Плазменный шар "Скелет" серый 21х12,5х23 см RISALUX.
Шаровая молния: Плазменный сгусток разумной энергии до сих пор остается загадкой для ученых
Внутри декоративного ночника помещен электрод, на который подается ток под высоким напряжением. Поэтому внутри лампы и возникают молнии. Этим и объясняется название светильника, ведь именно так светится плазма. В стеклянном шаре лампы содержится разряженный инертный газ, который придает свечению определенный оттенок. При работе светильник потребляет мало электричества. Тем не менее нельзя, чтобы он работал более двух-трех часов, иначе возможен перегрев. Приобретая такой необычный осветительный прибор, не забывайте о технике безопасности. Необходимо следовать инструкции по его эксплуатации.
Прибор можно подзаряжать от USB-порта или розетки в 220В. Светильник «Плазменный шар» поможет отдохнуть напряженным глазам после долгой работы за компьютером. Лампа может стать полезной вещью в вашем доме, способствовать расслаблению нервной системы и избавить вас от последствий стрессов. Светильник изготавливается в разном оформлении, в том числе и весьма оригинальном. Например, в виде черного дракона, который обхватывает крыльями «Плазменный шар», что делает его еще более притягательным и волшебным. Источник Всем доброго времени суток. Сегодняшний обзор будет посвящен очень красивой и симпатичной вещице, приобретенной мною на просторах eBay — ночнику «Плазменный шар» или домашней катушке Тесла в миниатюре????
Покупалось это чудо по просьбе и для дочки. Отдавать такую сумму за ночник я не планировал и поэтому пришлось провести с дочкой срочные переговоры в ходе которых была установлена договоренность, что пока она получит kinder surprise, а ночник мы вместе с ней поищем дома в интернете. Тут хочу сказать, что цены у местных онлайн продавцов немногим лучше магазинных, а потому было принято решение о поиске этого ночника на Aliexpress и eBay. Продавец отправил посылку достаточно оперативно, снабдив ее при этом треком, движение по которому можно посмотреть здесь. Так мы стали обладателями молнии — именно так называет моя дочурка этот плазменный шар. Спустя несколько недель на почте мне выдали бумажный пакет приличных размеров внутри которого находился заказанный ранее ночник. Поставляется он в довольно симпатичной картонной упаковке с красочной типографией, но из-за того, что упакована она была в конверт, а не дополнительную коробку — заводская упаковка за время путешествия из Китая в Беларусь хоть и не сильно, но пострадала.
Чего-то особенно интересного на коробке не изображено и не написано если не считать сноску на международный стандарт ISO9001-2000, которая имеется на 4 сторонах коробки. На одной из стенок нарисована схема находящегося внутри ночника. Благодаря хорошей заводской упаковке и удаче сам ночник пришел ко мне целым и невредимым. Немалую роль в этом сыграла специальная картонная вставка, которая закрывает пластиковый шар и придает прочность всей упаковке. В коробке, помимо ночника, находилась черно-белая инструкция и USB кабель для подключения ночника к сети. В живую же наш ночник выглядит следующим образом: К качеству изготовления претензий у меня не возникло — пластик отлит аккуратно, особо страшных следов литья не видно. К тому же у него напрочь отсутствовал какой-либо неприятный запах.
На черном пластике не остаются отпечатки от пальцев, а прозрачная колба закреплена надежно — не шатается и не шевелится???? Высота ночника примерно 13 сантиметров. Диаметр шара около 8 сантиметров. Вообще, хоть я и читал описание продавца в котором указаны размеры ночника, я думал, что он будет совсем крошечным, но в реальности он оказался очень хороших размеров. Не большой и не маленький — для ребенка самое оно.
