Вы научитесь не только эффективно взаимодействовать с нейросетями, но и интегрировать их в свою повседневную рутину и бизнес-процессы. В профессиях, связанных с правом и безопасностью, нейросети могут быть использованы для анализа больших объемов данных, чтобы выявлять законопреступления и определять наиболее эффективные стратегии противодействия. Новые профессии с нейросетями в 2023 и 2024Не можешь остановить – возглавь.
Незаменимых нет: вытеснят ли нейросети творческие профессии?
Специалист по нейросетям — что это за профессия | Нейросеть ChatGPT рассказала, какие профессии заменит искусственный интеллект. |
Какие профессии заменит искусственный интеллект | С нейросетями была знакома немного до обучения. |
«Подстегнуть людей к развитию»: доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ | В этой статье я расскажу мои предположения о перспективных профессиях будущего, связанных с новыми достижениями в области искусственного интеллекта. |
Незаменимых нет: вытеснят ли нейросети творческие профессии? | Анастасией Абышевой. |
Назван список профессий, по которым сильнее всего ударит ИИ. Программисты в безопасности - CNews | Разбираем, на что способны нейросети уже сегодня и какие профессии сможет заменить искусственный интеллект в ближайшем будущем. |
ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска
Многие задачи, связанные с обработкой и анализом больших объемов данных, могут быть автоматизированы. Специальность оператора нейросетей представляет собой перспективное направление развития, особенно в контексте быстро меняющегося мира IT. Развитие нейросетей в России создаст, в числе прочих, профессию специалиста по этике в сфере искусственного интеллекта (ИИ), также в вузах появятся профильные.
Строка навигации
- Специалист по нейросетям - Школа удаленных-профессий «PROДвижение»
- Как развитие ИИ изменило подход к работе
- Лупандин Игорь
- Специалист по устойчивому развитию
- Какие профессии скоро может вытеснить нейросеть с рынка труда Metro
«Подстегнуть людей к развитию»: доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ
Средняя месячная зарплата — 130—150 тыс. Внедрением и эксплуатацией актуальных информационных технологий занимаются специалисты по цифровой трансформации — профессионалы, использующие возможности цифровизации для повышения эффективности бизнеса. Их цель не просто ввести в повседневную практику новые методики и инструменты, но и изменить корпоративную культуру. Одно из самых перспективных направлений цифровой трансформации — переход функциональных обязанностей персонала к ИИ: сегодня чат-бот общается с клиентами ничуть не хуже человека-консультанта, а завтра область принятия решений в бизнесе, вполне возможно, будет отдана нейросетям. Поскольку цифровая трансформация охватывает все сферы экономики, специалисты по ней весьма востребованы: зарплаты начинаются со 120 тыс. В упоминавшемся в начале отчете Всемирного экономического форума названы и профессии, которым грозит стремительное сокращение рабочих мест. К ним относятся банковские клерки, кассиры, секретари, сотрудники почты, бухгалтера и страховые служащие. Читайте также.
Нужно помнить, что данные, которые собирают и хранят для массивных языковых моделей, часто довольно сильно отличаются от данных для традиционного применения в интересах бизнеса. Это объясняется диспропорцией таких факторов, как разнообразие, объём и качество данных. Чтобы быть на шаг впереди остальных, можно освоить разные навыки и инструменты для работы с типами данных, подходящими для больших моделей. Думаю, такая должность появится не только в крупных компаниях, занимающихся обучением больших моделей ИИ вроде GPT. Поскольку ИИ становится демократичнее, все компании захотят обучать большие языковые Open-Source-модели для собственных задач, например для обслуживания клиентов и подготовки документации. Не предполагаю, что спрос на таких специалистов начнёт падать в обозримом будущем. Навыки и компетенции Представление о форматах и источниках данных, таких как текст, аудио, видео, изображения и т. Умение собирать, очищать, маркировать и классифицировать данные для моделей ИИ — например, работать с пайплайнами данных, инструментами аннотирования, проверки качества данных и т. Умение организовать хранение и работу с крупномасштабными наборами данных, в том числе с использованием облачных платформ, баз данных, хранилищ и озёр данных и т. Способность понимать и применять принципы этики и конфиденциальности данных, такие как Общий регламент ЕС по защите персональных данных GDPR , законы о защите конфиденциальности потребителей, деперсонализация данных, Data Governance и т. Знакомство со средствами и фреймворками ИИ, включая обработку текстов и речи, компьютерное зрение, TensorFlow, PyTorch и т. Специалист по комплаенсу использования данных ИИ Конечно, всё вертится вокруг данных, но как-то не до конца понятно, кому, собственно, они принадлежат. В разных странах действуют разные законы о защите персональных данных, разные представления о том, какие данные разрешается использовать для обучения больших моделей. По-видимому, компаниям понадобятся юристы, чувствующие себя в серой зоне законодательства по обращению с данными как рыбы в воде, потому что именно в этой зоне все сейчас и работают. На OpenAI, Microsoft и GitHub уже подали в суд за то, что они брали чужой программный код, распространяющийся по лицензии. Размышляют и о том, что многие модели обучаются на пиратских книгах и другом контенте. А ещё модели часто обучают на тексте или изображениях, которые предоставляют пользователи. Вот ещё дополнительная область, где всё как-то мутно. Всё это актуальная повестка, и вскоре компаниям понадобятся люди с юридическим образованием и опытом работы с данными на должность специалиста по комплаенсу использования данных ИИ. Именно такие люди помогут разобраться в этих трудностях и снизить риски судебных разбирательств. Навыки и компетенции Представление о законах и нормах о защите персональных данных, таких как GDPR, законах о защите конфиденциальности потребителей и т. Умение оценить воздействие на защиту данных DPIA , выявлять потенциальные риски и меры по уменьшению рисков в связи с использованием персональных данных в системах ИИ. Умение применять и анализировать законодательные нормы и требования к комплаенсу в области ИИ, сопоставлять их с целями компаний и мерами защиты бизнеса. Умение проводить мониторинг и аудит производительности и эффективности систем ИИ, следить за их соответствием принципам и стандартам этики. Умение взаимодействовать и сотрудничать со стейкхолдерами, включая дата-сайентистов, инженеров, специалистов по надзору, клиентов и т. Специалист по правовому регулированию ИИ Конечно, компании стремятся соблюдать закон и избегать юридических проблем; другим же придётся всерьёз напрячься, чтобы понять, как вписать в законодательство невиданные ранее системы ИИ. Каждый год принимают всё больше законов об искусственном интеллекте. Думаю, по мере развития ChatGPT нас ожидает взрывной рост такого законодательства. Скорее всего, оно зародится в аналитических центрах, университетах и профильных группах. Но в конечном счёте у нас появятся грамотные специалисты, которые будут осуществлять правовое регулирование и мониторинг в области использования ИИ совместно с местными и национальными органами власти. Я бы назвал таких людей специалистами по правовому регулированию ИИ.
