Новости атомная батарейка

Российские учёные из НИТУ "МИСиС" создали атомную батарейку, способную прослужить до 50 лет.

Вечный заряд: российские ученые создают батарейку, способную работать десятилетиями

Уникальность атомной батарейки еще и в размере. В сравнении с литий-ионными аккумуляторами, батарейка на основе никеля-63 в 30 раз компактнее. Ядерная батарейка на основе радиоизотопного термо электрического генератора РИТЭГ изобретен и применяется в космосе и в МО более 50 лет. Такая атомная батарейка будет экологически безопасна и безвредна для человека за счёт производимого мягкого бета-излучения (и отсутствия опасной гаммы).

Создана самая маленькая ядерная батарея — с ней смартфоны будут работать 50 лет без подзарядки

Ядерные, или радиоизотопные, или атомные батареи — это автономные источники электропитания, способные работать без подзарядки годами. Создание такого источника, востребованного в различных отраслях от космоса до медицины, — одно из перспективных направлений в физике. Его реализация позволила использовать процесс преобразования энергии во всем объеме материала, что увеличивает эффективность преобразования и открывает широкие возможности масштабирования данных элементов для получения больших мощностей или миниатюризации. Это обстоятельство дает право рассматривать данный подход к созданию ядерных батарей с энергиями до единиц кВт как универсальный. Ядерные батарейки — это источники тока, в которых энергия радиоактивного распада метастабильных ядер преобразуется в электричество. Выбор ядра для атомной батареи из широкого спектра радионуклидов, используемых в радиоизотопной энергетике, зависит от конкретной цели, для которой создается источник питания, режима его эксплуатации и целого ряда других условий. Области применения ядерных батарей разнообразны: в ближайшем будущем ядерные батарейки станут незаменимы на территориях, удаленных от инфраструктуры, например, в Арктике, на больших глубинах, на газо- и нефтепроводах большой протяженности, в космосе, а также в связи и медицине — там, где нужен длительный мониторинг без возможности подзарядки или замены источников энергии. Кроме высокой удельной мощности, важны также простота и удобство наработки радионуклида например, в атомном реакторе и такой параметр, как отсутствие гамма-излучения.

При этом появилась возможность контроля обратного тока, существенно влияющего на общую мощность батареи. Так же увеличена в 14 раз эффективная площадь преобразования бета-излучения, что увеличило общий выходной ток. Эксперты отмечают уникальность, инновационность и перспективность российской разработки. Она может найти массу применений в самых разных сферах. Следите за нашими статьями в удобном для вас формате Метки.

Их можно будет масштабировать для мобильных телефонов и до транспортных систем, а также для нужд электроэнергетики. Разработка имеет специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный центр, работающий на переработанных ядерных отходах углерода-14. Бета-излучение изотопов преобразуется в электрический ток. Испытания батарейки показали, что радиационный фон остается в норме, а сама она не выделяет углекислый газ. При этом ее стержень «фонит» до 28 тыс. Разные форм-факторы атомных батереек Фото: ndb. Их конструкция работает на никелевом бета-гальваническом элементе, который служит около 20 лет. Эти элементы можно размещать на одежде и использовать их энергию для зарядки мобильных устройств. Термохимические ячейки Фото: misis. Эти панели можно будет устанавливать в окнах домов и офисов. Они будут аккумулировать энергию солнечного света в течение дня. А в 2020 году Tesla презентовала собственный инвертор солнечной энергии, который дополнит линейку домашних солнечных батарей компании. Он будет преобразовывать солнечную энергию в энергию постоянного тока, а затем — в энергию переменного тока для бытового потребления. В зависимости от числа трекеров точки максимальной мощности, оно сможет выдавать от 3,8 кВт до 7,6 кВт мощности. Инвертор Tesla Фото: electrek. Система объединит солнечные тепловые коллекторы с параболическими зеркалами фокусируют лучи в одной точке , подземное хранилище тепла в осадочных породах образуются при низких температурах и давлении и электрогенерирующее оборудование на пару в виде трубок и турбины. При нагревании солнцем вода в трубках будет испаряться, а пар будет входить в турбину и одновременно закачиваться под землю, разогревая осадочную породу. Ночью вода под землей будет испаряться уже под воздействием разогретой породы. Получаемый пар используют для выработки электроэнергии.

Российские специалисты разработали "атомную батарейку", имеющую повышенную мощность 17 Января 2023 Специалисты российского НИТУ "МИСиС" практически завершили работы по перспективному автономному и при этом миниатюрному источнику питания, выполненному в виде плоской "батарейки" с компактными размерами, способной проработать не менее 20 лет. Новая разработка имеет бетавольтаический элемент с двусторонним нанесением радиоактивного элемента и оригинальной трехмерной структурой, из-за чего данный источник питания имеет небольшие размеры, повышенную удельную мощность, а также низкую себестоимость при массовом производстве.

