Ранее считалось, что на Земле способная к размножению жизнь возникла на основе РНК-молекул (так называемая, гипотеза РНК-мира). Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили о новых доказательствах в пользу гипотезы РНК-мира.
Американские ученые выявили новое объяснение возникновения жизни на Земле
Опубликовано 29 декабря 2020, 19:16 a Ученые нашли новое потенциальное объяснение возникновению жизни на Земле Возможно, жизнь на Земле возникла из смеси РНК и ДНК Издание Angewandte Chemie International Edition поделилось результатами исследования ученых Института Скриппса, в рамках которого было найдено новое потенциальное объяснение возникновению жизни на Земле. В ходе исследование специалисты усомнились в достоверности гипотезы РНК-мира, предполагающей то, что первыми способными к размножению структурами были РНК-молекулы.
На то, чтобы подобрать набор правил, достаточно надёжных для выполнения такой задачи, должно было уйти слишком много времени у одной только РНК, говорит Питер Уиллс, соавтор Картера из Оклендского университета в Новой Зеландии — если мир РНК мог бы дойти до такого состояния, что ему кажется маловероятным. С точки зрения Уиллса, РНК могла бы стать катализатором своего собственного формирования, что сделало бы её «химически рефлексивной», но ей не хватало «вычислительной рефлексивности». Питер Уиллс, биофизик из Оклендского университета в Новой Зеландии «Система, использующая информацию так, как организмы используют генетическую информацию — для синтеза собственных компонентов — должна содержать рефлексивную информацию», — сказал Уиллс. Рефлексивная информация, по его определению, это такая информация, которая «будучи закодированной в систему, создаёт компоненты, проводящие именно это определённое декодирование». РНК из гипотезы мира РНК, добавил он, — это простая химия, потому что она неспособна контролировать свою химию. Природе нужно было найти другой способ, лучший короткий путь к созданию генетического кода. Картер и Уиллс считают, что они открыли этот короткий путь.
Он зависит от небольшой петли обратной связи, которая не выросла бы только из РНК, а могла появиться из комплекса пептидов и РНК. Приобщаем к делу пептиды Картер обнаружил намёки на этот комплекс в середине 1970-х, когда в институте узнал, что определённые структуры, встречающиеся в большинстве белков, «правосторонние». Атомы в структурах могли быть организованы двумя эквивалентными способами, зеркально отличающимися друг от друга, но все структуры используют только один способ. Картер начал считать РНК и полипептиды дополняющими друг друга структурами, и смоделировал комплекс, в котором «они были созданы друг для друга, как рука и перчатка». Это подразумевает возможность элементарного кодирования, основу для обмена информацией между РНК и полипептидами. Он работал над набросками того, как этот процесс мог выглядеть, экстраполируя назад от современного, гораздо более сложного генетического кода. Когда гипотеза, которую в 1986 году назвали «мир РНК», набрала популярность, Картер, по его признанию, был выбит из колеи. Ему казалось, что его мир пептидов и РНК, предложенный за десять лет до этого, полностью проигнорировали.
Наиболее убедительным доказательством является то, что в рибосоме , состоящей из белков и рибосомной РНК, синтез белка осуществляется не ферментами которые являются белками , а рибосомной РНК , которая в данном случае ведет себя как рибозим. Вторым важным тестом является явление сплайсинга , когда молекула пре-РНК способна разрезать себя без вмешательства ферментов, хотя вмешательство белков, как и в случае с рибосомами, стабилизирует и действует как «каркас» для реакции. Опять же, вироиды , простейшие самовоспроизводящиеся объекты, состоят из РНК, которая действует как рибозим. РНК также представляет собой единственный генетический материал некоторых вирусов, таких как ретровирусы , что доказывает, что только РНК может составлять геном.
Эти и другие свидетельства, присутствующие в современных живых организмах, убедительно подтверждают идею о том, что РНК была последней самореплицирующейся молекулой до появления ДНК [13]. Хотя нуклеотиды не были идентифицированы в классическом эксперименте Миллера-Юрея , есть и другие эксперименты, такие как эксперимент Джоана Оро , которые подчеркивают их возможный автономный синтез в условиях окружающей среды, характерных для происхождения жизни. В последующем эксперименте в менее восстановительной атмосфере, чем у Юри, были получены нуклеотиды [14] , что еще больше укрепило гипотезу мира РНК. Эта гипотеза также подтверждается исследованиями очень простых рибозимов, таких как вирусные Q-бета РНК , которые продемонстрировали способность к самовоспроизведению даже под очень сильным селективным давлением.