В нем приняли участие 2,4 тыс. Готовность меняться Абсолютное большинство опрошенных готовы к каким-либо действиям в случае замены своей профессии или должности нейросетью.
Пока AI-тренеров ищет только «Яндекс». Найти вакансию можно на сайте компании и на карьерных платформах вроде hh. Кроме того, весной компания запустила бесплатную школу AI-тренеров , в которой желающие смогут освоить профессию будущего, из чего можно сделать вывод, что для «Яндекса» это очень важный проект «в долгую». Видимо, компания всерьёз планирует потеснить OpenAI на рынке больших языковых моделей. Читайте также: Пример вакансии Промпт-инженер Что делает: решает широкий круг задач с помощью нейросетей, тестирует запросы и ведёт базу промптов, вместе с другими специалистами улучшает модели ИИ. Сколько зарабатывает: 90—375 тысяч долларов в год по данным вакансий в США. Что нужно: составлять точные и корректные инструкции для больших языковых моделей; знать принципы и особенности работы популярных LLM, уметь работы с их API; знать языки программирования Python и Java в приоритете ; владеть PyTorch и технологиями big data, такими как Hadoop, Apache Spark и Hive; владеть английским языком будет преимуществом. Тем, кто пользуется ChatGPT и Midjourney лишь в развлекательных целях, может показаться, что современная нейросеть — это джинн в лампе, который исполняет желания и отвечает на любые вопросы. Однако уже при первых попытках решить реальную задачу с её помощью пользователи обнаруживают, что результаты не всегда соответствуют ожиданиям. Дело в том, что нейросеть — это хоть и умная, но всё-таки программа, которой нужны чёткие команды.
Восстание машин: как нейросети «вытесняют» людей из профессий
Операторы нейросетей активно работают в различных сферах, включая медицину, финансы, робототехнику, автоматизацию производства и многом другом. Их деятельность способствует улучшению процессов и принятию более точных решений на основе анализа больших объемов данных. Всё больше компаний и организаций осознают потенциал и преимущества использования искусственного интеллекта для решения сложных задач. В связи с этим, спрос на специалистов, владеющих навыками работы с нейросетями, постоянно растет. Одним из ключевых преимуществ этой специальности является возможность быть на переднем крае технологического прогресса. Нейронные сети исследуются и разрабатываются непрерывно, и операторы нейросетей могут участвовать в создании и применении новых моделей и алгоритмов.
Кроме того, работа оператора нейросетей предоставляет шанс для личного и профессионального роста. Специалисты в этой области продолжают обучаться и совершенствоваться, осваивая новые методы и технологии. Благодаря уникальным навыкам, они могут стать востребованными специалистами и достичь успеха в своей карьере. Для детей, проявляющих интерес к программированию и анализу данных, обучение и развитие в области искусственного интеллекта может стать отличным выбором для успешной карьеры в будущем. Как подготовить ребенка к профессии оператора нейросетей?
Если ваш ребенок проявляет интерес к программированию и анализу данных, подготовка к специальности оператора нейросетей может начаться уже в раннем возрасте. Вот несколько способов, как помочь развить необходимые навыки: Изучение основ программирования. Предоставьте ребенку возможность ознакомиться с основами программирования, начиная с простых языков, таких как Scratch или Python. Постепенно школьник сможет изучить концепции, логику и алгоритмы, которые являются основой работы с нейронными сетями.
