые рассмотрел задачу дешифровки текста.
Разработке методов шифрования были посвящены работы итальянских математиков 15-16 веков. Первое механическое устройство придумал в 1786 году шведский дипломат, такой прибор был и в распоряжении американского президента Джефферсона в 1795 году. Только в 1922 году этот прибор был улучшен криптологом американской армии Мауборном. Он использовался для шифровки тактических сообщений вплоть до начала Второй Мировой войны. Патенты на улучшение удобства пользования но не на надежность шифровки выдавались американским Бюро патентов, начиная с 1915 года. Все это предполагалось использовать для шифровки бизнес-переписки.
Несмотря на многочисленные усовершенствования приборов, ясно было, что надежной является шифровка только коротких текстов. В конце первой мировой войны и в первые годы после нее возникает несколько изобретений, созданных любителями, для которых это было своеобразным хобби. Назовем имена двух из них: Хеберн Hebern и Вернам Vernam , оба американцы, ни один из них о науке криптологии, скорее всего, вообще не слышал. Последний из двух даже реализовал некоторые операции Булевой логики, о которой тогда вообще мало кто знал, кроме профессиональных математиков. Дальнейшим усовершенствованием этих шифровальных машин занялись профессиональные криптологи, это позволило усилить их защищенность от взлома. С 1919г.
Были разработаны четыре варианта близких по конструкции машин, но коммерческого интереса к ним проявлено не было, вероятно потому, что машины были дорогими и сложными в обслуживании. Ни ВМФ, ни МИД не приняли предложений изобретателя, поэтому он попробовал предложить свою шифровальную машину в гражданские секторы экономики. В армии и МИДе продолжали пользоваться шифрованием по книгам. Артур Шербиус перешел работать в фирму, купившую его патент на шифровальную машину. Эта фирма продолжала совершенствовать Энигму и после смерти ее автора. Во втором варианте Enigma B машина представляла собой модифицированную электрическую пишущую машинку, с одной стороны ее было устроено шифровальное устройство в виде 4 сменных роторов.
Фирма широко выставляла машину и рекламировала ее как не поддающуюся взлому. Ею заинтересовались офицеры Рейхсвера. Дело в том, что в 1923 году вышли воспоминания Черчилля, в которых он рассказал о своих криптологических успехах. Это вызвало шок у руководства немецкой армии. Немецкие офицеры узнали, что большая часть их военных и дипломатических сообщений была расшифрована британскими и французскими экспертами! И что этот успех во много определялся слабостью дилетантской шифровки, изобретенной любителями-шифровальщиками, так как военной немецкой криптологии просто не существовало.
Естественно, они начали искать надежные способы шифрования для военных сообщений. Поэтому у них возник интерес к Энигме. Энигма имела несколько модификаций: А,В,С и т. Модификация С могла выполнять как шифровку, так и дешифровку сообщений; она не требовала сложного обслуживания. Но и ее продукция еще не отличалась стойкостью к взлому, потому что создателей не консультировали профессиональные криптологи. Она использовалась в немецком военно- морском флоте с 1926 по 1934 гг.
Следующая модификация Энигма D имела и коммерческий успех. Впоследствии, с1940 г. В 1934г. Любопытно, что расшифровкой немецких радиосообщений, засекреченных этой машиной, пытались заниматься польские криптологи, причем результаты этой работы становились каким-то образом известны немецкой разведке. Поначалу поляки добились успеха, но «наблюдавшая» за ними немецкая разведка сообщила об этом своим криптологам, и те поменяли шифры. Когда выяснилось, что польские криптологи не смогли взломать зашифрованные Энигмой -1 сообщения, эту машину начали применять и сухопутные войска - Вермахт.
После некоторого совершенствования именно эта шифровальная машина стала основной во Второй Мировой войне. С 1942 года подводный флот Германии принял «на вооружение» модификацию Энигма - 4. Постепенно к июлю 1944 г. В Германии конструкции машин постоянно совершенствуются. Основная трудность при этом была вызвана невозможностью выяснить, удается ли противнику расшифровывать тексты, зашифрованные данной машиной. Хемнице: в октябре 1945г.
