Новости принцип работы водородной бомбы

неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения. В термоядерных бомбах используется другой принцип — термоядерный синтез, при котором такие лёгкие элементы, как водород или литий, сливаются в более тяжёлые, за счёт чего выделяется энергия, необходимая для взрыва.

Как действует водородная бомба и каковы последствия взрыва? Инфографика

Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. На это Теллер ответил: «Главный принцип излучательного обжатия был разработан в связи с термоядерной программой и был изложен на конференции по H-бомбе весной 1946 года. Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. В термоядерных бомбах используется другой принцип — термоядерный синтез, при котором такие лёгкие элементы, как водород или литий, сливаются в более тяжёлые, за счёт чего выделяется энергия, необходимая для взрыва.

3. Водородная бомба: кто выдал её секрет

Габариты "изделия 602" были такими же, как и у "изделия 202". Длина - 8 м, диаметр - 2,1 м, масса - 26,5 т. Расчетная мощность заряда составляла 100 мегатонн в тротиловом эквиваленте. Но после оценки экспертами влияния такого взрыва на экологию было решено испытывать бомбу с уменьшенным зарядом. Для транспортировки авиабомбы был переоборудован тяжелый стратегический бомбардировщик Ту-95, получивший индекс "В". Из-за невозможности ее размещения в бомбовом отсеке машины было разработано специальное устройство на подвеске, обеспечивавшее подъем бомбы к фюзеляжу и закрепление его на трех синхронно управляемых замках. Безопасность экипажа самолета-носителя обеспечивала специально разработанная система из нескольких парашютов у бомбы: вытяжных, тормозных и основного площадью 1,6 тыс. За это время Ту-95В успевал отлететь от места взрыва на безопасное расстояние. Руководство СССР не скрывало намерение провести испытание мощного термоядерного устройства. О предстоящем испытании Никита Хрущев объявил 17 октября 1961 г. Скоро мы завершим эти испытания.

Очевидно, в конце октября. В заключение, вероятно, взорвем водородную бомбу мощностью в 50 миллионов тонн тротила. Мы говорили, что имеем бомбу в 100 миллионов тонн тротила. И это верно. Но взрывать такую бомбу мы не будем".

Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек. Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища.

Термоядерная реакция Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры порядка 15 млн градусов Кельвина. При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии. Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. Изотопы водорода Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды H2O , было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода 2H или дейтерий , ядра которых, помимо одного протона, содержат так же один нейтрон частицу, близкую по массе к протону, но лишённую заряда.

Площадь и сила пожаров тем выше, чем мощнее термоядерный взрыв и ближе к земле его эпицентр. Значительное количество пострадавших с термическими ожогами разной степени тяжести — от сравнительно лёгких ожогов 1 и 2 степени, до тяжелейших ожогов 4 степени гибель подкожно-жировой клетчатки, обугливание мышц и костей. К отдельной категории можно отнести ожоги сетчатки глаза, приводящие временной или постоянной потере зрения. Причины — световое излучение взрыва и пожары на местности. Разрушение зданий и сооружений включая подземные , вызванные ударной волной термоядерного взрыва. Большое количество пострадавших с травмами различного характера и степени тяжести переломы костей, множественные порезы, контузии и разрывы внутренних органов , полученными, как от непосредственного воздействия ударной волны, так и от вторичных факторов удары обломков зданий, битого стекла, металлической арматуры и т. Наличие пострадавших, которые подверглись воздействию проникающей радиации гамма-излучения и потока нейтронов. Люди, оказавшиеся на расстоянии 2-3 км от эпицентра взрыва, вне защитных сооружений, мгновенно получат значительные дозы облучения во многих случаях смертельные. Радиоактивное заражение местности продуктами деления ядерного заряда, элементами ядерного заряда не вступившими в реакцию и радиоактивными изотопами, образовавшимися в различных материалах и окружающем или выброшенном грунте в результате воздействия нейтронного излучения наведенная радиация. Выход из строя большинства электронных приборов и значительной части электрических приборов вследствие воздействия электромагнитного импульса, возникающего при взрыве. Косвенные — они зависят от мощности взорвавшейся бомбы и высоты её подрыва: Практически полный выход из строя систем центрального водоснабжения, что приведет значительным людским потерям из-за невозможности вести борьбу с пожарами, а также употребления воды заражённой радионуклидами и не прошедшей необходимой дезинфекции от возбудителей различных болезней. Потеря большей части продовольственного запаса под завалами, вследствие радиоактивного заражения, из-за нарушений правил хранения и воздействия факторов окружающей среды. Полный выход из строя почти всей сложной электроники без возможности восстановления и большей части электроприборов за исключением наиболее простых бытового назначения под воздействием электромагнитного импульса.