Программисты в безопасности Чат-бот с искусственным интеллектом, разработанный компанией OpenAI, представляет угрозу для представителей, как минимум, 20 профессий. Среди них — маркетологи, преподаватели, социологи, судьи и другие, уверены исследователи. В некоторых сферах технология ChatGPT в буквальном смысле начнет отбирать хлеб у дипломированных специалистов. Больше всего технология повлияет, как минимум, на 20 профессий, пишет Cbcnews. Умение искусственного интеллекта быстро и качественно обрабатывать большие объемы информации и генерировать связный текст, превращает его в полезный для работников ресурс. Так, профессионалы в сфере недвижимости используют ChatGPT для составления различных списков, юристы — для написаний завещаний. В то же время чатбот может не только помогать сотрудникам выполнять рабочие задачи, но и полностью дублировать их функции, что в конечном итоге способно привести к массовым сокращениям. Итак, список возглавили маркетологи, за ними следуют преподаватели иностранного языка и литературы, географии, истории, права, философии , культурологии и религии, социологии, политологии, уголовного правосудия, психологии, деловой и межличностной коммуникации. Под удар могут попасть также социологи , политологи, специалисты по библиотечному делу, юристы по гражданским делам, судьи, клинические и школьные психологи и коучи. Ученые уверены, что на область юриспруденции ИИ повлияет сильнее всего. Также под раздачу могут попасть турагентства, грантовые фонды, спортивные агенты и музыкальные продюсеры. Программистов в списке не оказалось, хотя чат-бот умеет писать код. Для этого исследователи рассмотрели профессии как набор навыков и способностей, которые требуются сотрудникам, чтобы исполнять свои обязанности.
Но теперь их задача — правильно задать вопрос, чтобы быстрее получить результат, с которым можно работать. В этом смысле технологии остаются тем, чем и были ранее — инструментом в руках Homo sapiens. Хотя нейросети и учатся распознавать эмоции, они пока слабо приближаются к тому, чтобы обладать уникальным характером, харизмой, опытом и эмпатией, которую ценят в коммуникации. Робот все еще действует механистически и этим вызывает отторжение. Так, например, недавнее исследование показало, что больше половины опрошенных россиян вешают трубку, услышав, что им звонит робот. А если возникает проблема, каждый второй предпочитает общаться с реальным оператором. Кстати, несмотря на предположение Фрея и Осборна, что с развитием ИИ работники call-центров первыми окажутся под угрозой, в США с 2014 по 2022 год наблюдается неизменный рост занятости в этой сфере. Выходит, что новые технологии в силу своей искусственности пока не могут полноценно конкурировать с человеком. Но они уже выставляют новые требования к тому, как организовать труд и какие навыки развивать, чтобы оставаться адекватным изменениям в индустрии.
Всего будет восемь предметов, среди них — медиа и большие данные, статистический анализ, математическая лингвистика, правовое и этическое регулирование ИИ. Занятия по большим данным и искусственному интеллекту в медиапроектах будут вести сотрудники Яндекса. Елена Вартанова, декан факультета журналистики МГУ, профессор, академик РАО Технологическая трансформация медиакоммуникационной индустрии ставит перед профильными вузами новые вызовы. Мы просто не можем позволить себе игнорировать происходящее. Искусственный интеллект — уже значимая для профессионалов реальность. Ломоносова возможность подготовить по-настоящему современных специалистов в области цифровых медиа и коммуникаций. Александр Крайнов, директор по развитию технологий искусственного интеллекта в Яндексе Медиа — среди отраслей, в которых открываются самые большие возможности, связанные с генеративным ИИ.
Специалист по нейросетям — что это за профессия
Есть такое движение — AI for social good, когда специалисты по ML решают какую-нибудь общественно полезную задачу. Например, были проекты помощи в поисках пропавших людей или затонувших кораблей. Это очень хорошее направление деятельности, в которое можно прийти новичком с горящими глазами, а уйти с ценным опытом. Читайте также: Как выбрать свой первый опенсорс проект: большая инструкция от Хекслета Необязательно ставить высокие благородные цели. Важно взять задачу и довести ее до конца, наступив на положенное количество граблей. Почти наверняка у каждого разработчика есть знакомый ML-специалист, преподаватель в области искусственного интеллекта или блогер, который делает материалы на эту тему.
Имеет смысл написать ему и попросить задачку для новичка — так можно найти ментора или научного руководителя. У IT в целом репутация непыльной работы. Во многих компаниях сотрудники перерабатывают и выгорают. Работа может быть и не пыльная, но стресс и нервы тут точно есть. Прошлое, настоящее и будущее Картины, нарисованные нейросетями, которые так восхищают современных пользователей, — не новость для нашей индустрии.
GANы для генерации картинок появились еще в 2014 году и произвели фурор среди специалистов, но для широкой публики результаты получались невзрачными. Большие компании копят данные и контент всю историю своего существования. С картинками прорыв случился в 2012 со знаменитым Imagenet, а вот в текстах Imagenet-момент зрел почему-то дольше. Теперь, когда нашлось столько вариантов применения для картинок и текстов, созданных нейросетями, дело за музыкой и голосом. Сфера AI получила такое развитие только тогда, когда крупные компании увидели в этом перспективу.
Нейросети помогают захватывать новые рынки, привлекать аудиторию. Поиск Google и Яндекс долгое время был построен на солидных, классических технологиях. Нейронные сети появились здесь совсем недавно. Сначала это были алгоритмы, потом — эвристики с подобранными параметрами, потом — какие-то простые ML-вещи. Нейросетей долго не было, потому что отвечать на запросы пользователей с их помощью сильно дороже, чем с помощью классических решений.
А в поиске время ответа важно. Раньше нужно было потратить год работы команды из ста человек, чтобы улучшить пользовательский опыт на пару процентов. С приходом нейросетей оказалось, что можно увеличить показатели качества на те же два процента, если в течение месяца обучать алгоритм. Стало ясно, что в это выгодно вкладываться. За годы работы крупные компании — Google, Microsoft, Яндекс — накопили много данных.
