Новости коэффициент джини показывает

Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход. Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают.

Мы в соц сетях

  • Что такое коэффициент / индекс Джини?
  • Коэффициент Джини, значение по странам мира и в России
  • Коэффициент Джини
  • В России зафиксирован рост доходного неравенства
  • Какие страны и почему отличаются высоким показателем джини география реферат
  • Экономика. 10 класс

Как рассчитать коэффициент Джини в Excel (с примером)

Служит своеобразной поправкой этих показателей. Может быть использован для сравнения распределения признака дохода между различными совокупностями например, разными странами. При этом нет зависимости от масштаба экономики сравниваемых стран. Может быть использован для сравнения распределения признака дохода по разным группам населения например, коэффициент Джини для сельского населения и коэффициент Джини для городского населения.

Позволяет отслеживать динамику неравномерности распределения признака дохода в совокупности на разных этапах. Анонимность — одно из главных преимуществ коэффициента Джини.

Код на Python from scipy. Мало это или много?

Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это.

Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать.

Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини. Как рассчитать эту метрику?

Список коэффициентов Джини по странам можно найти здесь. В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. Шаг 2: Рассчитайте площади под кривой Лоренца Затем нам нужно рассчитать отдельные площади под кривой Лоренца , которую мы используем для визуализации распределения доходов в стране.

Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство».

Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.

Суть коэффициента Джини

  • Доверительный интервал коэффициента Джини. Что это?
  • Коэффициент Джини
  • Навигация по записям
  • Что такое коэффициент Джини? Душкин объяснит - YouTube
  • Силуанов допустил рост экономики по итогам 2023 года выше 2,5%
  • В России вырос уровень доходного неравенства | Ямал-Медиа

Вы точно человек?

«Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство». Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%. Индекс Джини или коэффициент Джини — это статистическая мера распределения, разработанная итальянским статистиком Коррадо Джини в 1912 году.

Коэффициент Джини (распределение дохода)

Площадь B будет равна нулю, а коэффициент Джини — 1 Сравнение показателей: Рассказывает ли показатель Джини ту же историю, что и другие показатели неравенства? Показатели неравенства пытаются обобщить информацию о том, насколько распределение неравномерно — точно так же, как стандартное отклонение. В таких суммарных показателях заложены суждения о том, что именно должно иметь наибольшее значение при измерении неравенства Для примера сравним два выдуманных общества. В первом богатые люди намного богаче тех, кто находится в середине распределения, но доходы более бедных лишь немного ниже тех, что получают в середине. Во втором — обратная ситуация: доходы богатых лишь немного выше доходов средних, но бедные намного беднее В каком обществе выше неравенство? Ответ будет зависеть от того, какие разрывы в разных частях распределения считать вносящими наибольший вклад в уровень неравенства. Такие оценочные суждения неявно заложены в математические определения показателя неравенства Это относится ко всем показателям неравенства, и коэффициент Джини не является исключением. Но его отличает более высокая чувствительность к изменениям в середине распределения, чем в самом верху и внизу Особенности коэффициента Джини можно рассмотреть на примере четырёх стран. Для наглядности приведена динамика с течением времени.

Публикации Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца В этом посте объясняется, как использовать индекс Джини и кривую Лоренца для сравнения моделей оценки рисков для страховых полисов. Она используется в качестве меры экономического неравенства, измеряя распределение доходов среди населения.

Индекс Джини представляет собой число от 0 до 1, измеряемое в соответствии с отношением между площадью, заключенной между кривой Лоренца и линией 45 градусов, и площадью всего треугольника того, который находится ниже линии 45 градусов и площадь которого составляет 0,5. Нулевой коэффициент означает полное равенство, то есть у всех одинаковый доход; Тогда как коэффициент 1 означает абсолютное неравенство, означающее, что у одного человека есть весь доход, а у остальных вообще нет дохода. Джини — это мера статистической дисперсии, и как таковая она может измерять любой ряд числовых данных, а не только доход, богатство или политический риск. Это индекс, который на самом деле пытается объяснить распространение неопределенности, а оценка риска — это на самом деле неопределенность, которую мы пытаемся уменьшить. Когда мы проверяем результаты моделей оценки риска, мы стремимся к как можно более высокому индексу Джини, то есть неравенству, которое будет максимально отражать предсказание только политики высокого риска.