Лист бумаги при этом прожигается. Эксперимент следует проводить с осторожностью — возможно поражение электрическим током и ожог! Видеофрагмент такого эксперимента приведен в приложении 5. Демонстрационный эксперимент с использованием плазменного светильника возможен не только при объяснении электрических явлений. Объяснение работы плазменного шара с точки зрения квантовой физики может иметь следующий вид. Центральный электрод, служащий катодом, имеет отрицательный заряд, окружающая его сфера имеет положительный заряд и является анодом. Электроны испускаются катодом и движутся по направлению к аноду через разряженный инертный газ, заполняющий сферу. Сталкиваясь с атомами газа, электроны предают им часть своей энергии, причем энергия меняется дискретно ступенчато. Значения энергий при переходе от одного состояния к другому называются энергетическими уровнями. В результате столкновений с электронами атомы инертного газа переходят на более высокий энергетический уровень, причем скорость перехода составляет 10-8 с. После перехода атом газа возвращается в прежнее состояние, излучая при этом фотон — этот процесс называется флуоресценцией. Энергия фотона пропорциональна частоте световой волны, от которой зависит цвет излучения. В зависимости от используемого в светильнике инертного газа, имеющего свои энергетические уровни, частота испускаемых фотонов, и как следствие цвет излучения, будут различными. Внутри шара неизбежно имеются участки, имеющую температуру выше средней. Чем выше температура газа, тем выше ее проводимость, и электроны выбирают путь по точкам с большей проводимостью. Проходя через эти участки электроны еще больше нагревают газ, увеличивая проводимость, и еще большее количество электронов пройдет по этому пути.
По словам физиков, произведенные ими шары плазмы в терминологии авторов — «плазмоиды» наблюдались в течение полусекунды. Ранее физики из института Макса Планка сообщали , что подобные объекты могут существовать около трети секунды. Более длительное наблюдение потенциально позволяет лучше рассмотреть процессы, происходящие во время разряда. Удалось ли это авторам нового исследования, в сообщении не уточняется.
Это испугало сотрудников, которые почувствовали запах горелой проводки, и посчитали, что начался пожар. Все компьютеры зависли но не сломались , коммуникационное оборудование выбыло из строя на ночь, пока его не починили. Кроме того, был уничтожен один монитор. Исторические попытки воспроизвести шаровую молнию искусственно Было сделано несколько заявлений о получении шаровой молнии в лабораториях, но в основном к этим заявлениям сложилось скептическое отношение в академической среде. Остается открытым вопрос: «Действительно ли наблюдаемые в лабораторных условиях явления тождественны природному явлению шаровой молнии»? Первыми опытами и заявлениями можно считать работы Теслы в конце XIX века. В своей краткой заметке он сообщает, что при определенных условиях, зажигая газовый разряд, он, после выключения напряжения, наблюдал сферический светящийся разряд диаметром 2-6 см. Однако Тесла не сообщал подробности своего опыта, так что воспроизвести эту установку затруднительно. Очевидцы утверждали, что Тесла мог делать шаровые молнии на несколько минут, при этом он их брал в руки, клал в коробку, накрывал крышкой, опять доставал. Первые подробные исследования светящегося безэлектродного разряда были проведены только в 1942 году советским электротехником Бабатом: ему удалось на несколько секунд получить сферический газовый разряд внутри камеры с низким давлением. Капица смог получить сферический газовый разряд при атмосферном давлении в гелиевой среде. Добавки различных органических соединений меняли яркость и цвет свечения. В литературе описана схема установки, на которой авторы воспроизводимо получали некие плазмоиды со временем жизни до 1 секунды, похожие на «природную» шаровую молнию. Науер в 1953 и 1956 годах сообщал о получении светящихся объектов, наблюдаемые свойства которых полностью совпадают со свойствами световых пузырей. Современное воспроизведение шаровой молнии В середине февраля команда финских и американских специалистов заявила, что создала в лаборатории квантовый магнитный вихрь, который имел те же свойства, что и шаровая молния. Команда использовала два противоположно направленных потока электрического тока, в результате чего образовался синтетический электромагнитный узел шаровой формы, который и в самом деле подходит под описания шаровой молнии. Микко Меттенен из университета Аалто в Хельсинки полагает, что шаровые молнии носят не только электрическую, но и квантовую природу. Их эксперимент стал возможен благодаря изучению скирмионов — квантовых квазичастиц, математическая модель которых отражает реальное а не схематическое поведение протонов и нейтронов в атоме.
