Новости из чего состоит водородная бомба

Отметим, что реализация ключевого для водородной бомбы принципа сжатия термоядерной взрывчатки в «Слойке» был иным, чем в бомбе Теллера-Улама. СССР начал разрабатывать термоядерную бомбу позднее — первая схема была предложена советскими разработчиками лишь в 1949 году. Водородная или термоядерная бомба является на сегодняшний день самым мощным оружием массового поражения. Водородная бомба. Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим.

Как работает водородная бомба

Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе идет термоядерная реакция, подобная той, которая происходит на Солнце.

«Отец» водородной бомбы

Водородную бомбу было решено взорвать на поверхности земли, несмотря на то, что конфигурация позволяла сбросить ее с самолета. Термоядерная (водородная) бомба — также достаточно проста по конструкции. B-53 — американская термоядерная бомба, наиболее старое и мощное ядерное оружие находившееся в арсенале стратегических ядерных сил США вплоть до 1997 года.

Водородная и атомная бомбы: сравнительные характеристики

неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения. Водородная бомба мощностью 100 мегатонн превосходит в 10 тысяч раз мощность бомбы, сброшенной на Хиросиму. Термоядерная (водородная) бомба — также достаточно проста по конструкции.

Поражающие факторы взрыва водородной бомбы. Водородная бомба

Идея создания термоядерной («водородной») бомбы принадлежит американским ученым, участникам «Манхэттенского проекта», создавшим и испытавшим в 1945 г. в Аламогордо первую в мире атомную бомбу. Термоядерное оружие (водородные бомбы) предусматривает использование энергии неуправляемой реакции ядерного синтеза, то есть преобразования легких элементов в более тяжелые (например, двух атомов "тяжелого водорода", дейтерия, в один атом гелия). неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития.

Как один солдат водородную бомбу изобрел

Боязнь термоядерного ответа — более чем достаточный сдерживающий фактор. Александр Березин Браво Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения например, появился урановый экран между инициирующей бомбой и основным зарядом и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды.

Что такое реакция слияния ядер? Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Схематически эта реакция показана на рисунке ниже. Много это или мало?

Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба. Термоядерное оружие Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные водородные бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет.

Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках. Атомная бомба В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород — дейтерий, ядра которого имеют необычную структуру — один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия.

Результатом этого процесса и становится выделения энергии. Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии для поддержания из жидкостного агрегатного состояния. Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес более 60 т.

Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение. В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах. Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности — сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров.

Именно сегодня решается судьба планеты — и будущее гонки ядерных вооружений, которая длится уже четвертое десятилетие. Но боевому расчету ракетного комплекса «Пионер» на полигоне Капустин Яр в Астраханской области не до мыслей о геополитике.

С пункта управления только что пришла команда начать подготовку пуска баллистической ракеты 15Ж45. Снаряд, способный нести ядерный заряд, легко преодолевает тысячи километров. Его попадание в цель — гарантия атомного апокалипсиса. Активацию «Пионера» спровоцировали донесения разведки: в сторону СССР движется ракета — вероятно, начиненная ядерным зарядом. Мучительные, бесконечно тянущиеся секунды проверки данных и, наконец, поступающее на Капустин Яр подтверждение.

По противнику необходимо нанести ответно-встречный удар — и тем самым вступить в самую страшную войну в истории человечества. Офицеры расчета, тревожно переглянувшись, оставляют сомнения. Пуск 15Ж45 произведен. В те же минуты команду на пуск баллистической ракеты Р-29М получает экипаж атомной подводной лодки К-92. Ее дежурство в акватории Баренцева моря таким образом становится боевым не на словах, а на деле.

В замкнутом пространстве субмарины тоже ощущается предчувствие апокалипсиса. Параллельно кипит работа и на главном советском космодроме. В центре управления полетами Байконура мгновенно отреагировали на звонок из штаба. Времени на раздумья у расчета стратегических ракет уже не было. Крыши двух шахтных пусковых установок медленно раздвигаются, и пара 40-тонных УР-100 взмывает в воздух.

Пролетев несколько тысяч километров, все выпущенные ракеты достигают своих целей. Но апокалипсиса не случилось: в Москве и Нью-Йорке , Токио и Лондоне миллионы людей спали спокойно, а утром начали свой день так, как будто ничего не произошло. Потрясены событиями 18 июня 1982 года были только в генеральных штабах стран НАТО. Шок от успеха испытаний советского атомного оружия был колоссальным. В мировую историю этот день вошел под названием «семичасовая ядерная война» В общей сложности в тот судьбоносный день советскими войсками было выпущено девять баллистических ракет, противоракет и ракет-носителей, которые перед этим вывели в космос спутники-разведчики.