Фактически ультрафиолетовые лучи одновременно вызывают полимеризацию РНК и расщепление других типов органических молекул, потенциально способных катализировать деградацию РНК например, рибонуклеаз. Во всяком случае, это аспект, еще не подтвержденный экспериментальными наблюдениями. Противоположные аргументы Аргументы, противоречащие гипотезе, основаны на маловероятности спонтанного образования молекул РНК, а также на том, что цитозиновое основание недостаточно проверено в методах пребиотического тестирования, так как легко подвергается гидролизу. Пребиотические условия, необходимые для самопроизвольного образования трех элементов, составляющих нуклеотид, отличаются друг от друга.
Азотистые основания образуются в средах, отличных от тех, которые необходимы для образования сахаров, присутствующих в скелете нуклеиновой кислоты. По этой причине было бы необходимо предположить спонтанный синтез двух классов молекул в разных средах с последующим их объединением. Однако надо сказать, что в водной среде такое соединение маловероятно, так как азотистые основания и сахара в любом случае не способны реагировать. Третий элемент, фосфат , сам по себе крайне редко встречается в природных растворах, так как быстро выпадает в осадок.
И даже если он присутствует, он должен сочетаться с нуклеозидом на правильном гидроксиле.
Это показывает, как жизнь может возникнуть в лаборатории или, теоретически, в любой точке Вселенной", — заявил Джеральд Джойс, президент Института Солка, в статье, опубликованной в Washington Post. Многообещающая, даже фундаментальная работа Нам еще очень далеко до того, чтобы увидеть живое существо, даже одноклеточное, рожденное из пробирки. Кроме того, процесс репликации сложен в реализации. Если скопированная РНК будет слишком точно соответствовать источнику, вариации, необходимые для эволюции согласно Чарльзу Дарвину, будут невозможны. Слишком несовершенная копия приведет к потере генетической информации и, следовательно, к генетической нестабильности.
Ученые предположили новое объяснение возникновения жизни на Земле
Ученые Института биологических исследований Солка обнаружили доказательства гипотезы РНК-мира, согласно которой ключевым предшественником живых клеток стали самовоспроизводящиеся молекулы РНК. Сторонники гипотезы «мира РНК» указывают на две проблемы в этой теории. Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно. Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. Гипотеза мира РНК — Структура рибозима — молекулы РНК, выполняющей функцию катализа Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации. Проблемы гипотезы РНК-мира, по А.С. Спирину: КОГДА, ГДЕ И В КАКИХ УСЛОВИЯХ МОГ ВОЗНИКНУТЬ И ЭВОЛЮЦИОНИРОВАТЬ МИР РНК?
Ненаучно: Самозарождение
- Биохимики спорят о том, не настаёт ли конец эпохи РНК / Хабр
- Копирование других молекул РНК
- РНК-мир: открыто происхождение жизни на Земле
- РНК-переключатели
Учеными из США найдены новые доказательства РНК-мира
И там, действительно, срасталось очень хорошо. Самоорганизовавшись в процессе экспериментов из одних лишь экологически чистых, сугубо природных компонентов, РНК начинала размножаться и эволюционировать, приспосабливаясь к условиям. Дальнейший путь от этой молекулы к ДНК и к примитивному организму в лабораторных условиях воспроизведён не был, поскольку предполагал бы длительное «самообучение» молекул тому, катализ синтеза чего именно, кроме самих себя, им надлежит осуществлять. Но проблем в этой области не предвиделось. Возникновение клетки заслуживающее, впрочем, отдельного рассмотрения являлось очевидным и неизбежным результатом накопления молекулами генетической информации. Однако, РНК-мир обладал и крайне неприятной слабостью. Все вышеупомянутые чудеса происходили в пробирке. Смоделировать естественные условия, в которых все нужные вещества собрались бы в одном месте в необходимой для протекания реакции синтеза РНК концентрации, оказалось невозможно. Надежды, связываемые с «чёрными курильщиками» зарождение жизни в горячих ключах , не оправдывались.
Ученые обнаружили новые доказательства гипотезы РНК-мира 06:36 01. Ученые из Брукхейвенской национальной лаборатории представили новые данных, подтверждающие гипотезу РНК-мира. Согласно этой гипотезе, первые репликаторы на Земле были представлены РНК-молекулами, способными к самовоспроизведению без участия белковых ферментов В сообщении, опубликованном в журнале eLife, ученые описывают механизм, согласно которому рибозимы могут возникать спонтанно и служить затравками для синтеза более длинных цепей РНК.