Еще от этого автора
- IZI Menu Default
- Плазменный шар питаем от батареек вместо 220V
- Плазменный шар, странность деградации - Форум
- Похожие файлы
В планетарии установили плазменный шар и макет черной дыры (фото)
Чтобы получить термическим путем полную ионизацию плазмы большинства газов, нужно нагреть их до температур в десятки и даже сотни тысяч градусов. Общепринятым способом получения плазмы в лабораторных условиях и технике является использование электрического газового разряда. Газовый разряд представляет собой газовый промежуток, к которому приложена разность потенциалов. В промежутке образуются заряженные частицы, которые движутся в электрическом поле, то есть создают ток. Для поддержания тока в плазме нужно, чтобы отрицательный электрод катод испускал в плазму электроны. Эмиссию электронов с катода можно обеспечивать различными способами, например нагреванием катода до достаточно высоких температур либо облучением катода каким-либо коротковолновым излучением, способным выбивать электроны из металла. Как можно увидеть плазму?
Плазма от греч. Она образуется путем расщепления атомов при нагреве газа до очень высоких температур или в присутствии сильного электрического поля. В состоянии плазмы находится подавляющая часть вещества Вселенной - звёзды, туманности, межзвёздная среда. В околоземном пространстве плазма существует в виде солнечного ветра, она заполняет магнитосферу Земли и ионосферу.
Молнии могут принимать следующие цвета: от ярко синего до розово-сиреневого. Где купить Сейчас этого подарка нет в наличии ни в одном из представленных на Подарки. Посмотрите похожие подарки ниже или воспользуйтесь поиском. Изображение предоставлено продавцом данного товара.
Это и есть плазма. Плазму называют четвертым состоянием вещества. Так, например, Солнце генерирует плазму - "солнечный ветер", который распространяется по Вселенной. Понятие "плазмы" ввел Крукс в 1879 году для описания ионизованной среды газового разряда. Поскольку плазма состоит из ионов и электронов, то под действием внешнего электрического поля, заряженные частицы приходят в движение, и возникает электрический ток в виде разрядов. Плазма электропроводна. Однако при выполнении определенных условий, плазма может существовать и при более низкой температуре. А с чего все началось? В 18 веке М. Ломоносов впервые получил свечение газов при пропускании электрического тока через заполненный водородом стеклянный шар. В 1856 году Генрихом Гейслером была создана первая газоразрядная лампа с возбуждением от соленоида и было получено синее свечение трубки. В 1893 году Томас Эдисон получил люминесцентное свечение. В 1894 году М. Моор создал газоразрядную лампу, испускающую розовое свечение, наполнив ее азотом и углекислым газом. В 1901году П. Хьюитт продемонстрировал ртутную лампу, испускающую сине-зелёного свет. В 1926 году Э. Гермер предложил покрывать внутренние стенки колбы флуоресцентным порошком, который преобразовывал ультрафиолетовый излучение, испускаемое возбуждённой плазмой, в белый видимый свет. Гермер был признан изобретателем лампы дневного света. Во второй половине 20 века исследователи Б. Паркер и Дж. Фолк получили оригинальное свечение плазменных шаров, наполняя их различными смесями инертных газов. Эти плазменные шары в то время получили названия "светящиеся скульптуры" и "земные звезды". Именно в те годы декоративные плазменные светильники и приобрели современный вид. Прозрачная стеклянная сфера установлена на подставке и заполнена смесью инертных газов под низким давлением. Шарик в середине сферы служит электродом. В цоколь лампы встроен трансформатор, который выдает на электрод переменное напряжение в несколько киловольт с частотой около 20-30 кГц. Вторым электродом является окружающая стеклянная сфера или даже сам человек, если он прикасается к шару. Когда Вы включаете лампу, возникает свечение в виде многочисленных электрических разрядов. Молнии направлены по силовым линиям электрического поля. Если дотронуться пальцем до стекла, меняется электрическое поле внутри лампы, и электрические разряды смещаются в сторону контакта пальца со стеклом. Особенно впечатляет работа плазменного шара в темноте.