Они начали тренировать на этих данных большие нейросети, чтобы решить множество внутренних и внешних задач. Пару лет назад «Яндекс» запустил нейросеть «Балабоба». Технология позволяла решать различные задачи, связанные с текстами. Это выглядело как простой сервис для генерации текстов, но технология позволила решать разные прикладные задачи внутри компании — без сбора больших датасетов и привлечения разработчиков. Это очень прикладные вещи: иногда нужно переписать формулировки, иногда найти в объявлении контактную информацию.
Затратив пару месяцев работы команды, можно не просто увеличить показатели счастья юзеров, но и сразу решить целую пачку проблем на нескольких проектах. Вот такой странноватый анекдот сочинила нейросеть «Балабоба» Благодаря вложениям больших компаний на рынке стали появляться результаты работы разработчиков нейросетей. Сейчас люди успешно пишут письма и дипломы с помощью ChatGPT, генерят картинки с помощью StableDiffusion и делают потрясающие аватарки в Lensa или Prisma. Пользователи любят с их помощью менять и стилизовать изображения. Я тоже пользуюсь этой технологией: у меня на аватарке стоит картинка, сгенерированная нейросетью.
Трудно сказать, почему это так популярно. Но факт остается фактом: в этой области все еще много стартапов, которые легко привлекают инвестиции. Моя аватарка после обработки нейросетью Вклад разработчиков в развитие нейросетей Время от времени кто-то из разработчиков предлагает классные идеи и сам же воплощает их в жизнь — в рамках коммерческого проекта или просто в виде домашнего задания.
Бизнес-аналитик В мире, переполненном разноплановой информацией, нужные сведения становятся «новой нефтью». Бизнес-аналитики знают о ценности информации, как никто другой, ведь их работа заключается в просеивании потока бизнес-данных, разумеется, не вручную, а с помощью специальных инструментов, включая ИИ. Они определяют ключевые для конкретного бизнеса приоритеты и требования, преобразовывают огромные массивы информации и подают ее в доступном для восприятия виде, создают прогнозирующие модели и в конечном счете способствуют принятию решений, укрепляющих позиции компании на рынке.
Результаты работы бизнес-аналитиков используются как в сфере маркетинга и продаж, так и при планировании бюджета компании. Неудивительно, что на сайте hh. Аналитик информационной безопасности Хакеры и кибератаки не только элементы остросюжетных фильмов, но и суровая реальность, и потому спрос на аналитиков информационной безопасности на мировом рынке труда постоянно увеличивается: согласно некоторым прогнозам, их занятость до 2031 г. Эти специалисты непрерывно сканируют данные из журналов событий, антивирусных сканеров, маршрутизаторов и других источников, стараясь обнаружить текущие угрозы компьютерным системам, а еще лучше — предупредить их появление. Кроме этого, они разрабатывают стандарты безопасности, ищут лучшие способы защиты конфиденциальной информации, выявляют риски и уязвимости, расследуют случаи утечки данных. Поскольку извлекать и обрабатывать приходится даже не сотни тысяч, а миллионы системных событий, аналитикам информационной безопасности не обойтись без ИИ.
Студенты освоят инструменты для работы с текстом, генерации изображений и идей для проектов и статей, разработки контент-планов, анализа аудитории и решения других задач. Специалисты с такими навыками будут востребованы на рынке. Они смогут создавать с помощью нейросетей медиапроекты, разрабатывать для них маркетинговые стратегии, оптимизировать редакционные процессы, анализировать и визуализировать большие данные.
Программу создали преподаватели университета и ведущие эксперты Яндекса. Она включает как гуманитарные дисциплины, так и курсы по анализу данных и работе с нейросетями. Всего будет восемь предметов, среди них — медиа и большие данные, статистический анализ, математическая лингвистика, правовое и этическое регулирование ИИ.
Занятия по большим данным и искусственному интеллекту в медиапроектах будут вести сотрудники Яндекса.
Умные инструменты используют и в интегрированных средах разработки — программах, в которых специалисты пишут и проверяют собственный код. Там нейросети способны давать подсказки и советы, которые помогают быстрее и эффективнее решить задачу. А ещё нейросети позволяют автоматизировать процесс тестирования. Аналитики Нейросеть можно попросить сделать прогноз на основе накопленных данных, найти в них аномалии или визуализировать информацию. Допустим, изучить информацию о продажах товаров и доходах компании и предсказать, как цены будут меняться в будущем.
При выводе на рынок новых продуктов ИИ тоже полезен — он способен проанализировать данные о спросе, предложении и конкуренции, предположить, что популярно у пользователей и какие ниши будут наиболее перспективными. Кроме того, нейросети облегчат процесс создания различных документов. Например, можно попросить программу собрать и уточнить данные из доступных источников при подготовке квартального финансового отчёта. Менеджеры Здесь нейросети пригодятся, чтобы проанализировать предыдущие продажи и предположить, когда лучше вновь связаться с покупателями. Кроме того, программу можно попросить сделать выдержку из записи встречи с клиентом или командой. ИИ поможет улучшить внутреннюю коммуникацию.
Например, как написать заявление на отпуск или к кому обратиться, если возникли проблемы с компьютером. Дизайнеры ИИ можно попросить не только создать изображение, но и подготовить анимацию, сделать рендер с нарисованного вручную наброска, подобрать пару шрифтов или палитру.