Формально цель мероприятия была простой: отработать действия разных элементов советской ядерной триады на случай удара врага. Уже спустя несколько месяцев после учений США начали работать над новой системой противоракетной обороны. План американских военных получил название «Стратегическая оборонная инициатива» СОИ. Куда больше, впрочем, она известна под своим народным названием «Звездные войны». Как раз в то время в кинотеатрах всего мира шла заключительная часть классической трилогии Джорджа Лукаса «Звездные войны.

Эпизод 6: Возвращение Джедая». Конечно, строить «Звезды смерти» в Америке не собирались, но в центре стратегии тем не менее лежала идея разместить в космосе системы противоракетной обороны. Угроза применения баллистических ракет с ядерными боеголовками должна быть полностью ликвидирована. Новая система противоракетной обороны будет надежно защищать американских граждан от советского ядерного удара», — заявил президент США Рональд Рейган в марте 1983 года. В том же 1983 году Америка решила ответить на «семичасовую ядерную войну» демонстрацией своей военной силы.

Испытания, проходившие под названием «Гордый пророк», развернулись сразу на нескольких континентах. Эксперты Пентагона и аналитических центров прорабатывали сразу несколько сценариев развития событий. Один предполагал ядерный удар по Москве. По другому плану большая группировка американских наземных войск вторгалась в Восточную Европу. Впрочем, все варианты при ближайшем рассмотрении оказались провальными.

Бомбардировка Москвы была обречена на отражение мощнейшим кольцом ПВО, окружавшим столицу. Американские военные прорабатывали самые разные варианты, но итог при каждом из них оказывался одним и тем же: Москва оставалась в безопасности и наносила ответный ядерный удар Был отметен и сценарий с наземным вторжением: даже самая большая группировка из тех, что могли собрать в НАТО, по численности уступала Советской армии. Наступление против превосходящих по силам войск было признано бесперспективным. Вся американская стратегия, построенная на концепции превентивного удара по противнику, оказалась несостоятельной. По всем заключениям экспертов, варианта, при котором НАТО удалось бы избежать ответного пуска советских ракет, не существовало.

Это была бы катастрофа. Полмиллиарда человек оказались бы убиты из-за первоначальных обменов ударами. Еще больше людей умерли бы впоследствии от радиации и голода. НАТО больше не было бы. Почти все Северное полушарие стало бы непригодными для проживания на десятилетия Пол Брэкенпрофессор Йельского университета Смертельная гонка События 1982 и 1983 годов стали кульминацией процесса, который начался еще до окончания Второй мировой войны.

Так в потсдамском дворце Цецилиенхоф в 07:30 вечера 24 июля 1945 года началась настоящая гонка ядерных вооружений XX века. На тот момент проект «Манхэттен» уже был на финальной стадии. Все шло к бомбардировке Японии. Он не стал просить о частной встрече и просто, как бы между делом, сообщил, что США обладают новым оружием необычайной разрушительной силы. Сказав это, Трумэн внутренне напрягся.

Он не знал, как отреагирует Сталин. Но тот ответил лишь, что рад слышать такую новость, и выразил надежду, что Соединенные Штаты "удачно используют это против японцев".

Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время. Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада.

Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров. Эти частицы можно разглядеть невооруженным глазом, например, такую пыль можно заметить на снегу. Она приводит к летальному исходу, если кто-либо окажется поблизости. Самые мелкие частицы могут много лет находиться в атмосфере и так «путешествовать», несколько раз облетая всю планету. Их радиоактивное излучение станет более слабым к тому моменту, когда они выпадут в виде осадков. При возникновении ядерной войны с применением водородной бомбы зараженные частицы приведут к уничтожению жизни в радиусе сотни километров от эпицентра. Если будет использоваться супербомба, тогда загрязнится территория в несколько тысяч километров, что сделает землю совершенно необитаемой. Получается, что созданная человеком самая мощная бомба в мире способна к уничтожению целых континентов.