Телеграф, историческая справка. Появление электрического тока вызвало бурное развитие телеграфии, которое не случайно происходило в 19-м веке параллельно с индустриализацией. Движущей силой являлись железные дороги , которые использовали телеграф для нужд железнодорожного движения, для чего были развиты всевозможные приборы типа указателей. А изобретенное в 1855г. Худжесом Hughes печатающее колесо после ряда усовершенствований служило еще и в 20-м веке. Следующее важное изобретение для ускорения переноса информации - было создано в 1867 году Витстоуном Wheatstone : перфолента с кодом Морзе, которую прибор ощупывал механически.
Дальнейшему развитию телеграфии препятствовало недостаточное использование пропускной способности проводов. Первую попытку сделал Мейер B. Meyer в 1871 году, но она не удалась, потому что этому препятствовали различная длина и количество импульсов в буквах Морзе. Но в 1874 году французскому инженеру Эмилю Бодо Emile Baudot удалось решить эту проблему. Это решение стало стандартом на следующие 100 лет. Метод Бодо имел две важные особенности.
Во-первых, он стал первым шагом на пути к использованию двоичного исчисления. И во-вторых, это была первая надежная система многоканальной передачи данных. Дальнейшее развитие телеграфии упиралось в необходимость доставки телеграмм с помощью почтальонов. Требовалась другая организационная система, которая бы включала: прибор в каждом доме, обслуживание его специальным персоналом, получение телеграмм без помощи персонала, постоянное включение в линию, выдача текстов постранично. Такое устройство имело бы виды на успех только в США. В Европе до 1929 года почтовая монополия препятствовала появлению любого частного устройства для передачи сообщений, они должны были стоять только на почте.
Первый шаг в этом направлении сделал в 1901 году австралиец Дональд Муррей Donald Murray. Он, в частности, модифицировал код Бодо. Эта модификация была до 1931 года стандартом. Коммерческого успеха он не имел, так как патентовать свое изобретение в США не решился. Впоследствии они объединились в одну фирму в Чикаго, которая начала в 1024 году выпускать аппаратуру, пользовавшуюся коммерческим успехом. Несколько их машин импортировала немецкая фирма Лоренц, установила их в почтамтах и добилась лицензии на их производство в Германии.
С1929 года почтовая монополия в Германии была отменена, и частные лица получили доступ к телеграфным каналам. Введение в 1931 г. Такие же аппараты стала производить с 1927 года фирма Сименс и Гальске. Объединить телеграф с шифровальной машиной впервые удалось 27-летнему американцу Гильберту Вернаму Gilbert Vernam , работнику фирмы АТТ. В 1918г. Большой вклад в криптологию внес американский офицер Вильям Фридман, он сделал американские шифровальные машины практически неподдающимися взлому.
Когда в Германии появились телеграфные аппараты Сименса и Гальске, ими заинтересовался военно-морской флот Германии. Но его руководство все еще находилось под впечатлением о том, что англичане во время первой мировой войны разгадали германские коды и читали их сообщения. Поэтому они потребовали соединить телеграфный аппарат с шифровальной машиной. Это было тогда совершенно новой идеей, потому что шифрование в Германии производилось вручную и только потом зашифрованные тексты передавались. В США этому требованию удовлетворяли аппараты Вернама. В Германии за эту работу взялась фирма Сименс и Гальске.
Первый открытый патент по этой теме они подали в июле 1930г. К 1932г. С 1936г. С 1942г. Немцы продолжали совершенствовать различные модели шифровальных машин, но на первое место они ставили усовершенствование механической части, относясь к криптологии по-дилетантски, фирмы-производители не привлекали для консультаций профессиональных криптологов. Большое значение для всей этой проблематики имели работы американского математика Клода Шеннона который начитная с 1942г.
Еще до войны он был известен доказательством аналогии между булевой алгеброй и релейными соединениями в телефонии. Именно он открыл «бит» как единицу информации. После войны, в 1948г. Шеннон написал свой основной труд « Математическая теория коммуникаций». После этого он стал профессором математики в университете. Шеннон первый начал рассматривать математическую модель криптологии и развивал анализ зашифрованных текстов информационно-теоретическими методами.
Фундаментальный вопрос его теории звучит так: «Сколько информации содержит зашифрованный текст по сравнению с открытым? Проведенный там анализ был первым и единственным для количественной оценки надежности метода шифрования.