Ученые из Брукхейвенской национальной лаборатории раскрывают новые доказательства гипотезы РНК-мира, согласно которой первые репликаторы на Земле были РНК-молекулами Источник фото: Фото редакции Опубликованная в журнале eLife статья описывает открытия, позволяющие понять, как могли возникнуть структуры способные к самовоспроизведению без участия белковых ферментов. Исследования показали, что рибозимы способны к самостоятельному образованию, при этом для их функционирования требуется лишь несколько консервативных оснований.
Ученые разработали модели, имитирующие возможные пути эволюции предшественников РНК, лишенных каталитической активности.
Делайте Ваш Заказ! Метод молекулярной селекции обладает очень большими возможностями. С его помощью можно решать задачи поиска нужных молекул даже в том случае, если исходно нет идеи, как такие молекулы должны быть устроены. Однако, если придумать процедуру отбора, их можно выделить по принципу требуемых свойств, а затем уже заняться и вопросом, как эти свойства достигаются. Продемонстрируем это на примере выделения РНК, способных связываться с клеточными мембранами и модулировать их проницаемость. Древние рибоциты должны были поглощать «питательные» вещества из окружающей среды, удалять продукты метаболизма и делиться в ходе размножения.
И все эти процессы требуют управления проницаемостью мембран. Поскольку мы полагаем, что никаких других функциональных молекул, кроме РНК, в рибоцитах не было, какие-то РНК обязательно должны были взаимодействовать с мембранами. Однако с химической точки зрения они совершенно не подходят для роли регуляторов проницаемости мембран. Мембраны современных клеток и липосом, построенные из жирных кислот, несут отрицательный заряд. Поскольку РНК также заряжены отрицательно, то по закону Кулона они должны отталкиваться от липидной поверхности и тем более не могут проникать в глубь липидного слоя. Эти положительно заряженные ионы могут играть роль мостиков, располагаясь между отрицательно заряженными группами на поверхности мембраны и фосфатными группами нуклеиновой кислоты. Так маленькие враги привязали Гулливера к земле множеством тоненьких веревок.
Тут и помог исследователям метод молекулярной селекции. Из библиотеки РНК удалось выделить не-сколько молекул, которые очень успешно связывались с мембранами, а при достаточно высокой концентрации — даже разрывали их! Эти РНК обладали необычными свойствами. Они как бы помогали друг другу: смесь молекул разных сортов связывалась с мембранами гораздо лучше, чем молекулы одного сорта. Все стало ясным после изучения вторичных структур этих РНК. Этот механизм мог использоваться и для удерживания эволюционирующих систем РНК в виде колоний на поверхностях еще до того, как эти системы обзавелись изолирующей мембраной. Множество данных свидетельствует о том, что «мир РНК» действительно существовал.
Правда, не совсем ясно — где. Некоторые специалисты полагают, что начальные этапы эволюции происходили не на Земле, что на Землю были занесены уже функционально активные системы, которые приспособились к местным условиям. Однако с химической и биологической точки зрения это не меняет сути дела. В любом случае остается загадкой — в результате каких процессов в окружающей среде рибоциты образовались и за счет каких компонентов существовали. Ведь требуемые для жизни рибоцитов нуклеотиды — сложные молекулы. Трудно представить, что эти вещества могли образовываться в условиях пребиотического синтеза. Вполне возможно, что древние РНК значительно отличались от современных.
К сожалению, следов этих древних РНК экспериментально обнаружить нельзя, речь идет о временах, удаленных от нас на миллиарды лет. Даже скалы тех времен давно «рассыпались в песок». Поэтому речь может идти только об экспериментальном моделировании процессов, которые могли протекать на самых ранних стадиях молекулярной эволюции. Почему произошел переход от «мира РНК» к современному миру? Белки, располагающие гораздо большим набором химических групп, чем РНК, являются лучшими катализаторами и структурными элементами. По-видимому, некоторые древние РНК стали использовать белковые молекулы в качестве «орудий труда». Такие РНК, способные к тому же синтезировать для своих целей полезные молекулы из окружающей среды, получали преимущества в размножении.
А затем эволюция сделала свое дело: возник аппарат трансляции, и постепенно ответственность за катализ перешла к белкам.