Термоядерная бомба "Кузькина мать". Она была разработана в Советском Союзе в 1954-1961 годах. Имела самое мощное взрывное устройство за все время существования человечества. Работа по ее созданию проводилась в течение нескольких лет в особо засекреченной лаборатории под названием «Арзамас-16». Водородная бомба мощностью 100 мегатонн превосходит в 10 тысяч раз мощность бомбы, сброшенной на Хиросиму. Ее взрыв способен в считаные секунды стереть Москву с лица земли. Центр города запросто бы испарился в прямом смысле слова, а все остальное могло бы превратиться в мельчайший щебень. Самая мощная бомба в мире стерла бы и Нью-Йорк со всеми небоскребами.

Таким образом дейтерид лития-6 является горючим бомбы и, по сути, оказывается более "чистым", чем уран-235 или плутоний, используемые в атомных бомбах и вызывающие мощнейшую радиацию. Однако для того, чтобы сама водородная реакция запустилась, что-то должно очень сильно и резко повысить температуры внутри снаряда, для чего используется обычный ядерный заряд. А вот контейнер для термоядерного топлива делают из радиоактивного урана-238, чередуя его со слоями дейтерия, отчего первые советские бомбы такого типа назывались "слойками". Именно из-за них все живое, оказавшееся даже на расстоянии сотен километров от взрыва и уцелевшее при взрыве, может получить дозу облучения, которая приведет к тяжелым заболеваниям и летальному исходу. Почему при взрыве образуется "гриб"? На самом деле облако грибовидной формы — обыкновенное физическое явление. Такие облака образуются при обычных взрывах достаточной мощности, при извержениях вулканов, сильных пожарах и падениях метеоритов. Горячий воздух всегда поднимается выше холодного, однако тут его нагрев происходит настолько быстро и так мощно, что он видимым столбом поднимается вверх, закручивается в кольцеобразный вихрь и тянет за собой "ножку" — столб пыли и дыма с поверхности земли. Поднимаясь, воздух постепенно охлаждается, становясь похожим на обычное облако из-за конденсации паров воды. Однако это еще не все.

Гораздо опаснее для человека ударная взрывная волна, расходящаяся по поверхности земли от эпицентра взрыва по окружности радиусом, достигающим 700 км, и радиоактивные осадки, выпадающие из того самого грибовидного облака.

Последствия взрыва водородной бомбы

Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели.

А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа. По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду.

Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра.

При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь.

Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца.

Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете. Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз.

И выглядит ядерная зима более чем реально. Ведь в истории человечества, а конкретнее, в 1816 году, был известен подобный случай после мощнейшего извержения вулкана. На планете тогда был год без лета. Скептики, которые не верят в подобное стечение обстоятельств, могут переубедить себя расчетами ученых: Когда на Земле произойдет похолодание на градус, этого не заметит никто. А вот на количестве осадков это отразится.

Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода.

На фронте столкновения ударных волн преодолевается потенциальный барьер, и ядра начинают сливаться. В качестве горючего используется дейтрид лития-6. Сам по себе литий, в действительности, не «горит». Но захватывая нейтрон появившийся в результате распада плутония , он распадается на тритий и гелий. И уже тритий вступает в реакцию с дейтерием, порождая ещё одно ядро гелия и релятивистский нейтрон на бонус.

И здесь в игру вступает уран из внешней и внутренней оболочек. Релятивистские нейтроны не захватываются ядрами, а разбивают их. Разваливающиеся ядра урана порождают тучи новых нейтронов уже подходящей для разложения лития энергии. Если ядерное взрывное устройство поддерживает цепную реакцию лишь до момента своего разрушения, то термоядерный заряд запускается уже в плазменном агрегатном состоянии. В момент «горения» бомба напоминает звезду, являясь каплей более плотного, чем ртуть, полностью ионизированного вещества. Это настоящее чудо. Но нужен изотоп литий-6. Основной изотоп — литий-7 бесполезен и даже вредит… И это обстоятельство позволяет говорить о водородной бомбе, как о сугубо российской технологии.