Определяется она так: стоимостная оценка потребительской корзины, то есть «необходимые для сохранения здоровья человека и обеспечения его жизнедеятельности минимальный набор продуктов питания, а также непродовольственные товары и услуги…» , а также обязательные платежи и сборы, к которым относятся коммунальные платежи. Конечно, имеется в виду количество рублей в месяц. В первом случае государству нужно подсчитать, сколько требуется заложить в бюджет на социальные выплаты например, пособия малоимущим и субсидии на оплату ЖКХ и пенсии. Во втором — посмотреть динамику потребления и сделать экономические прогнозы. Величина прожиточного минимума зависит от региона и даже социальной принадлежности получателя. Всего есть три социально-демографические группы, для которых определяется прожиточный минимум: трудоспособное население, пенсионеры и дети. Отдельно он рассчитывается «в расчёте на душу населения».

Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него.

Ваш пароль

Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране. Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения. Далее мы покажем, что Коэффициент Джини является абсолютно точной алгебраической интерпретацией Кривой Лоренца, а она в свою очередь является его графическим отображением. Для исчисления коэффициента Джини необходимо рассчитать величины pi и qi.

Индекс Джини в странах мира

В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. Для исчисления коэффициента Джини необходимо рассчитать величины pi и qi. Есть ещё коэффициент/индекс Джини (Gini impurity), который используется в решающих деревьях при выборе расщепления. Тут уместно провести параллели с коэффициентом Джини, который показывает имущественное расслоение населения. Есть ещё коэффициент/индекс Джини (Gini impurity), который используется в решающих деревьях при выборе расщепления. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини.

Индекс Джини в странах мира

И наоборот, страна, в которой один житель получает весь доход, а все остальные ничего не зарабатывают, будет иметь коэффициент Джини дохода, равный 1. Тот же анализ можно применить к распределению богатства «коэффициент Джини богатства» , но поскольку богатство измерить труднее, чем доход, коэффициенты Джини обычно относятся к доходу и появляются просто как «коэффициент Джини» или «индекс Джини», без указав, что они относятся к доходам. Коэффициент Джини для богатства, как правило, намного выше, чем для дохода. Коэффициент Джини является важным инструментом для анализа распределения дохода или богатства в стране или регионе, но его не следует путать с абсолютным измерением дохода или богатства. Страна с высоким доходом и страна с низким доходом могут иметь одинаковый коэффициент Джини, если доходы распределяются одинаково внутри каждой из них: например, в Турции и США коэффициент Джини дохода составляет около 0,39—0,40, согласно Организация экономического сотрудничества и развития ОЭСР ,.

Графическое представление индекса Джини Индекс Джини часто представляется графически в виде кривой Лоренца ,. Коэффициент Джини равен площади под линией совершенного равенства 0,5 по определению минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Другими словами, это удвоенная площадь между кривой Лоренца и линией идеального равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2.

Вычитая эту цифру из 0,5 площадь под линией равенства , мы получаем 0,3, которую затем делим на 0,5. Другой способ представить коэффициент Джини как меру отклонения от идеального равенства. Чем дальше кривая Лоренца отклоняется от идеально ровной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем менее равноправным является общество. В приведенном выше примере Гаити более неравноправно, чем Боливия.

В 1820 г.

Чем ближе коэффициент к 0, тем равномернее распределение. Коэффициенту Джини свойственны следующие признаки: Анонимность: не имеет значения, какие социальные группы обладают высоким или низким заработком. Показатель неравенства не должен зависеть от какой-либо характеристики отдельных лиц, кроме их дохода. Независимость от масштаба экономики: коэффициент Джини не учитывает размер экономики. Независимость от размера населения: не имеет значения, насколько велико население страны. Независимость от шкалы доходов. Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4]. Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной.

Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать. Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться.