«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия

Андрей Сахаров — сын преподавателя физики и автора известного задачника, дед по материнской линии был генералом царской армии. Отец Эдварда Теллера — юрист, мать — пианистка. Оба ученых получили блестящее образование: альма-матер Сахарова — физфак МГУ, Теллера — Технологический университет Карлсруэ и Лейпцигский университет. И тот и другой заинтересовались теоретической физикой еще в студенчестве. Формирование обоих как выдающихся ученых происходило в контакте с другими светилами. Молодой доктор философии Эдвард Теллер начал научную карьеру в Германии с ее великолепной школой теоретической физики.

В начале 1930-х он преподавал в Геттингене, но приход к власти Гитлера поставил на перспективах ученого крест: Теллер был евреем. Кроме того, еще в детстве он получил прививку от тоталитаризма, став свидетелем красного террора Венгерской советской республики и развернувшегося потом не менее кровавого белого террора. При нацистах противопоставление «арийской физики» эйнштейновской «еврейской» стало не просто глупостью: представители последней попросту рисковали жизнью. В 1933-м Эдвард Теллер покинул Германию. Теллера в Университет Вашингтона приняли сразу профессором.

Гамов говорил, что Теллер ему нужен, чтобы было с кем поговорить о высоких сферах теоретической физики. Вместе они славно поработали над развитием идей Ферми и обогатили астрофизику объяснением звездных термоядерных процессов. По приглашению научного руководителя проекта Роберта Оппенгеймера Теллер приступил к работе в отделении теоретической физики Лос-Аламосской лаборатории. Что показательно, Гамову, ставшему гражданином США на год раньше Теллера, отказали в допуске к работам по созданию атомной бомбы с подачи американских спецслужб. В рамках «Манхэттенского проекта» Теллер начал проталкивать супероружие следующего поколения — водородную бомбу.

Это отвлекало его от создания собственно атомной бомбы и порядком злило Оппенгеймера, подгоняемого не столько шефом, генералом Гровсом, сколько стремлением сделать бомбу на основе урана-235 и плутония-239 раньше, чем представители «арийской физики». Увлекающемуся же Теллеру проект казался слишком тесным для его идей. Оценив настойчивость ученого, Оппенгеймер все же позволил ему с головой уйти в термояд. При всех своих мечтах Эдвард Теллер внес немалый вклад в создание первых в мире атомных бомб. Но когда американские физики — участники «Манхэттенского проекта», сочтя свою миссию выполненной, обратились к президенту Трумэну с призывом не использовать ядерное оружие против Японии, Теллер отказался под ним подписаться.

В письме к инициатору обращения Лео Силарду он объяснил свою позицию тем, что необходимо «довести результаты нашей работы до сведения людей. Это помогло бы убедить всех в том, что следующая война будет фатальной». Впрочем, потом Теллер вроде бы выразил сожаление по поводу Хиросимы и Нагасаки. Тем не менее он придерживался мнения, что дело ученых — разрабатывать оружие, а уж его применение — прерогатива государства.

Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии.

Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна.

Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время. Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада. Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров.

Он весил слишком много по разным источникам, 82 или 62 тонны , а поэтому не годился для транспортировки. СССР произвёл первый термоядерный взрыв 12 августа 1953-го.

Мощность была существенно ниже — всего 0,4 мегатонны. Однако советский боеприпас был компактным и в сравнении с американским лёгким. Бомбу мог перевозить Ту-16, она весила только 7 тонн.

Это означает, что одна водородная бомба способна создать разрушения на огромной площади. Воздействие и радиационная опасность: Взрыв водородной бомбы вызывает огромный огненный шар, ударную волну и радиационное излучение. Радиационное излучение включает гамма-излучение и нейтронное излучение, что делает водородные бомбы особенно опасными для здоровья людей и окружающей среды из-за возможного радиоактивного загрязнения. Испытания и настоящее время: Водородные бомбы были разработаны и испытаны различными ядерными державами в прошлом. В настоящее время большинство стран, включая США и Россию, не проводят ядерные испытания и сосредоточены на ядерном разоружении и нераспространении ядерного оружия.

Важно отметить, что водородная бомба представляет собой одно из самых разрушительных и опасных видов ядерного оружия, и ее использование имеет потенциально катастрофические последствия. Международные усилия направлены на контроль распространения ядерного оружия и достижение ядерного разоружения с целью обеспечения мира и безопасности.

Термоядерное оружие: Как устроена водородная бомба

После успешных испытаний первой советской термоядерной бомбы в 1961 году у академика Андрея Сахарова возникла идея, с помощью которой в перспективе можно было бы разрешить любой глобальный кризис. В первую часть вошло описание принципа действия водородной бомбы с дейтеридом лития-6 в качестве основного взрывчатого вещества и урановым детонатором. На это Теллер ответил: «Главный принцип излучательного обжатия был разработан в связи с термоядерной программой и был изложен на конференции по H-бомбе весной 1946 года. Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании.