Можно использовать и литий-7 — он не только дает тритий, но и еще один лишний нейтрон. Об этой реакции не знали, когда американцы тестировали бомбу «Shrimp» «Креветка». Существует и схема радиационной имплозии — когда первичный ядерный взрыв рентгеновским излучением обжимает и нагревает отдельную сферу с термоядерным топливом. Линейные ускорители: идея проста — берем мишень из любого удобного дейтерида металла, и в маленьком линейном ускорителе разгоняем до нужной скорости атомы трития. Получаем настоящую термоядерную реакцию, и выходом энергии и 14. Такой источник можно использовать для поиска нефти и воды например на марсианском ровере MSL стоит российский импульсный источник нейтронов DAN , и в качестве внешнего импульсного нейтронного инициатора в ядерных зарядах. Почему-же так нельзя вырабатывать электричество? На разгон атомов тратится намного больше энергии, чем мы получаем в результате реакции далеко не все разгоняемые атомы реагируют. Токамак тороидальная камера с магнитными катушками — идея уже немного сложнее, в плазменном торе как в трансформаторе наводим ток. Вокруг тора — сверхпроводящие магниты, которые «обжимают» плазму и не дают ей коснуться стенок. Плазма нагревается микроволновым излучением, и резистивным нагревом от протекающего тока. Когда начинали работать по этому направлению — казалось: вот-вот и все будет работать. Во всем мире построено порядка 300 токамаков, и самый современный и крупный из них — строящийся международный проект ITER в том числе и при участии России. Водородную плазму то есть без термоядерной реакции собираются зажечь в 2020-м, а начать запуски с дейтерий-тритиевой плазмой — в 2027, если конечно все пойдет по плану и не случится какой-нибудь очередной кризис. Проблемы у токамаков следующие при их будущем промышленном использовании : Нестабильность плазмы. Разряд норовит где-то становится тоньше, где-то — толще, вплоть до разрыва кольца с прекращением тока или касанием стенок. С проблемой боролись увеличением размеров камеры, добавлением полоидального магнитного поля вокруг вертикальной оси камеры. Тритий — дорог, и его нужно много для производства энергии. Необходимо использовать размножение нейтронов — используя например литий-7 или свинец, которыми нужно обложить внутреннюю стенку реактора бланкет , и доставать оттуда как-то тритий. Это значит, что если конструкцию реактора сделать из тех же материалов, то срок службы у нее будет 5 лет, а не 50 как у обычных реакторов. Поскольку плазма с огромной температурой теряет много энергии на излучение, а камера должна быть большой для обеспечения стабильности — минимальная мощность реактора получается большой, сотни мегаватт. Стелларатор — «мятый» бублик, где магнитное поле формируется внешними магнитами очень хитрой формы и обеспечивает стабильность плазмы. По сравнению с токамаком — намного более сложная конструкция. По «качеству» удержания плазмы сейчас уже уступает токамакам. NIF — National Ignition Facility — идея в том, чтобы сфокусировать свет от 192 импульсных лазеров на мишени, окружающей капсулу с дейтерий-тритиевой смесью. Свет нагревает мишень — она нагревается до миллионов градусов, и равномерно светом «обжимает» капсулу с термоядерным топливом. На хабре кстати 3 года назад писали, что там уже почти все готово.

Водородная бомба - состав и принцип действий

Пришлось построить ряд реакторов. Термоядерное устройство его назвали Mike начали разрабатывать лишь полгода спустя. Американцы справились быстро. Её мощность составляла 10,4 мегатонны, что приблизительно в тысячу раз больше, чем Little Boy — атомной бомбы, сброшенной на Хиросиму. Остров Элугелаб был полностью разрушен.

Грибовидное облако поднялось на 41 километр.

Есть разные виды ядерного оружия, но основной принцип заключается в расщеплении ядер атомов для создания мощного взрыва, пишет Livescience. При расщеплении тяжелых атомов, таких, как уран или плутоний, высвобождаются нейтроны, которые могут разбивать другие атомы и вызывать цепную реакцию. Эта цепная реакция приводит к освобождению большого количества энергии и мощному взрыву. Атомные бомбы, которые уничтожили Хиросиму и Нагасаки в Японии, имели мощность от 15 до 20 тысяч тонн тротилового эквивалента. Современное оружие способно причинить еще больше разрушений. Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Термоядерные бомбы были испытаны, но никогда не использовались в боевых действиях.

Подводный ядерный взрыв бомбы «Бэйкер» в 1946 году. Эти смерти будут вызваны пожарами и интенсивным облучением радиацией. Кто-то получит травмы от ударной волны, кто-то пострадает из-за разрушенных зданий или летящих осколков. Большинство строений в радиусе 800 метров от эпицентра взрыва будут разрушены или сильно повреждены.

Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон.

До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. Взрыв произошел в 1961 году. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте.

Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа. По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду. Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ.

Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями.

На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь. Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца.

Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете. Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз.