Будущее SMM-специалистов в эпоху нейросетей: интервью с хантером Аленой Владимирской
В России за последние несколько месяцев на 62 % выросло число вакансий специалистов по работе с нейросетями, пишут «Ведомости» со ссылкой на сервис HeadHunter. Уже сейчас идут бурные обсуждения, что нейросети, вероятно, в будущем смогут полностью заменить специалистов ряда профессий. Разработчик нейронных сетей — специалист, который занимается созданием, оптимизацией и улучшением нейронных сетей — алгоритмов, имитирующих работу человеческого мозга.
Как стать тренером нейросетей и почему сегодня это востребованная профессия
Но благодаря большому выбору профессий, связать свою карьеру с нейросетями получится даже у того, кто не считает себя технарем. Представляем 5 уникальных профессий будущего, связанных с обработкой данных и искусственным интеллектом. Нейросеть сделала это за 5 минут с хорошей ла локальные компании от глобальных, рассказала про количество производственных площадок. Нейросеть сделала это за 5 минут с хорошей ла локальные компании от глобальных, рассказала про количество производственных площадок.
Новая профессия – ПРОМПТ-инженер. Будет очень востребованной!
На модуле по Deep Learning студентов знакомят с продвинутыми технологиями по работе с нейросетями, например трансформерами — архитектурой нейронных сетей, которая лежит в основе ChatGPT. Разбираем, на что способны нейросети уже сегодня и какие профессии сможет заменить искусственный интеллект в ближайшем будущем. – Безусловно, нейросеть будет помогать и упрощать рабочие процессы, – рассказывает руководитель направления информационной безопасности Центра цифровой экспертизы Роскачества Сергей Кузьменко. Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи.
Нейросеть составила список самых востребованных профессий будущего
Есть ли зависимость между возрастом специалиста и его зарплатой В нашем совместном исследовании с аналитическим сервисом DataFan было выявлено, что молодые middle-специалисты в SMM получают меньше, чем их старшие коллеги. Есть ли догадки, с чем это может быть связано? Это странно, потому что зарплата зависит от грейда специалиста. У меня есть предположение, что молодые специалисты чаще работают не в больших компаниях, а в стартапах, где по определению платят меньше.
В большой компании до middle-специалиста дорастают в среднем в 27 лет. Формально должность одна и та же, но зарплаты будут разные. Какой путь выбрать: стать специалистом широкого или узкого профиля Если выбирать между широкопрофильным специалистом и узкоспециализированным, больше ценятся и выше оплачиваются нишевые специалисты.
Главное — выбрать ту нишу, в которой интересно работать. В то же время, если вы хотите работать в маленькой компании, там больше требуются широкопрофильные спецы. Во всем есть свои плюсы и минусы: в большой компании большие задачи и большие бюджеты, но сложнее расти; в маленькой компании быстрый рост, но маленькие бюджеты, и все нужно делать своими руками.
Читайте также: « Как перестать работать за 20 000 рублей и начать зарабатывать в SMM в 4 раза больше ». Время сейчас тоже тихое — компании стараются меньше светиться публично. Нужно наблюдать за рынком и развитием соцсетей.
В целом, сфера SMM в безопасности, но в ближайшие 1-2 года бурного развития не ожидается. Пока какие-то изменения в сфере прогнозировать тяжело. Как лучше войти в digital молодому специалисту: удаленно или устроиться в офис Если вы хотите быстрого роста, с определенного уровня вы должны быть в офисе.
Это может быть комбинированный режим, например: 2 дня в офисе, 3 дня дома. Когда люди работают удаленно, они могут нормально работать, нормально получать, но они находятся вне периметра взгляда начальства. Шансов на повышение у них значительно меньше.
Когда вы находитесь в коллективе, вы быстрее растете профессионально даже через такие неочевидные вещи, как разговоры в курилке. Это в том случае, если вы одинаково хорошо работаете и в офисе, и на дому. Если вы работаете плохо, лучше работать на дому.
Больше шансов, что подольше продержитесь на должности. Хотите узнать, как продвигать товары и услуги, развивать бренд и привлекать клиентов в соцсетях в 2023 году?
Пожаловаться Почему профессия инженер нейросетей будет перспективной в ближайшие годы? Профессия инженера нейросетей является одной из наиболее перспективных в сфере информационных технологий. На протяжении последних нескольких лет нейросети стали широко применяться в различных отраслях, включая медицину, финансы, рекламу, транспорт и другие.
Это приводит к появлению все большего числа вакансий для инженеров нейросетей, и перспективы роста этой профессии в ближайшие годы кажутся очень многообещающими. Инженеры нейросетей могут рассчитывать на высокий уровень заработной платы. Средняя зарплата квалифицированного инженера нейросетей в США составляет около 150 000 долларов в год, что является значительно выше, чем средняя зарплата в других отраслях.
Развивают и разрабатывают новые технологии, и в том числе дизайнеры, которые режиссируют эти технологии. То есть здесь главная дизайн-задача раньше была в том, чтобы создать непосредственно конечный объект дизайна, а сейчас она плавно трансформировалась в то, чтобы создать ту систему, способную масштабировано производить большое количество экземпляров арт-дизайна.
Но дизайн-задачи остались теми же, просто они немного трансформировались, и плечо получается больше. То есть объем дизайнеров тот же, но эффективность их несопоставимо больше, потому что это масштабируется. Коротнева: Я правильно понимаю, что дизайнер, человек, выполняет творческую функцию, придумывает общий концепт, а уже Николай Иронов, ваш проект, он это все масштабирует и просто пропечатывает в огромном количестве? Или это не совсем так работает? То есть дизайнер — это мозги и творчество, а нейросеть — это условно руки, руки и механизмы?