ELife: выявлено самовоспроизведение молекул, подтверждающее гипотезу РНК-мира
Это убедительно говорит о передаче этих 355 генов, через поколения и поколения, от общего предка — примерно того времени, когда жил последний универсальный общий предок. Эти 355 генов включают некоторые для использования протонного градиента, но для генерации оного — нет, как и предсказывали теории Расселла и Мартина. Более того, LUCA, похоже, был адаптирован к присутствуют химических веществ вроде метана, что наводит на мысли, что он населял вулканически активную среду — по типу жерла. Сторонники гипотезы «мира РНК» указывают на две проблемы в этой теории. Одну можно поправить; другая может быть фатальной. Гидротермальные источники Первая проблема в том, что экспериментальных доказательств описанных Расселлом и Мартином процессов нет.
У них есть пошаговая история, но ни один из этих шагов не наблюдался в лаборатории. Он построил «реактор происхождения жизни», который имитирует условия внутри щелочного источника. Он надеется увидеть метаболические циклы, а может даже и молекулы вроде РНК. Но пока еще рано. Вторая проблема заключается в расположении источников в глубоком море.
Как отмечал Миллер в 1988 году, длинноцепочечные молекулы вроде РНК и белков не могут формироваться в воде без вспомогательных ферментов. Для многих ученых это фатальный аргумент. И все же Расселл и его союзники остаются оптимистами. И только в последнее десятилетие на первый план вышел третий подход, подкрепленный серией необычных экспериментов. Он обещает нечто, чего не удалось добиться ни «миру РНК», ни гидротермальным источникам: способ создать целую клетку с нуля.
Часть пятая: так как же всё-таки создать клетку? К началу 2000-х годов ученые выделили две ведущие идеи о том, как могла появиться жизнь. Сторонники «РНК-мира» были убеждены, что жизнь началась с самовоспроизводящейся молекулы. В то же время ученые в лагере «сначала метаболизм» считают, что жизнь могла появиться в гидротермальных жерлах на дне океана. И все же на передний план вышла третья идея.
Каждое живое существо на Земле состоит из клеток. Каждая клетка — это по сути мягкий шарик, мешочек, с жесткой внешней стенкой, или «мембраной». Задача клетки — удерживать все предметы первой необходимости вместе. Если наружная стенка порвется, внутренности выльются наружу и клетка умрет — так же, как и выпотрошенный человек. Человечество изменило сушу до неузнаваемости.
Но что насчет воды? Наружная стенка клетки настолько важна, что некоторые исследователи происхождения жизни даже считают, что она появилась прежде всего. Они считают, что подходы «сперва генетика», который мы обсудили во второй части, и «сперва метаболизм», который мы обсудили в четвертой части, ошибочны. Все живые предметы состоят из клеток Идея Луизи проста, и с ней трудно спорить. Каким образом вы собрались создавать рабочую метаболическую систему или самовоспроизводящуюся РНК, каждый из которых опирается на наличие большого количества химических веществ в одном месте, если вы сначала не сделаете контейнер, который удерживает все молекулы вместе.
Если вы с этим согласны, есть только один способ, с которого могла начаться жизнь. Каким-то образом, в жаре и буре ранней Земли, неколько сырых материалов сложились в грубые клетки, или «протоклетки». Осталось только повторить это в лаборатории: создать простую живую клетку. Идеи Луизи можно проследить аж до Александра Опарина и рассвета науки о происхождении жизни в СССР, которых мы обсудили в первой части. Опарин подчеркнул тот факт, что некоторые химические вещества образуют сгустки — коацерваты — которые могут держать другие вещества внутри.
Он предположил, что коацерваты были первыми протоклетками. Любое жирное или маслянистое вещество будет образовывать сгустки или пленки в воде. Эти химические вещества известны в общем как липиды. Соответственно, гипотезу о том, что с них начала жизнь, назвали «липидным миром». Но просто сформировать сгустки недостаточно.
Они должны быть стабильными, уметь делиться на «дочерние» сгустки и хоть немного контролировать, что проходит внутрь и выходи наружу — и все это без сложных белков, которые используют современные клетки для этих задач. Появилась задача собрать такие протоклетки из всего необходимого материала. Несмотря на множество попыток за много лет, Луизи так и не сделал ничего хоть мало-мальски убедительного. И тогда, в 1994 году, он осмелился сделать дерзкое предположение. Он предположил, что первые протоклетки должны были содержать РНК.
Более того, эта РНК должна была уметь воспроизводиться внутри протоклетки. Как-то клетка все же появилась И вот, его гипотеза стала очень сложной и отошла от чистого подхода «сперва компартментализация». Но у Луизи были веские доводы. Клетка с внешними стенками, но без внутренностей, мало что может. Возможно, она могла бы делиться на дочерние клетки, но не передавала бы никакой информации о себе потомству.