Водородная бомба и ядерная бомба отличия

Двое разработчиков американского атомного оружия утверждают, что секрет водородной бомбы был похищен советской разведкой. Принцип термоядерной реакции: Водородная бомба использует термоядерную реакцию, при которой происходит слияние легких ядер (обычно изотопов водорода) при высоких температурах и давлениях. Работа создателей первой водородной бомбы, в том числе и сотрудников КБ-11, была высоко оценена советским правительством. Одним из типов ядерного оружия является термоядерное оружие, которое многим из нас более известно под названием водородная бомба. Кстати, он привлек к работе над водородной бомбой и Гамова, который в 1948 году получил от Пентагона допуск к военным секретам. Кураторство над всеми работами по водородной бомбе осуществлял (на тот момент профессор) Юрий Харитон.

Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы

В город пришел небывалый для нас мороз. Но в белом зале на Аллее Ленина все было проникнуто теплом страстных объединяющих идей... Была ли в них какая-то сенсация? Попробуем разобраться. О том, что в СССР проведено успешное испытание термоядерного заряда это произошло 12 августа 1953 года на Семипалатинском полигоне и что на вооружение советской стратегической авиации приняты водородные бомбы, западным разведкам уже было известно.

Да и советские лидеры этого не скрывали. Более того, еще 17 октября 1961 года, когда в Москве начал работу XXII съезд КПСС, а на Новой Земле готовились испытать самую мощную термоядерную бомбу, Никита Хрущев публично, прямо в докладе, предупредил об ожидаемом "подарке съезду". Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. А кроме того, испытывались оперативно-тактическая ракета Р-12, зенитные и самонаводящиеся крылатые ракеты.

Но об этих идущих на вооружение боевых системах в открытой печати не сообщалось. В августе-декабре 1962 года, включая самые тревожные дни Карибского кризиса, "грибной сезон" продолжился. Всего в СССР, включая Семипалатинский полигон, в период с 20 октября по 5 ноября 1962 года было проведено пятнадцать ядерных взрывов.

Слияние происходит, когда два легких атомных ядра, таких как изотопы водорода дейтерий и тритий, сливаются вместе, образуя более тяжелое ядро, высвобождая при этом огромное количество энергии. Энергия, выделяемая водородной бомбой, эквивалентна миллионам тонн тротила, что делает ее самым разрушительным оружием, когда-либо созданным людьми. Первая водородная бомба была испытана Соединенными Штатами 1 ноября 1952 года на Маршалловых островах с мощностью взрыва 10,4 мегатонны в тротиловом эквиваленте, что более чем в 500 раз превышает мощность атомной бомбы, разрушившей Хиросиму. Советский Союз последовал их примеру и в 1953 году испытал свою первую водородную бомбу, положив начало новой эре гонки ядерных вооружений между двумя сверхдержавами.

К счастью, водородные бомбы до сих пор не применялись в боевых действиях, и их разрушительный потенциал остается серьезной угрозой глобальной безопасности. Нейтронные бомбы, также известные как усиленное радиационное оружие, представляют собой тип ядерного оружия, предназначенного для высвобождения большого количества нейтронного излучения при минимальном взрывном и тепловом эффектах. Нейтроны — это нейтральные субатомные частицы, которые могут проникать сквозь твердые объекты и ионизовать атомы, вызывая повреждение биологических тканей и электронных цепей. Нейтронное излучение нейтронной бомбы может убить или вывести из строя людей и животных в радиусе нескольких сотен метров, оставив нетронутыми здания и инфраструктуру. Идея нейтронных бомб заключалась в том, чтобы разработать оружие, которое могло бы нейтрализовать солдат и танки противника, не вызывая массовых разрушений в городах или инфраструктуре. Соединенные Штаты испытали свою первую нейтронную бомбу в 1963 году, но это оружие так и не было развернуто в полевых условиях из-за политических и этических соображений.

Взрывная волна уничтожила все в радиусе 4 километров.

Работать над созданием водородной бомбы начали сразу после войны в конце 1945 года. Американская бомба, созданная в 1952 году, была названа «Майк», мощность ее взрыва составляла 10,4 мегатонны. Это была огромная конструкция размером с двухэтажный дом. Перед советскими учеными поставили задачу создать похожее устройство, но минимального размера. В 1949 году физик Андрей Сахаров предложил основной принцип советской водородной бомбы — слойку.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития.

Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом. Вспышка взрыва бомбы АН602 сразу после отделения ударной волны. В это мгновение диаметр шара составлял около 5,5 км, а через несколько секунд он увеличился до 10 км. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий.

Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву. Световое излучение вспышки взрыва могло вызвать ожоги третьей степени на расстоянии до ста километров.

Похожие новости:

Оцените статью
Добавить комментарий