Кулинкович: Все сложно. Давайте обрисую, в целом, систему. Николай Иронов для начала — это не одна нейросеть, это большое количество разных алгоритмов, наборов алгоритмов, которые работают в ансамбле между собой. Собственно, рождение Николая Иронова — это не рождение какой-то одной технологии генеративного дизайна. Это рождение правильно срежиссированной комбинации технологий.
И с момента рождения Николая, когда мы всем рассказали о том, что он существует, о том, что он выполняет дизайн задачи, его мозги пересобрались уже очень-очень много раз. И вот они сейчас снова в одном шаге от того, чтобы пересобраться с использование новых технологий, которые появились на рынке. Соответственно, дизайнеры, которые занимаются этим проектом, их задача заключается в том, чтобы правильные технологии объединить в правильный пайплайн — последовательность действий, когда результат одного алгоритма правильно передается правильный результат другому алгоритму, и вот так вот по этому конвейеру получается какой-то новый результат. Соответственно, дизайнеры Иронова проектируют примерный диапазон, изобразительный диапазон, учат его новым стилям, подключают к нему новые шрифты и так далее. И вот здесь мы упираемся в то, что задача дизайнера, она на самом деле и раньше была такой — применить какое-то изобразительное решение в правильный контекст.
Потому что поставщиками потребностей всегда были и будут люди. Соответственно, принять правильное решение, какой из десятков и даже сотен вариантов подходит лучше всего, - это была, есть и будет истинная работа дизайнера, потому что дизайн делается людьми, для людей. А сейчас, с появлением роботов, просто у нас появляется некоторая компонента, которая называется искусственным интеллектом, которая позволяет: а делать это масштабировано, то есть в больших масштабах, вместо трех вариантов логотипа выбирать из тысячи, б позволяет это делать непредсказуемо. Собственно, в этот все отличие от того, что сейчас называется искусственным интеллектом от алгоритмических каких-то результатов, в том, что мы часто получаем не вполне предсказуемый результат, и это очень похоже на то, как работает человек. Собственно, вот и вся разница.
Но корневая суть работы дизайнера — она не поменялась. Это было и есть подбор правильного варианта в правильные контексты. Гребенников: То есть определяет. Что красиво, сегодня дизайнер все еще, а не искусственный интеллект? Кулинкович: Да, но… У нас, например, есть отдельные технологии внутри Иронова, которые позволяют отбросить совсем плохие варианты.
То есть такой примитивный арт-директор, скажем так. И он помогает не выгружать на конечного пользователя весь массив данных, которые слишком шероховатые, слишком смелые, а как бы делать такой скоринг дизайн-решений, чтобы финальное решение было в каком-то более-менее приличном диапазоне. Поэтому мы все равно используем эти технологии, даже чтобы отсортировать какой-то большой массив выдачи, но финальное решение, конечно, принимает человек. Гребенников: А как вообще происходит постановка технического задания искусственному интеллекту? Предположим, я — маленькая пекарня во Владимирской области.
Я приходу в вашу студию и говорю: «Хочу себе классный логотип, чтобы ко мне приходило не 2 000 человек в месяц, а 15 000 человек. Я считаю, что вся проблема моя в логотипе». Я говорю: «Хочу такой логотип, чтобы там был колосочек, хлебушек и круассанчик обязательно». Вы же куда-то это загружаете. Как происходит процесс формирования технического задания?
И потом как искусственный интеллект осознает, что мне нужно как конечному клиенту? Кулинкович: Начнем с того, что если вы предъявите задание живым людям, живым дизайнерам, то, скорее всего, если они будут достаточно с вами честны, то они скажут, что изменение логотипа не увеличит вашу выручку в 10 раз. Это первый момент. То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи. Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да.
Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит? Они его творчески интерпретируют.
Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами. И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое. Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам. Мы вас любим». И все такое.
А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее. И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию. Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака. И дальше это по такой цепочке передается, появляются эти визуализации этих образов, они обогащаются разными шрифтовыми комбинациями, дальше подключаются отдельные алгоритмы, которые подбирают цветовые сочетания комплиментарные.
В общем, там сложная-сложная штука. Но по факту это точно то же самое, что происходит при работе с живым человеком. То есть интерпретируется некоторый текстовый ввод, так же как к вам приходит человек и что-то говорит, и вы как-то это трансформируете. Мы все эти шаги условно творческих мытарств алгоритмизировали, перевели в какие-то отдельные процессы? И клиент на выходе получает опыт, очень сопоставимый с опытом общения с живым дизайнером.
Только наш дизайнер не капризничает, не болеет. Коротнева: Не уходит в отпуск. Кулинкович Да, да, да. Гребенников: Скажите, а стоимость разработки логотипа… Логотип, предположим, я пришел за логотипом, искусственным интеллектом и обычным дизайнером в студии Артемия Лебедева отличается? Есть какой-то прайс на искусственный интеллект и обычного дизайнера?
Кулинкович: Да, конечно, отличается. Когда вы приходите лично в брендинговое агентство или дизайн-студию, помимо непосредственного конечного дизайнера, который сидит и визуализирует ваш логотип, в это вовлечено очень много людей на самом деле. Это юристы, которые помогают составлять договор; менеджеры, которые позволяют клиенту и дизайнеру услышать друг друга, перевести с одного языка на другой, и много-много всего. Соответственно, когда вы работаете с живыми людьми, чаще всего дизайн — это операционный процесс, где клиент хочет, чтобы его услышали и некоторое врем поиграли с ним вот в эту игру «Согласование видения», да? Это все умножается на стоимость часов специалиста.