Она могла начать развиваться и становиться более сложной только при наличии некоторых генов. Вскоре эта идея обрела сильного сторонника в лице Джека Шостака, работу которого на тему «мира РНК» мы изучили в третьей части. Луизи был членом лагеря «сперва компартментализация», Шостак поддерживал «сперва генетику», и много лет они не встречались с глазу на глаз. Почти вся жизнь одноклеточная «Мы встречались на собраниях на тему происхождения жизни и затевали эти длинные дискуссии на тему того, что было важнее и что пришло первым», вспоминает Шостак. Мы пришли к общему мнению, что для возникновения жизни важно иметь и компартментализацию, и генетическую систему».
В 2001 году Шостак и Луизи изложили свое видение этого единого подхода. В работе, опубликованной в Natire, они заявили, что должно быть возможность создать простую живую клетку с нуля, разместив реплицирующуюся РНК в обычной капле жира. Очень скоро Шостак решил полностью посвятить себя ей. Рассудив, что «мы не можем излагать эту теорию, ничем ее не подкрепив», он решил начать экспериментировать с протоклетками. Спустя два года Шостак и двое его коллег объявили о большом успехе.
Везикулы — это простые контейнеры, состоящие из липидов Они экспериментировали с везикулами: сферическими каплями с двумя слоями жирных кислот на внешней стороне и центральным жидким ядром. Пытаясь найти способ ускорить создание везикул, они добавили малые частички глины под названием монтмориллонит. Везикулы начали формироваться в 100 раз быстрее. Поверхность глины выступили катализатором, как некий фермент. Более того, везикулы могли поглощать как частицы монтморрилонита, так и цепи РНК с поверхности глины.
Теперь эти протоклетки уже содержали гены и катализатор, и все из одной простой добавки. Решение добавить монтмориллонит было принято не просто так. За несколько десятилетий много работ предположили, что монтмориллонит и подобные ему глины могли иметь важное значение для происхождения жизни. Кусок монтмориллонита Монтмориллонит — это обычная глина. В настоящее время она используется для самых разных дел, из нее даже кошачий наполнитель делают.
Образуется она, когда вулканический пепел расщепляется погодой. Поскольку ранняя Земля изобиловала вулканами, кажется вероятным, что на ней было и много монтмориллонита. Еще в 1986 году химик Джеймс Феррис показал, что монтмориллонит выступает катализатором, который помогает формироваться органическим молекулам. Позже он обнаружил, что глина также ускоряет формирование малых РНК. Заходите в наш специальный Telegram-чат.
Там всегда есть с кем обсудить новости из мира высоких технологий. И тогда Феррис предположил, что эта невзрачная глина могла быть местом зарождения жизни. Шостак принял эту идею и включил ее в работу, используя монтмориллонит для строительства своих протоклеток. Годом спустя Шостак обнаружил, что его протоклетки могут расти сами по себе. Чем больше молекул РНК оказывалось в протоклетке, тем выше было давление на наружную стенку.
Похоже, желудок протоклетки был забит и она была готова сходить по-большому. Чтобы компенсировать это, протоклетка приняла больше жирных кислот и включила их в стенки, благодаря чему раздулась еще больше и ослабила напряжение. Что важно, она взяла жирные кислоты из других протоклеток, в которых было меньше РНК, заставив их сократиться. Будто бы протоклетки соперничали и та, у которой было больше РНК, побеждала. Но если протоклетки могут расти, может они и делиться могут?
Сможет ли протоклетка Шостака воспроизвести себя? Клетки делятся на два Первые эксперименты Шостака показали, что способ деления протоклеток действительно есть. Если сжать ее в небольшом отверстии и вытянуть в трубочку, протоклетка разрывается, формируя «дочерние» протоклетки. Эта идея была неплохой, потому что в ней не участвовал никакой клеточный механизм: просто давление. Но такое решение было не самым лучшим, поскольку протоклетки теряли часть содержимого в этом процессе.
Это также означало, что первые клетки могли делиться лишь проталкиваясь через крошечные отверстия. Существует множество способов заставить везикулы делиться. Например, можно добавить сильный поток воды. Осталось только заставить протоклетки делиться и не терять кишки. В 2009 году Шостак и его студент Тинг Чжу нашли решение.