Задача триггера — создать необходимые условия для разжигания термоядерной реакции — высокую температуру и давление. Слайд 11 Контейнер с термоядерным горючим Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Контейнер покрывается слоем нейтронного поглотителя соединений бора для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Слайд 12 A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы. B Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления. C В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола. D Вторая ступень сжимается вследствие абляции испарения под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. E В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера.

Содержание

  • 2. Чем отличаются атомная, ядерная и термоядерная бомбы?
  • Состоялось испытание первой Советской водородной бомбы
  • Публикации
  • История создания оружия
  • Атомная бомба
  • Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы ::

Как работает водородная бомба

Ядерный клуб Читайте также: Магнитные мины — затаившиеся убийцы судов Ядерное оружие Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана.

Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана. Если в урановой бомбе идет реакция деления, то в водородной реакция слияния — в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода — дейтерию и тритию.

Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия. И это очередной повод вспомнить о масштабах ее разрушительных последствий и о том, какую угрозу представляет собой оружие массового поражения. Карибский кризис 1962 года показал, насколько хрупким и беззащитным может быть мир на фоне ядерной угрозы, поэтому в бессмысленной гонке на уничтожение друг друга СССР и США смогли прийти к компромиссу и подписать первый договор, регламентировавший разработку ядерного оружия, — Договор о запрещении испытаний ядерного оружия в атмосфере, космосе и под водой, к которому впоследствии подключились многие страны мира. Теоретическая возможность получения энергии путем термоядерного синтеза была известна еще до Второй мировой войны. Также известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путем сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества, но они не увенчались успехом, так как не удалось получить необходимых температур и давления.

Принцип их работы немного отличается: если к взрыву атомной бомбы приводит распад ядра, то водородная бомба взрывается благодаря синтезу элементов с выделением колоссального количества энергии. Именно эта реакция протекает в недрах звезд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжелые ядра гелия. Полученного количества энергии достаточно для того, чтобы запустить цепную реакцию, вовлекая в нее весь возможный водород. Именно поэтому звезды не гаснут, а взрыв водородной бомбы обладает такой разрушительной силой. Ученые скопировали эту реакцию с использованием жидких изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». В последствии стал использоваться дейтерид лития-6, твердое вещество, соединение дейтерия и изотопа лития, которое по своим химическим свойствам является аналогом водорода.

Таким образом дейтерид лития-6 является горючим бомбы и, по сути, оказывается более «чистым», чем уран-235 или плутоний, используемые в атомных бомбах и вызывающие мощнейшую радиацию. Однако для того, чтобы сама водородная реакция запустилась, что-то должно очень сильно и резко повысить температуры внутри снаряда, для чего используется обычный ядерный заряд. А вот контейнер для термоядерного топлива делают из радиоактивного урана-238, чередуя его со слоями дейтерия, отчего первые советские бомбы такого типа назывались «слойками». Именно из-за них все живое, оказавшееся даже на расстоянии сотен километров от взрыва и уцелевшее при взрыве, может получить дозу облучения, которая приведет к тяжелым заболеваниям и летальному исходу. Почему при взрыве образуется «гриб»? На самом деле облако грибовидной формы — обыкновенное физическое явление.

Такие облака образуются при обычных взрывах достаточной мощности, при извержениях вулканов, сильных пожарах и падениях метеоритов. Горячий воздух всегда поднимается выше холодного, однако тут его нагрев происходит настолько быстро и так мощно, что он видимым столбом поднимается вверх, закручивается в кольцеобразный вихрь и тянет за собой «ножку» — столб пыли и дыма с поверхности земли. Поднимаясь, воздух постепенно охлаждается, становясь похожим на обычное облако из-за конденсации паров воды. Однако это еще не все. Гораздо опаснее для человека ударная взрывная волна, расходящаяся по поверхности земли от эпицентра взрыва по окружности радиусом, достигающим 700 км, и радиоактивные осадки, выпадающие из того самого грибовидного облака. В день на полигонах могли производиться по три-четыре эксперимента, в ходе которых изучалась динамика взрыва, поражающие способности, потенциальный ущерб противника.