И разные компании, конечно, по-разному, диапазон очень большой, но он может доходить до очень больших сумм. То есть если вы просто придете в большую дизайн-компанию, то разработка логотипа с нуля, где вас будут слышать, слушать долго и до победного, она может быть супердорогой, неподъемно дорогой для малого и среднего бизнеса. Поэтому Иронов и другие генеративные технологии — это не просто про скорость, это про такую демократизацию дизайна, что если у вас не слишком много денег для того, чтобы играть во все эти чаепития и подписания договоров дорогостоящее, то вы можете пойти и получить из коробки сопоставимый по качеству результат. Просто процесс будет происходить несколько иначе. Вам нужно будет принять, что ваши какие-то правки и пожелания интерпретируются не прямым методом, а косвенным, в результате работы некоторых алгоритмов.
Там могут быть шероховатости, а могут быть, наоборот, источники классных открытий в результате этого. Гребенников: Вот вы говорите про открытия. А бывало так, что пришли две разные компании, диапазон полгода-год, и искусственный интеллект выдал одинаковый логотип на совершенно разные задачи, которые перед вами ставили? Такое происходит и с живыми людьми, то есть можно увидеть очень много примеров того, как дизайнеры думают похоже, скажем так. Гребенников: Назовем это так, хорошо.
Кулинкович: Ну да. Просто на самом деле очень часто, когда у вас большой объем работы, вы сделали 1 000 логотипов, наивно полагать, что в мире все ваши логотипы абсолютно аутентичны, потому что каждый день в мире сотни и тысячи дизайнеров генерят новые логотипы, а набор примитивов, из которых логотипная графика состоит, он довольно ограничен, потому что есть базовые формы: треугольник, прямоугольник, квадрат и так далее, которые так или иначе комбинируются. Если мы говорим условно, что даже у стран, которых ограниченное количество, есть очень похожие флаги, которые можно часто путать друг с другом, что уж говорить про логотипы, которых сотни тысяч генерируется каждый год. Соответственно, мы видим, что действительно могут появляться одинаковые работы, как у живых людей, так и нейросеть может генерировать одинаковые работы, и мы в этом не видим проблемы, потому что это было долгое время ранее. Если где-то в Сингапуре еще существует похожая птицефабрика с таким же крестиком, таким же цветом и с таким же соотношением сторон исполнен, то едва ли эти бизнесы будут друг друга локтями толкать.
Поэтому мы на это смотрим совершенно нормально компенсируем это объемом, то есть проблема плагиата существенна, когда у вас стоимость каждой итерации очень большая, а дизайнер уходит на следующую итерацию, неделю молчит, пыхтит и так далее. Но когда вы можете еще одним щелчком сгенерировать еще 100 альтернатив, то, в целом, это перестает быть проблемой. Но я предлагаю переходить от проекта Николай Иронов к другим генеративным технологиям, потому что летом прошлого года буквально весь интернет взорвала сеть Midjourney, которая создавала крутые классные визуальные картинки, и все были в полном восторге. Но вместе с этим восторгом действительно возник вопрос о том, что «Зачем мне условно в штате держать дизайнера, если я могу загрузить свой достаточно вариант брифа, и нейросеть выдаст мне несколько классных вариантов: совершенно удивительных и визуально привлекательных. Сергей, давайте поговорим немножко про это.
Во-первых, как вы думаете, какие перспективы развития у этих нейросетей? Насколько действительно хорошо они генерируют визуальные изображения, и какие риски это несет для творческих профессий? Кулинкович: Спасибо за вопрос. Поскольку возможна какая-то профдеформация, и мы довольно давно находимся от в этой области генеративного дизайна. Просто сейчас из-за того, что искусственный интеллект как понятие тиражируется и как-то ассоциируется с нейросетевыми технологиями, и это сейчас на всех полосах газет и всяких изданий, на это все прожекторы устремлены, на самом деле генеративный дизайн существовал ранее просто в других жанрах.
Зарплата оценивается в зависимости от опыта. Как устроиться на работу Работодатели требуют предоставить портфолио и документы о высшем образовании, а также рассказать на собеседовании о владении профессиональными инструментами генеративные нейросети, графические редакторы. ИИ-креатор ИИ-креатор создает изображения, тексты, видео с помощью нейросетей. Благодаря тому, что человек непосредственно не занят в генерации контента, он может тратить больше времени на творческую сторону проекта и объединять в себе сразу несколько функций. Что нужно знать и уметь Потребуется опыт в создании контента для блогов, умение строить контент-план.
Плюсом будет образование в области маркетинга. Умение составлять запросы для различных генеративных нейросетей. Сколько зарабатывает ИИ-креатор Заработная плата варьируется от 40 до 90 тыс. Как устроиться на работу ИИ-креатор может работать на фрилансе или в офисе. В первом случае для заключения договора на оказание услуг может понадобиться выполнить тестовое задание и предоставить портфолио.
Во втором случае к перечисленным ранее пунктам добавится прохождение собеседования. Компьютерный лингвист Компьютерный лингвист — специалист, который занимается обработкой данных и переводом их в естественные для нейросетей языки. В дальнейшем профессионалы этого профиля передают результаты своей работы дата-сайентистам, которые обучают алгоритмы работать с текстами переводы, распознавание речи, трансформация устного языка в письменный и т. Если вы задаетесь вопросом, может ли филолог стать компьютерным лингвистом, то ответ будет утвердительным. Но ему понадобятся хорошая база программирования и понимание работы моделей машинного обучения.