В России разработана атомная батарейка

Китай представил ядерную батарейку размером с монету, которой хватит на 50 лет В итоге атомная батарейка способна проработать не менее 50 лет.
Атомная батарейка в современном мире Учитывая, что батарейка которая указана в новости будет в продаже только в конце этого года, скорее у вас была другая батарейка, и может не ядерная, хз.
В Красноярском крае разработана атомная батарейка, работающая 50 лет Компактные «атомные батарейки» со сроком службы до 50 лет крайне востребованы в приборах и системах, где замена источников питания затруднительна, высокозатратна или.
Без зарядки 50 лет: в Китае разработали ядерную батарею Атомные батарейки, то есть источники электрического тока, получающие энергию от распада радиоактивных веществ.

В России разработана атомная батарейка

Российские ученые создали атомную батарейку, которая может работать 20 лет — Нож Атомные батарейки, то есть источники электрического тока, получающие энергию от распада радиоактивных веществ.
В МИФИ создали прототип плутониевой батарейки С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи.
В России создали «ядерную батарейку» для космоса и авиации Ученые НИТУ «МИСиС» разработали атомную батарейку с повышенной в десять раз мощностью.
80 лет без подзарядки: в России создали атомную батарею Российская ядерная батарейка в отличие от традиционных источников питания получает электрическую энергию в результате естественного распада радиоактивных изотопов.

Ядерное питание: российские учёные создали атомную батарейку повышенной мощности

В России создали атомную батарейку со сроком службы до 20 лет Образец "ядерной батарейки" состоял из двухсот алмазных преобразователей, чередуемых слоями фольги из никеля-63 и стабильного никеля.
Российские специалисты разработали "атомную батарейку", имеющую повышенную мощность В 1975 г. был впервые имплантирован кардиостимулятор РЭКС-А1, где источником питания служила плутониевая атомная батарейка.
Российские физики уплотнили энергию ядерной батарейки в десять раз Атомная батарейка состоит всего из двух ключевых компонентов: источника бета-излучения и полупроводникового преобразователя.
Неоружейный плутоний: российские ученые создали уникальную ядерную батарейку Ядерная батарейка на основе радиоизотопного термо электрического генератора РИТЭГ изобретен и применяется в космосе и в МО более 50 лет.

Ученые создали атомную батарейку. Она может работать 20 лет

Ранее канал «Наука» рассказал об изотопе урана. На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc.

Радиоактивный элемент наносится с двух сторон так называемого планарного p-n-перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадёт» мощность. Микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз. Изделие способно работать до двадцати лет.

Хлопина, также входящем в научный дивизион «Росатома», полученный материал очистили и создали рабочий газ для каскада газовых центрифуг Электрохимического завода. Высокий уровень обогащения по изотопу никель-63 необходим для разработки источников энергии длительного срока действия, производство которых планирует организовать «Росатом» на одном из своих предприятий. Компактные «атомные батарейки» со сроком службы до 50 лет крайне востребованы в приборах и системах, где замена источников питания затруднительна, высокозатратна или небезопасна.

Потенциальные области применения таких батареек — космическая техника, медицина, телекоммуникационное оборудование, продукция военно-промышленного комплекса, объекты промышленности и инфраструктуры.

Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах, а также в труднодоступных или абсолютно не доступных местах: в космосе, под водой, в высокогорных районах. В настоящий момент разработчики завершают процедуру международного патентования изобретения, а само устройство уже признано зарубежными экспертами.

Российские ученые создали уникальную атомную батарейку

Теперь пришло время рассказать о компактной атомной батарее созданной российскими учеными. Образец "ядерной батарейки" состоял из двухсот алмазных преобразователей, чередуемых слоями фольги из никеля-63 и стабильного никеля. Заново изобрели электричество: батарейка с сердечником из ядерных отходов будет работать 28 тысяч лет. Ученые НИТУ «МИСиС» разработали атомную батарейку с повышенной в десять раз мощностью. В России создали прототип атомной батареи, которая может работать без подзарядки 80 лет.

Российская армия получит портативные атомные источники электропитания военной техники

"Росатом" изготовил первую опытную партию компактных ядерных батареек. Миниатюрную атомную батарейку разработали учёные НИТУ «МИСиС». Причём батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах. Этим они отличаются от атомных реакторов, в которых для этого используется управляемая цепная ядерная реакция. Миниатюрную атомную батарейку разработали учёные НИТУ «МИСиС». В Китае изобрели атомную батарейку BV100, которая может работать до 50 лет без подзарядки.

Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии

Сам изотоп добывают в ядерном реакторе из Никеля-62 - природного изотопа. Батареи в основу которых ляжет данное вещество будут производить низкое B-излучение, поглощение которого будет происходить уже внутри источника питания и не будет нести вред живым существам. Принцип работы заключается бета-вольтаическом элементе, который схож с фото-электрическим эффектом. Только здесь эллектронно-дырочные пары образуются в кристаллической решетке полупроводника и образуются под влиянием бета-частиц, а не фотонов.

Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах, а также в труднодоступных или абсолютно не доступных местах: в космосе, под водой, в высокогорных районах.

В настоящий момент разработчики завершают процедуру международного патентования изобретения, а само устройство уже признано зарубежными экспертами.

Но американская технология существенно отличается от российской. Два прототипа бета-гальванических батарей значительно мощнее российских, хоть и работают по схожему принципу — преобразовывают радиоактивное бета-излучение в электрический ток. Репетиция конца света. Как российские подлодки стреляют ядерным залпом В компании NDB разработчик батарейки утверждают, что продукт позволит "вечно" снабжать энергией абсолютно любое устройство: от смартфона до небольшой баллистической ракеты, которая может автономно и скрытно храниться где-нибудь недалеко от противника. Прототипы атомной батарейки NDB уже прошли испытания в Ливерморской национальной лаборатории и "атомной" лаборатории Кембриджского университета. Американцам, кстати, принадлежит и пальма первенства по внедрению такой технологии на военные и гражданские спутники и космические аппараты. Первые образцы атомных батареек устанавливали на спутники Transit 4A и 4B. В обоих случаях учёные подтвердили, что эффективность энерговыделения у прототипов NDB оказалась на уровне 40 процентов.

Для сравнения: КПД конкурирующих батарей колеблется в районе 15 процентов. С американской атомной батарейкой всё почти идеально — она не превышает в размерах обычный микрочип, не требует обслуживания и позволяет обеспечить значительным количеством электроэнергии целую серверную крупного предприятия. Единственный недостаток американского устройства — быстрый выход из строя. Научный сотрудник факультета физики Сямэньского университета в Китае Константин Ян отметил, что этот ресурс может вырабатываться за несколько лет. Заявляемый ресурс — почти 30 тыс. Это очень много, но с учётом отсутствия буферных зон — конденсаторов или литийионных аккумуляторов, большая часть электроэнергии будет просто уходить в никуда. Суть в том, что пока не будет придумано хранилище для излишков энергии, смысла в таких батарейках нет.

Сейчас отечественные разработчики занимаются получением международного патента на свое изобретение, которое, нужно отметить, признали ведущие мировые эксперты, а в Research and Markets российский "МИСиС" назвали одним из основных участников глобальной отрасли бетавольтаических батарей.

Батарейка для Севморпути будет работать на плутонии-238

Его вес равен 250 миллиграмм. Маленький размер — это большой плюс для Российской атомной батарейки. Сложно отыскать нужные габариты. Большая толщина изотопа не даст появившимся в нем электронам выйти. Маленькая толщина не выгодна, так как снижается количество бета распадов в единицу времени. То же самое и с толщиной полупроводника. Лучше всего батарейка функционирует при толщине изотопа около 2-х микрон. А алмазного полупроводника 10 микрон. Но то что удалось достигнуть ученым на данный момент не является пределом. Выхлоп можно повысить еще минимум в три раза.

А это значит, что ядерную батарейку можно сделать в 3-и раза дешевле. Ядерная батарейка на углероде 14 работающая 100 лет У данной атомной батарейке по сравнению с другими радиационными источниками энергии имеются следующие преимущества: Дешевизна. Долгий срок работы до 100 лет.

Излучение, вызванное распадом этого элемента, считается безопасным для человека. Вырабатывает NanoTritium очень мало — от 50 до 300 нА. Однако такой аккумулятор подойдет для питания множества микроэлектронных устройств. Он уже применяется в системах с ограниченным доступом. В труднодоступных и опасных местах, о которых хочется забыть на пару десятков лет.