Первый опытный образец был взорван 27 августа 1949 года, а последнее испытание ядерного оружия в СССР произвели 25 декабря 1962-го. Все испытания проходили в основном на двух полигонах — на Семипалатинском полигоне или «Сияпе», расположенном на территории Казахстана, и на Новой земле, архипелаге в Северном Ледовитом океане. Там осуществили взрыв заряда мощностью 10,4 мегатонны, что в 450 раз превышало мощность бомбы «Толстяк», сброшенной на Нагасаки. Впрочем, называть это устройство бомбой в прямом смысле слова нельзя. Это была конструкция с трехэтажный дом, заполненная жидким дейтерием. А вот первое термоядерное оружие в СССР было испытано в августе 1953 года на Семипалатинском полигоне.

Это была уже настоящая бомба, сброшенная с самолета. Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Юлием Харитоном. Курчатова 30 октября 1961 года на полигоне «Сухой Нос» на архипелаге Новая земля. Измеренная мощность взрыва составила 58,6 мегатонны, что многократно превышало все опытные взрывы, произведенные на территории СССР или США. Изначально планировалось, что бомба будет еще больше и мощнее, однако не существовало ни одного самолета, который мог бы поднять больший вес в воздух. Огненный шар взрыва достиг радиуса примерно 4,6 километра.

Например, самая обычная взрывчатка может отсыреть, электроника — прийти в негодность. Поэтому срок годности каждой конкретной бомбы зависит от её конструкции. Может ли атомная бомба взорваться сама? Крайне маловероятно. Будет просто маленький «пшик». Несколько бомбардировщиков с атомными бомбами на борту постоянно находились в воздухе и готовы были в любой момент нанести удар по СССР. Во время этой операции произошло несколько аварий. Один раз у них из люка выпала атомная бомба, и её осколки упали на испанский посёлок Паломарес. Был пожар, но, к счастью, взрыва не произошло, и никто из жителей не пострадал. Также бомба падала в море, и её вытаскивали с привлечением водолазов.

Каждый из этих случаев, несмотря на другие негативные последствия, не привёл к активации ядерной бомбы. Можно ли купить ядерное оружие? Приобрести или произвести ядерное оружие, скорее, нельзя — это сложно, дорого и незаконно. В 1968 году большинство существующих на тот момент стран подписали Договор о нераспространении ядерного оружия. Он ограничивает производство и продажу такого вооружения. Однако сейчас некоторые страны подозреваются в его нарушении. Например, поступали сообщения о том, что Иран хочет войти в клуб ядерных держав. Якобы на его территории идёт разработка атомной бомбы. Что точно можно сказать — частным предприятиям разработка ядерного оружия вряд ли под силу. Чаще всего это национальные проекты, доступные только странам с крупными экономиками.

Ведь для того, чтобы создать атомную бомбу с нуля, нужно сначала обогатить руду, чтобы из обычного урана получился нужный его изотоп. Кроме того, нужны очень точные приборы, которые измеряли бы наличие взрывчатого вещества в составе оружия. К тому же за оборотом радиоактивных элементов следит особая «радиоактивная полиция». Ведь радиация всегда оставляет следы. Чем взрыв на АЭС отличается от взрыва атомной бомбы? При взрыве ядерной бомбы происходит цепная реакция и выделяется энергия, запасённая в ядре атома. А при аварии на АЭС внутри ядерного реактора с радиоактивным веществом возникает большое давление, которое приводит к разрыву. Представьте, что вы варите сгущёнку: если перекипятить банку, она взорвётся. Да, и в том и в другом случае происходит радиоактивное загрязнение местности, но оно может различаться по масштабам.