Они сделали немного более сложные протоклетки с наружными стенками в несколько слоев, напоминающие слои лука. Несмотря на такую сложность, эти протоклетки все еще было просто создать. Когда Чжу кормил их жирными кислотами, протоклетки росли и меняли форму, вытягиваясь в длинные канатоподобные цепочки. После того, как протоклетка становилась достаточно длинной, легкой приложенной силы достаточно, чтобы разбить ее на десятки мелких дочерних протоклеток. Более того, протоклетки могли повторять цикл постоянно, дочерние протоклетки росли и делились.
Эту часть проблему, похоже, решили. В последующих экспериментах Чжу и Шостак нашли еще больше способов заставить протоклетки делиться. Но все равно протоклеткам многого недоставало. Чтобы показать, что его протоклетки могли быть первой жизнью на Земле, Шостаку нужно было заставить РНК внутри них воспроизводиться. В будущем мир ожидает спад рождаемости.
Что это значит для человечества? Это было нелегко, поскольку, несмотря на десятилетия попыток — изложенных в третьей части, — никто так и не смог заставить РНК самовоспроизводиться. Эта же проблема загнала Шостака в угол в ходе его первых работ над «миром РНК», и никому другому не удалось ее решить. Поэтому он вернулся и перечитал работу Лесли Оргела, который так долго работал над гипотезой РНК-мира. В этих пыльных бумагах обнаружились ценные подсказки.
Оргел провел много времени с 1970-х по 1980-е, изучая копирование цепей РНК. Первая клетка должна была вмещать химию жизни По сути все просто. Возьмите одну цепь РНК и набор свободных нуклеотидов. Затем, используя эти нуклеотиды, соберите вторую цепь РНК, комплементарную первой. Сделав это дважды, вы получите копию оригинальной «CGC», только окольным путем.
Оргел обнаружил, что при определенных обстоятельствах цепи РНК могут копироваться таким образом без какой-либо помощи ферментов. Возможно, именно так первая жизнь создала копии своих генов. К 1987 году Оргел мог взять цепь РНК длиной в 14 нуклеотидов и создать дополняющие цепи длиной тоже в 14 нуклеотидов. Больше ему сделать не удалось, но этого было достаточно, чтобы заинтриговать Шостака. Его ученица Катажина Адамала попыталась запустить такую реакцию в протоклетках.
Они обнаружили, что для работы такой реакции нужен магний. Но магний уничтожил протоклетки. Впрочем было и простое решение: цитрат, который почти идентичен лимонной кислоте и который присутствует во всех живых клетках. В исследовании, опубликованном в 2013 году, они добавили цитрат и обнаружили, что тот обволок магний, защищая протоклетки и позволяя шаблону продолжать копироваться. Другими словами, им удалось сделать то, что Луизи предлагал в 1994 году.
Протоклетки Шостака могут жить в сильном тепле Всего за десять лет исследований команде Шостака удалось совершить невероятное. Они создали протоклетки, которые сохраняют свои гены, при этом забирая полезные молекулы снаружи. Эти протоклетки могут расти и делиться и даже соперничать между собой. РНК может воспроизводиться внутри них. С какой стороны ни посмотри, они были похожи на первую жизнь.
Как собаки понимают человеческий язык? Еще они были весьма устойчивыми. В 2008 году группа Шостака обнаружила, что эти протоклетки могут переживать нагрев до 100 градусов по Цельсию, температуры, которая уничтожает большинство современных клеток. Следовательно, эти протоклетки были похожи на первую жизнь, которая должна была переживать сильное тепло от постоянных ударов метеоритов. Тем не менее, на первый взгляд, подход Шостака идет вразрез с 40 годами исследований происхождения жизни.
Вместо того чтобы озадачиться «сперва воспроизводством» или «сперва компартментализацией», он решил делать оба дела сразу. Молекулы жизни ведут себя крайне сложно Это открывает путь к новому подходу к поиску происхождения жизни — единому, объединенному, унифицированному подходу. Он должен охватить все функции первой жизни сразу и одновременно. Эта гипотеза «сперва всё» уже насобирала достаточно свидетельств и может решить все проблемы существующих идей. Часть шестая: великое объединение На протяжении второй половины 20-го века исследователи происхождения жизни работали каждые в своем лагере.
Каждая группа настаивала на собственной версии развития событий и старалась уничтожить конкурирующие гипотезы. Такой подход был безусловно успешным, о чем свидетельствуют предыдущие главы, но каждая перспективная идея о происхождении жизни в конечном счете наталкивалась на серьезную проблему. Так что некоторые исследователи сейчас пытаются найти более единый подход. Несколько лет назад эта идея получила мощный толчок, благодаря результату, поддерживающему устоявшуюся теорию «мира РНК». К 2009 году у сторонников мира РНК была большая проблема.