Что нужно знать и уметь От специалиста требуется знание естественных и компьютерных языков. При этом приветствуется не только владение русским и английским, но и другими языками. Важно уметь программировать на Python хотя бы на базовом уровне , знать основы обработки естественного языка NLP и обладать опытом в разметке данных. Где учиться компьютерному лингвисту? Для этой профессии подходит образование по профилю «Фундаментальная и прикладная лингвистика», магистратура «Компьютерная цифровая лингвистика», курсы переподготовки в вузах.
Сколько зарабатывает компьютерный лингвист Средняя зарплата составляет 100—120 тыс. Как устроиться на работу Работодатели требуют релевантного опыта в других компаниях и профильного образования с глубоким знанием естественных языков. Обычно для устройства на работу нужно выполнить тестовое задание и пройти собеседование. Промт-инженер Промт-инженер — специалист, который составляет правильные запросы к генеративным нейросетям, чтобы получить результаты, соответствующие техническому заданию. В сферу его задач входит выяснение потребностей заказчика, формирование промта подсказки для нейросети на основе полученной информации и его изменение, если изображение или текст сразу не подходят.
По сути, работа промт-инженера — искусство коммуникации с нейросетью. Что нужно знать и уметь От соискателя требуется глубокое знание естественного языка, аналитическое мышление, техническая грамотность, понимание принципов работы нейросетей. IT-образование не обязательно, но приветствуется. Кандидат должен владеть не только русским, но и английским, потому что промты на нем лучше всего «понимает» нейросеть. Сколько зарабатывает промт-инженер Ниша промт-инжиниринга очень узкая, специалисты в основном работают на фрилансе.
Размер зарплаты варьируется в зависимости от уровня инженера и бюджетов заказчика. Как устроиться на работу Как правило, для того, чтобы получить заказ, специалисту нужно предоставить портфолио. Если оформление происходит по трудовому договору, соискателю нужно предоставить документы об образовании и пройти собеседование. Тренер ИИ Моделям машинного обучения необходимы качественные данные для того, чтобы правильно работать. При формировании своих ответов они используют информацию из открытых источников в интернете, в которых могут встречаться непроверенные или неверные факты.
Чтобы научить машину правильно искать информацию и давать человеку качественные ответы, существуют AI-тренеры. Они оценивают текст, который генерирует нейросеть, помогают улучшить качество контента, маркируют источники и т. Что нужно знать и уметь Профессия будущего AI-тренер не требует глубоких технических знаний. Чтобы получить эту работу, нужно быстро и хорошо писать и корректировать, уметь проверять факты и аргументированно объяснять, чем один текст лучше другого. Для этой должности хорошо подойдут перепрофилированные копирайтеры, журналисты, редакторы, переводчики.
Знание английского будет большим преимуществом. Как устроиться на работу Главный наниматель в России — Яндекс. В своих материалах компания рассказывает, как стать AI-тренером: предлагает бесплатные уроки и проводит курсы для специалистов. Чтобы устроиться на работу, нужно пройти ряд тестовых испытаний, собеседование не предусмотрено. Специалист по этике Специалист по этике искусственного интеллекта решает сложные ситуации, которые возникают при использовании нейросетей.
Востребованность этих специалистов связана с тем, что ИИ проникает во все области жизни человека, и из-за этого возникают этические сложности: защита персональной информации, соблюдение личных границ пользователей, предвзятость и спорные решения, которые принимает или предлагает модель машинного обучения. Что нужно знать и уметь Чтобы работать в этой профессии, нужно иметь глубокие познания в одной из сфер: культурология, юриспруденция, информационная безопасность. Специалист должен оценивать действия ИИ и направлять алгоритмы в правильное русло.
Лупандин Игорь
- Нейросети: с чего начать
- Треть российских соискателей полагает, что их профессию могут заменить нейросети
- Специалист по нейросетям - Школа удаленных-профессий «PROДвижение»
- Без работы не останемся: к 2030 году ИИ добавит семь новых профессий / Хабр
- Огонь нейросетей: как попасть в индустрию
- Профессии будущего: рейтинг, сформированный нейросетью
Для каких задач применяют ML и нейросети
- Специалист по устойчивому развитию
- Рынок вакансий, связанных с ИИ
- ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска
- ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска
- Профессии будущего. Как нейросети открывают новые направления в edtech
- Как стать специалистом по нейросетям?
Работа и вакансии "специалист по нейросетям" в Санкт-Петербурге
Наша гипотеза состояла в том, что скорее всего именно эти профессии нейросеть вряд ли заменит. Недавно телеканал RTVI захотел рассказать о профессиях будущего и обратился за помощью к нейросети MidJourney. Узнали у нейросети, каких профессионалов искусственный интеллект настроен видеть в числе будущих коллег. Профессионально овладеете нейросетями, сформируете клиентскую базу, что позволит вам выйти на 5-10 т.р. в ДЕНЬ. Наша гипотеза состояла в том, что скорее всего именно эти профессии нейросеть вряд ли заменит. Уже сегодня к нейросетям возникают вопросы, связанные с интеллектуальной собственностью и использованием персональных данных, и по мере развития технологий эти проблемы будут неизбежно нарастать.