Он был отстранен от проекта и подвергся гонениям со стороны американского руководства и спецслужб США. Новый проект возглавил физик-ядерщик Эдвард Теллер по национальности - венгр. Наша внешняя разведка не дремала, и о новом направлении «Манхэттенского проекта» стало известно в Спецкомитете, который возглавлял Л. Были предприняты ответные меры. К этому периоду относятся и предложения А. Сахарова, физика-ядерщика, в то время работавшего сменным инженером на оборонном заводе. Через своего отца - великолепного школьного преподавателя физики в Москве, автора учебника по физике, Сахаров сумел передать И. Тамму свою тетрадь с обоснованием возможности создания термоядерной бомбы и управляемой термоядерной реакции с целью получения колоссальной энергии для хозяйственных нужд. Сахаров сразу же был направлен в лабораторию И. Тамма в качестве аспиранта и начал интенсивно работать над проектом в содружестве с В. Гинзбургом и Ю. Группу И. Саров к сожалению, по причине «политической неблагонадежности» жены В. Гинзбург был отстранен от участия в проекте, хотя именно ему принадлежала идея использования в качестве термоядерного топлива дейтерида лития LiD6, в обиходе физиков-ядерщиков называвшегося «Лидочка». Зельдовичем; - РДС-6С «слойка» - во главе с к. После проведения расчетно-теоретических и экспериментальных исследований, разработка РДС-6Т была приостановлена как неперспективная. К работе были привлечены такие гиганты науки, как академики Келдыш М. В 1952 г. В этом экспериментальном устройстве термоядерное топливо дейтерий и тритий находилось в жидком виде в огромных сосудах Дьюара. Для инициирования реакции синтеза использовался атомный заряд. Мы пошли своим путем… Первая советская водородная 12 августа 1953 г. В РДС-6С была успешно реализована физическая идея, получившая название «слойка» одноступенчатая схема термоядерного заряда. Созданный научно-технический и производственный задел обеспечил прогресс в области конструирования термоядерного оружия. Основные результаты создания РДС-6С: - впервые в СССР было реализовано зажигание и горение термоядерного горючего, практически показана возможность создания одностадийного термоядерного заряда; - схема РДС-6С оказала прямое влияние на выбор схемы термоядерного узла в будущих термоядерных зарядах на принципах радиационной имплозии. За разработку первого одноступенчатого водородного заряда большая группа сотрудников КБ-11 и смежных организаций была удостоена звания Героя Социалистического Труда в том числе, первая Звезда Героя у будущего академика А. По сути, эти параметры послужили отправной точкой, определившей полезную нагрузку и стартовую массу ракеты Р-7 созданной ОКБ-1, главный конструктор С. Королев — первой советской межконтинентальной баллистической ракеты. Но с учетом расчетной точности стрельбы ракеты Р-7, мощность заряда РДС-6С была недостаточной для требуемой боевой эффективности.

Ввиду отсутствия дождей, возможны неурожаи. Ураганы будут начинаться даже там, где их никогда не было. Когда температура упадет еще на несколько градусов, на планете будет первый год без лета. Далее последует малый ледниковый период. Температура падает на 40 градусов. Даже за незначительное время это станет разрушительным для планеты. На Земле будут наблюдаться неурожаи и вымирание людей, проживающих в северных зонах. После наступит ледниковый период. Отражение солнечных лучей произойдет, не достигая поверхности земли. За счет этого, температура воздуха достигнет критической отметки. На планете перестанут расти культуры, деревья, замерзнет вода. Это приведет к вымиранию большей части населения. Те, кто выживут, не переживут последнего периода — необратимого похолодания. Этот вариант совсем печальный. Он станет настоящим концом человечества. Земля превратится в новую планету, непригодную для обитания человеческого существа. Теперь о еще одной опасности. Стоило России и США выйти из стадии холодной войны, как появилась новая угроза. Если вы слышали о том, кто такой Ким Чен Ир, значит понимаете, что на достигнутом он не остановится. Этот любитель ракет, тиран и правитель Северной Кореи в одном флаконе, может с легкостью спровоцировать ядерный конфликт. О водородной бомбе он говорит постоянно и отмечает, что в его части страны уже есть боеголовки. К счастью, в живую их пока никто не видел. Россия, Америка, а также ближайшие соседи - Южная Корея и Япония, очень обеспокоены даже такими гипотетическими заявлениями. Поэтому надеемся, что наработки и технологии у Северной Кореи еще долго будут на недостаточном уровне, чтобы разрушить весь мир. Для справки. На дне мирового океана лежат десятки бомб, которые были утеряны при транспортировке. А в Чернобыле, который не так далеко от нас, до сих пор хранятся огромные запасы урана. Стоит задуматься, можно ли допустить подобные последствия ради испытаний водородной бомбы. И, если между странами, обладающими этим оружием, произойдет глобальный конфликт, на планете не останется ни самих государств, ни людей, ни вообще ничего, Земля превратится в чистый лист. И если рассматривать, чем отличается ядерная бомба от термоядерной, главным пунктом можно назвать количество разрушений, а также последующий эффект. Теперь небольшой вывод. Мы разобрались, что ядерная и атомная бомба — это одно и тоже. А еще, она является основой для термоядерной боеголовки. Но использовать ни то, ни другое не рекомендуется даже для испытаний. Звук от взрыва и то, как выглядят последствия, не является самым страшным. Это грозит ядерной зимой, смертью сотен тысяч жителей в один момент и многочисленными последствиями для человечества.

Похожие новости:

Оцените статью
Добавить комментарий