Они не могли сделать нуклеотиды, строительные блоки РНК, как если бы это происходило в условиях ранней Земли. Это и привело людей к мысли, что первая жизнь вовсе не была построена на РНК, как мы выяснили в третьей части. Земля — единственное место, где есть жизнь. Пока Джон Сазерленд думал об этой проблеме с 1980-х. Большинство научно-исследовательских институтов заставляют своих сотрудников постоянно генерировать новые работы, но LMB нет.
Поэтому Сазерленд мог хорошенько обдумать, почему сделать нуклеотид РНК так сложно, и провел годы, разрабатывая альтернативный подход. Его решение привело его к совершенно новой идее о происхождении жизни: все ключевые компоненты жизни могли сформироваться одновременно. Каждый нуклеотид РНК состоит из сахара, основания и фосфата. Но заставить сахар и основание соединиться оказалось невозможно. Молекулы просто не той формы.
Поэтому Сазерленд начал пробовать совершенно другие вещества. В конечном счете его команда пришла к пяти простым молекулам, включая другой сахар и цианамид, родственный цианиду. Эти химические вещества пропустили через цепочку реакций и в конечном итоге сделали два из четырех нуклеотидов РНК, не делая отдельные сахара или основания. Это был ослепительный успех, который сделал Сазерленду имя. Многие наблюдатели интерпретировали эти результаты как еще одно доказательство в пользу мира РНК.
Но сам Сазерленд так не считал. Но Сазерленд говорит, что это безнадежно оптимистично. Он считает, что РНК принимала важное участие, но на ней все клином не сходилось. Вместо этого он вдохновился одной из последних работ Шостака, которая как мы выяснили в пятой части совмещала РНК-мир «сперва воспроизводства» с идеями «сперва компартментализации» Пьера Луиджи Луизи. Сазерленд пошел еще дальше.
Его подход представлял собой «сперва всё». Он хотел, чтобы цельная клетка собралась сама по себе с нуля. К этому его привела странная деталь в его синтезе нуклеотидов, которая сначала казалась случайной. Жизни нужна жирная смесь веществ Последним шагом в процессе Сазерленда было забросить фосфат в нуклеотид. Однако он выяснил, что лучше всего было включать фосфат в смесь с самого начала, поскольку он ускорял первые реакции.
Казалось, что включение фосфата до того, как он понадобится на самом деле, было слегка «грязноватым» действием, но Сазерленд выяснил, что этот хаос — это хорошо. И так он задумался о том, насколько беспорядочными должны быть смеси. Во времена ранней Земли должны были существовать десятки или сотни химических веществ, плавающих вместе. Рецепт шлама? Но беспорядок может быть важным условием.
Смеси, которые Стэнли Миллер приготовил в 1950-х годах, о которых мы говорили в первой части, были куда грязнее сазерлендовых. Они включали биологические молекулы, но Сазерленд говорит, что они «были в небольших количествах и сопровождались огромным количеством других, не биологических соединений». Что происходит с человеком после переедания? Сазерленд считал, что подход Миллера был недостаточно хорош. Он был слишком грязным, поэтому хорошие химические вещества просто терялись в смеси.
Поэтому Сазерленд вознамерился найти «химию Златовласки»: не слишком грязную, чтобы стать бесполезной, но и не слишком простую, чтобы быть ограниченной в возможностях. Получить достаточно сложную смесь — и все компоненты жизни смогут сформироваться одновременно и найти друг друга. Другими словами, четыре миллиарда лет назад на Земле был пруд. Он существовал годами, пока в нем не собрались нужные химические вещества. Затем, возможно, за какие-нибудь пару минут появилась первая клетка.
Горстки химвеществ недостаточно для жизни Это может показаться совершенно неправдоподобным, словно заявления средневековых алхимиков. Но у Сазерленда только прибавляется доказательств. В 2009 году он показал, что та же химия, которая позволила собрать два его нуклеотида РНК, также может создавать многие другие молекулы жизни. Очевидным следующим шагом было сделать больше нуклеотидов РНК. Пока этого сделать не удалось, но в 2010 году он собрал тесно связанные молекулы, которые потенциально могут превратиться в нуклеотиды.