Электрический Плазменный Шар Лампа Науч.Студия
Для работы нам понадобятся: Самая обыкновенная лампа накаливания, которая, собственно, плазменным шаром и станет. Лампа энергосберегающая Люминесцентная энергосберегающая лампа — из нее мы извлечем плату. Строчный трансформатор Последней частью схемы будет строчный трансформатор, который можно достать из любого старого кинескопного телевизора. Извлекаем трансформатор из ТВ Определить положение трансформатора очень просто — вы узнаете его по характерной присоске, которая подсоединяется сзади к кинескопу телевизора. Умножители брать нельзя, так как они очень опасны.
Разобранный корпус лампы Из энергосберегающей лампы извлекается управляющая плата. Будьте предельно осторожны при разборе, чтобы не повредить колбу, так как в ней содержится опасная ртуть. Чтобы отсоединить плату необходимо аккуратно отмотать проводки. От платы будет отходить два провода — по ним подается питание на 220В из общественной сети.
Соединяем их с любой вилкой, например, от того же телевизора. Выводы платы Далее нужно подключить трансформатор, но мы видим, что выводов 4, а нам нужно лишь 2, как быть? Переворачиваем плату и смотрим, куда идут дорожки от контактов. Те выводы, которые идут только на конденсатор, нам не нужны.
Конденсатор находится на 12 часов красная деталь , на фото выше. Припаиваем провода — так устройство будет безопаснее и надежнее. Выводы трансформатора С трансформатором все немного сложнее, ведь на нем много выводов, а нам по-прежнему нужно лишь два. Для определения нужных поможет мультиметр.
Работа с тестером Переводим прибор в режим измерения сопротивления, ставим один щуп на произвольный контакт, а вторым поочередно прозваниваем остальные, в поисках обмотки с наибольшим сопротивлением. Полностью прозвонив один контакт, переходим ко второму, и так далее. В нашем случае нужными оказались 2 и 7 контакты. Подпаиваем к ним провода, тщательно все изолируем лучше всего придумать какой-нибудь корпус и можно к присоске подключать лампу накаливания.
Вот что мы получили в итоге. Самодельный плазменный шар в действии Перед вами самый что ни наесть настоящий плазменный шар. Но как это все работает? Давайте попробуем разобраться: Плата из лампочки повышает частоту сети с 50-ти до нескольких десяток тысяч Герц.
Постоянный ток не сможет запитать плазменный шар. Роль трансформатора сводится к увеличению напряжения с 220В до тех же десятков тысяч. Высокое напряжение вызывает ионизацию инертного газа, который закачан в колбу лампы накаливания. Отсюда и появляется плазма.
Однако все видели, что к колбе можно прикоснуться и человека током при этом не ударит. Секрет в том, что протекающие токи очень малы, несмотря на такое высокое напряжение, и они не могут нанести вреда.
Она образуется путем расщепления атомов при нагреве газа до очень высоких температур или в присутствии сильного электрического поля. В состоянии плазмы находится подавляющая часть вещества Вселенной - звёзды, туманности, межзвёздная среда. В околоземном пространстве плазма существует в виде солнечного ветра, она заполняет магнитосферу Земли и ионосферу. Полярные сияния, молнии — это тоже различные виды плазмы, которые можно наблюдать на Земле.