Четвёртый характерен для стран с неразвитой демократией и пассивным гражданским обществом. В таких странах правящая элита перераспределяет общественные блага в свою пользу. В реальной жизни трудно назвать страну, в которой мы смогли бы четко отследить действие какого-либо одного из вышеназванных принципов. Обычно они по-разному сочетаются в том или ином виде. Однако, какой бы система распределения ни была, в любом обществе неизбежно неравенство доходов. Проблема неравенства доходов в обществе Рыночная система экономики, существующая на сегодняшний день лишь за малым исключением во всех странах мира, представляет собой механизм, который вознаграждает людей лишь по конечному результату эффективности их деятельности, то есть объективно задает существование неравенства в обществе. И ведь действительно, все люди очень отличаются друг от друга: трудолюбием, активностью, способностями, образованием, владением собственностью, склонностью к накоплению или, напротив, к потреблению. А это значит, что они не могут одинаково работать, значит, не могут одинаково зарабатывать и одинаково жить. Что и является причинами неравенства доходов. И что же тогда? Оставлять за чертой бедности немалую часть населения? По принципу «пусть выживают, как могут»? Полезно ли ЭТО для общества? Очевидно, что нет.

Построение кривой Лоренца удобнее всего рассмотреть на следующем примере: Представим экономику, состоящую из 3-х агентов: А, B, C. Доход агента А составляет 200 единиц, доход агента В составляет 300 единиц, доход агента С составляет 500 единиц. Для построения кривой Лоренца найдем доли индивидов в общем доходе. Общий доход составляет 1000. Затем включим в анализ более богатого индивида — индивида В. Далее включим в анализ еще более богатого индивида С. Отметим полученные результаты на графике: Линия, соединяющая левую нижнюю точку и правую верхнюю точку графика, называется линией равномерного распределения доходов. Это гипотетическая линия, которая показывает, что было бы, если доходы в экономике распределяются равномерно. При неравномерном распределении доходов кривая Лоренца лежит левее этой линии, причем чем больше степень неравенства, тем сильнее изгиб кривой Лоренца. А чем ниже степень неравенства, тем более она приближена к линии абсолютного равенства. В нашем случае кривая Лоренца выглядит как кусочно-линейный график. Это получилось так, потому что в нашем анализе мы выделили только три группы населения. С ростом числа рассматриваемых групп населения кривая Лоренца будет выглядеть следующим образом: Кривая Лоренца позволяет судить о степени неравенства доходов в экономике о ее изгибу. Для количественного измерения степени неравенства дохода по кривой Лоренца существует специальный коэффициент — коэффициент Джини. Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно. Чем ближе коэффициент Джини к единице, тем больше изгиб кривой Лоренца, и доходы распределены менее равномерно. Рассчитаем коэффициент Джини для нашего примера с тремя индивидами. Площадь внутренней фигуры D быстрее всего можно посчитать путем вычитания из площади большого треугольника площади фигур А, В и С. В этом случае коэффициент Джини будет равен: Частный случай кривой Лоренца и коэффициента Джини: попарное сравнение. Материалы данного раздела не публикуются на сайте, а доступны в полной версии данного пособия, которое я использую на занятиях с учениками. Как известно, любой статистический показатель имеет свои изъяны. Так же как и по показателю ВВП нельзя судить об уровне благосостояния экономики, и коэффициент Джини и другие показатели степени неравенства не могут дать в полной мере объективную картину степени неравенства доходов в экономике. Это происходит по нескольким причинам: Во-первых, уровень дохода индивидов не является постоянным и может резко изменяться с течением времени. Доходы молодых людей, которые только что закончили университет, как правило, являются минимальными, и затем начинают расти по мере того, как человек набирается опыта и наращивает человеческий капитал. Доходы людей, как правило, достигают пика между 40 и 50 годами, и затем резко снижаются, когда человек уходит на пенсию. Э то явление называется в экономике жизненным циклом. Но человек имеет возможность компенсировать различие в доходах на разных этапах жизненного цикла с помощью финансового рынка — беря кредиты или делая сбережения. Так, молодые люди, находящиеся в самом начале жизненного цикла, охотно берут кредиты на образование или ипотечные кредиты. Люди, которые находятся ближе к окончанию экономического жизненного цикла, активно делают сбережения. Кривая Лоренца и коэффициент Джини не учитывают жизненный цикл, поэтому этот показатель степени неравенства доходов в обществе не является точной оценкой степени неравенства доходов. Во-вторых, на доходы индивидов влияет экономическая мобильность. Экономика США является примером экономики возможностей, когда индивид из низов может благодаря сочетанию усердия, таланта и удачи, стать очень успешным человеком, и история знает множество подобных примеров.

Некоторые равнее: что такое коэффициент Джини и зачем он нужен

По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него.

По результатам видно, что модель с дополнительным фактором предсказала с меньшей ошибкой.

Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини.