Стоит один аккумулятор свыше 1000 долларов США. Эта технологии позволила значительно уменьшить токи утечки, а, следовательно, и потребление энергии. Первоначально high-k диэлектрики планировалось масштабно применять в интегральных схемах, начиная с 2007 года. То есть одновременно с коммерческой реализацией 45-нм техпроцесса. Действительно, по факту первыми центральными процессорами, оснащенными этой технологией, стали решения поколения Penryn. Что дает использование high-k диэлектриков? Уменьшение токов утечек минимум в 100 раз. Дело в том, что диоксид кремния SiO2 , традиционно использовавшийся в качестве диэлектрика для создания затвора транзистора на протяжении нескольких десятков лет, просто-напросто исчерпал весь свой потенциал.

Так, уже при проектировании 65-нм специалистам из Intel удалось создать слой диэлектрика из диоксида кремния толщиной 1,2 нм.

Это также требует очень много денег, чтобы контролировать безопасность в течение этих многих лет. Так как мы используем графитовые реакторы, Англия создала 95000 тон графитовых блоков содержащих радиацию. Этот графит только один из форм углерода, простой и стабильный элемент, но если положить эти блоки в высоко радиоактивное место, то тогда часть углерода превращается в углерод14. Углерод14 может превратиться обратно в обычный углерод12 когда её дополнительная энергия уйдет. Но это очень долгий процесс потому что период полураспада углерода14 составляет 5730 лет. Это значит, что возможно убрать большинство радиации нагревая их - большинство радиации выходит как газ, который потом может быть собран. Оставшиеся графитовые блоки все-равно радиоактивны, но не так сильно, это значит, что утилизировать их будет проще и дешевле. Радиоактивный углерод14 в форме газа, может быт переделан при низких давлениях и высоких температурах в алмаз - это еще одна форма углерода. Искусственные алмазы, сделанные из радиоактивного углерода, излучают поток бета-излучения, которое может создать электрический ток.

Это дает нам ядерную энергию алмазной батареи. Там нет движущейся частей, ее не надо обслуживать, алмаз просто производит электричество. Так как алмаз самое твердое вещество на свете, то ни какое другое вещество не может дать такую защиту для радиоактивного углерода14. Поэтому снаружи можно обнаружить очень маленькое количество радиации. Но это почти то же самое количество радиации, сколько выделяет банан, так что оно совсем безопасно. Эти бриллиантовые батареи будут лучше всего использованы там, где нельзя менять обычные батарей. Например в спутниках для космических исследований или для имплантированных устройств, таких как кардиостимуляторы.

Если бы руководство Росатома впомнило, что российские пенсионеры живут в режиме "день простоять и ночь продержаться", то, наверно, осознало бы тот нелепый диссонанс между космическим сроком службы и стоимостью. Это наталкивает на мысль, что уважаемый Павел Зайцев активно осваивает средства, выделенные на НИОКР, ничуть не задумываясь о конечных пользователях.

Аналогичную оценку "изобретения" Росатома дают пользователи социальных сетей: Едва ли ее где-нибудь получится использовать. Я более чем уверен, что бюджет как всегда освоили, часть его потратили на презентацию, а само изделие никто никогда не увидит : Заявленный срок службы 50 лет , как мы догадались - это как раз половина периода полураспада Ni63 100лет. Такую же логику используют ученые Бристольского университета в концептуальном ролике. В отличие от батарейки Росатома, бристольская атомная батарейка использует изотоп C14 и может работать 5730 лет! В Бристольском университете правда забыли поделить на 2, но и 2865 лет слишком много для кардиостимулятора. Уникальность бристольской концепции заключается в том, что проблема ядерных отходов решается путем переработки их в ядерные батарейки. Если внимательно прослушать и перевести текст этого ролика, то открывается гораздо больше интересной информации. Сначала подробно рассказывается о происхождении изотопа С14 С 1940 Англия сделала много ядерных реакторов научного, военного и гражданского назначения. Все эти реакторы используют уран как топливо, а внутри реактор сделан из графитовых блоков.

Эти графитовые блоки используются в процессе ядерного расщепления, позволяя контролировать цепную реакцию, которая даёт постоянный источник тепла. Это тепло потом используется, чтобы превратить воду в пар, которое потом крутит турбины, чтобы сделать электричество. Ядерные электростанции производят ядерные отходы, которые необходимо безопасно утилизировать. Надо просто подождать, чтобы эти отходы перестали быть радиоактивными. К сожалению, это занимает тысячи и миллионы лет.

День, когда появилась атомные батарейки с зарядом на 20 лет

Компактные «атомные батарейки» со сроком службы до 50 лет крайне востребованы в приборах и системах, где замена источников питания затруднительна, высокозатратна или. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Уникальность атомной батарейки еще и в размере. В сравнении с литий-ионными аккумуляторами, батарейка на основе никеля-63 в 30 раз компактнее.

Похожие новости:

Оцените статью
Добавить комментарий