Что находится внутри плазменного шара? Плазменный шар представляет собой миниатюрную катушку Тесла. Внутри шара находится катушка из проводов, по которым проходят электроны, колеблющиеся с очень высокой частотой. Это сотрясает атомы вокруг проводов так сильно, что их электроны начинают отваливаться! Внутри стеклянного шара частичный вакуум. Сколько вольт в плазменном шаре? Небольшим новым плазменным шарам для работы требуется всего несколько тысяч вольт при малой безопасной силе тока. Но более крупные глобусы с толстыми стенками, используемые в музейных экспозициях, часто могут потреблять до 30 000 В для создания качественных стримеров. Несмотря на это высокое напряжение, сферы безопасны на ощупь, потому что стекло действует как диэлектрик. Сколько стоит плазменный шар? Немного науки, немного искусства и много всего крутого!
Любой металлический предмет, касающийся мяча, быстро нагревается и может вызвать ожоги и возгорание8. Что происходит, когда вы касаетесь плазменного шара? Если коснуться плазменного шара, все электроны пройдут через вас на землю. Вы видите только одну большую искру внутри шара, куда вы кладете руку. Если вы дотронетесь до него достаточно долго, вы наполнитесь электронами и можете зажечь лампочку! Могут ли плазменные шары шокировать вас? Прикосновение к чему-то металлическому как край стола при прикосновении к плазменному шару может вас шокировать. Это не опасно, но может поразить. Если оставить руку на шаре на одном месте надолго, это приведет к выделению тепла. Что произойдет, если два плазменных шара соприкоснутся?
Электрический ток в плазме – физика явлений, как она есть
Работа плазменного шара приводит к образованию электрического поля вокруг него, поэтому люминесцентная лампа вблизи поверхности шара начинает светиться. Ещё одно приобретение времён «лихих 90-х»: так называемый «плазма-шар», декоративный сувенир на базе специальной газоразрядной лампы. Плазменный полк — одно из изобретений Теслы, сделанное в 1894 году. Плазменная лампа-шар, при правильном подходе к ее выбору, станет эффектным дополнением практически любого интерьера и стиля. RISALUX Плазменный шар "Умиротворение" синий 13х7х17 см RISALUX. Плазменный шар является высоковольтным электрическим устройством и должен использоваться с осторожностью.
Выберите свой регион
- Физики продлили жизнь «искусственной шаровой молнии»: Наука: Наука и техника:
- Плазменный шар вред и польза и вред
- Как работает шар тесла
- Плазменный шар: истории из жизни, советы, новости, юмор и картинки — Лучшее | Пикабу
- Описание продукции
- Принцип работы плазменной лампы
Энергетическая волна 1001: светящийся плазменный шар взрывается энергией (петля).
Помните плазменный шар и светящиеся нити, соединяющие центральный электрод и внешний пластиковый слой шара? Также категорически нельзя ничего бросать в плазменный шар: это вполне может привести ко взрыву. Данный шар называется плазменным, и, соответственно, протекает электрический ток в плазме. именно в этот день конструкцию плазмабола запатентовал гениальный серб Никола Тесла под неказистым названием "Электрический источник света". Внутри работающего плазменного шара можно наблюдать светящуюся плазму.
Шаровая молния: Плазменный сгусток разумной энергии до сих пор остается загадкой для ученых
Причём, это не простой нейрон, который поразительным образом напоминает плазменный шар Тесла. Причём, это не простой нейрон, который поразительным образом напоминает плазменный шар Тесла. Город - 23 ноября 2012 - Новости Новосибирска - Шар Тесла часто называют "плазменной лампой что не правильно. Пла́зменная ла́мпа — декоративный прибор, состоящий обычно из стеклянной сферы с установленным внутри электродом.
История создания
- РЕЖИМ РАБОТЫ
- Выберите свой регион
- Описание продукции
- Этот видеоролик можно купить в следующих форматах:
Плазменные шары
Плазменный шар является высоковольтным электрическим устройством и должен использоваться с осторожностью. Плазменный сгусток разумной энергии с древности являлся основной стихией, неподвластной человеку. 20см) - это небольшой декоративный электрический плазменный шар (палантир), работающий от сети 220V. К Земле с огромной скоростью несется поток солнечной плазмы, который вырвался из гигантской дыры в короне ближайшей к нам звезды. Сверхскоростные лазеры позволяют создать «говорящий» плазменный шар.