У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Для понимания доказательства необходимо базовое понимание метрики ROC-AUC — что это вообще такое, как строится график и в каких осях.

В первом случае государству нужно подсчитать, сколько требуется заложить в бюджет на социальные выплаты например, пособия малоимущим и субсидии на оплату ЖКХ и пенсии. Во втором — посмотреть динамику потребления и сделать экономические прогнозы. Величина прожиточного минимума зависит от региона и даже социальной принадлежности получателя. Всего есть три социально-демографические группы, для которых определяется прожиточный минимум: трудоспособное население, пенсионеры и дети.

Отдельно он рассчитывается «в расчёте на душу населения». Последнее название напоминает нам, что прожиточный минимум — это статистическая величина, выполняющая конкретную роль при составлении бюджета. В России государство использует абсолютный подход к бедности.

Если коэффициент Джини равен 0, это означает, что все люди имеют одинаковый доход и неравенство доходов отсутствует. Коэффициент Джини является важным инструментом для измерения и сравнения уровня неравенства доходов между разными странами или внутри одной страны в разные периоды времени. Он позволяет оценить эффективность политик и мер, направленных на снижение неравенства и создание более справедливого общества. Использование коэффициента Джини позволяет не только оценить уровень неравенства доходов, но и выявить его причины и последствия. Это помогает разрабатывать более эффективные политики и меры по снижению неравенства и созданию более справедливого и устойчивого общества. Тенденции неравенства доходов в России Неравенство доходов в России является одной из важных проблем современного общества.

В последние десятилетия наблюдаются определенные тенденции, которые влияют на распределение доходов в стране. Увеличение неравенства доходов Согласно данным, неравенство доходов в России увеличивается. Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. Это связано с различными факторами, такими как экономический рост, изменение структуры занятости, налоговая политика и другие. Рост доходов верхних слоев населения Одной из основных причин увеличения неравенства доходов в России является рост доходов верхних слоев населения. Богатые люди получают все больше доходов, в то время как доходы бедных слоев населения остаются на относительно низком уровне. Это связано с ростом доходов от предпринимательской деятельности, инвестиций и других источников. Увеличение разрыва между городом и сельской местностью Неравенство доходов также проявляется в разрыве между городом и сельской местностью. В городах доходы обычно выше, чем в сельской местности, что приводит к увеличению разрыва между этими регионами.

Это связано с различиями в доступе к образованию, здравоохранению, инфраструктуре и другим ресурсам. Влияние социальных и экономических факторов Неравенство доходов в России также зависит от различных социальных и экономических факторов. Например, образование, профессия, возраст, пол и другие факторы могут влиять на доходы людей. Также важную роль играют налоговая политика, социальные программы и другие государственные меры, направленные на снижение неравенства. В целом, тенденции неравенства доходов в России указывают на необходимость принятия мер для снижения разрыва между богатыми и бедными слоями населения. Это может включать в себя улучшение доступа к образованию и здравоохранению, создание равных возможностей для всех граждан, реформу налоговой системы и другие меры, направленные на создание более справедливого общества. Факторы, влияющие на неравенство доходов в России Неравенство доходов в России обусловлено множеством факторов, которые влияют на распределение доходов между различными слоями населения. Ниже приведены некоторые из основных факторов, которые оказывают влияние на неравенство доходов в России: Различия в заработной плате Одним из основных факторов, влияющих на неравенство доходов, являются различия в заработной плате.

Коэффициент Джини, значение по странам мира и в России

В России вырос уровень доходного неравенства Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе.
Коэффициент Джини. Из экономики в машинное обучение Самым распространенным показателем измерения уровня экономического неравенства коэффициент является коэффициент Джини.
Экономика. 10 класс В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов.
В России зафиксирован рост доходного неравенства Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше.
Доверительный интервал коэффициента Джини. Что это? Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход.

Коэффициент джини в России

Насколько равномерно происходил рост богатства швейцарцев показывает так называемый «коэффициент Джини» (Gini-Koeffizienten). Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения. Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.). Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры.

Неравенство и бедность

В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов. Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают. Коэффициент Джини (индекс концентрации доходов) — статистический показатель для оценки экономического равенства. Коэффициент Джини показывает, насколько фактическое распределение доходов населения отклоняется от показателя их равномерного распределения.

Похожие новости:

Оцените статью
Добавить комментарий