Точно так же, в 2013 году он сделал прекурсоры аминокислот. На этот раз ему пришлось добавить цианид меди, чтобы заставить реакцию протекать. Связанные с цианидом химические вещества оказались общей темой, и в 2015 году Сазерленд сделал с ними еще больше. Он показал, что в том же горшке с химическими веществами могут появиться и прекурсоры липидов, молекул, из которых состоят стенки клеток.
Модель также указывает на то, что кооперативные каталитические сети могли быть отобраны эволюцией, что привело к функциональной дифференциации олигомеров на катализаторы и субстраты. Это открытие представляет важный шаг в понимании того, как жизнь могла зародиться из примитивных химических систем на ранних этапах существования Земли и как она эволюционировала к более сложным формам, включающим каталитическую активность. Комментарии закрыты.
Ваган Григорян Опубликовано в Наука Теги Новости Главное за сутки НПЗ в Славянске-на-Кубани частично приостановил работу после атаки украинских дронов Нефтеперерабатывающий завод в Славянске-на-Кубани в Краснодарском крае частично приостановил работу после совершенной ночью украинской стороной попытки атаки беспилотными летательными аппаратами. Об этом ТАСС сообщил директор по комплексной безопасности группы компаний… Устроивших массовую драку в Туапсе граждан Узбекистана выдворят из России Пятнадцать граждан Республики Узбекистан, устроивших в среду массовую драку в Туапсе, будут оштрафованы и выдворены из России, сообщили в прокуратуре Краснодарского края. Кадры массовой драки появились в сети ещё в… МИД Польши: Дуда не уполномочен обсуждать размещение ядерного оружия Президент Польши Анджей Дуда не уполномочен обсуждать возможность размещения ядерного оружия в стране.
Оказалось, что рибозим, который способен расщеплять другие молекулы, может возникнуть спонтанно, поскольку для обеспечения его функции необходимы только несколько консервативных оснований. Однако оставалась проблема, как именно это свойство сохранилось в ходе биохимической эволюции. Исследователи разработали модель, которая имитирует случайные разрывы в простых молекулах РНК, лишенные ферментативной активности. В результате возникали короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Этот неферментативный механизм приводил к образованию большого количества копий разрушенного полимера, подобно тому, как регенерируют черви, разрезанные на сегменты.
Эффективный полимеразный рибозим подкрепил гипотезу мира РНК
Но как обстояло дело до появления клеток и ДНК? В 1968 году химик Лесли Орджел опубликовал статью, в которой описал возможность существования жизни на Земле исключительно в виде рибонуклеиновых кислот, которые были способны передавать информацию безо всяких белков. Впоследствии эту идеи развили другие ученые. Так возникла гипотеза «РНК-мира».
Ученым из США удалось получить ее первое подтверждение. Ученые многие годы ищут ответ на вопрос, могут ли РНК быть предшественниками жизни в известном нам виде.
Согласно этой теории, первыми репликаторами на нашей планете были молекулы РНК, обладающие уникальной способностью к самовоспроизводству без участия белковых ферментов. Долгое время ученые ломали голову над вопросом, как могли возникнуть такие молекулы из более примитивных соединений.
Исследование, опубликованное в журнале eLife, представляет собой модель, которая имитирует случайное разрушение простых РНК-молекул. В ходе экспериментов возникали короткие цепочки РНК, способные служить затравками для синтеза более длинных молекул.
Исследователи столкнулись с проблемой - как такая молекула могла появиться из предшественников, не обладающих каталитической активностью.
Источник фото: Фото редакции Однако было установлено, что рибозим, способный расщеплять другие молекулы, может возникнуть спонтанно благодаря нескольким консервативным элементам. Чтобы понять, как эта функция сохранилась в процессе эволюции, исследователи разработали модель, имитирующую случайные разрывы в простых молекулах РНК. В результате образовывались короткие цепочки, которые действовали как затравки для синтеза более длинных молекул.
Моделирование происхождения жизни: Новые доказательства существования "мира РНК" 26. Копирование других молекул РНК Прежде всего, рибонуклеиновая кислота РНК - это биологическая молекула, молекулярная структура которой очень похожа на структуру дезоксирибонуклеиновой кислоты ДНК. Она состоит из одной спиральной цепи, по структуре схожей с одной из двух цепей, составляющих ДНК. По словам авторов исследования, этот прорыв, опубликованный в журнале PNAS 4 марта 2024 года, является выдающимся. Однако стоит отметить, что молекула не является самовоспроизводящейся, как настоящая.
Моделирование происхождения жизни: Новые доказательства существования "мира РНК"
Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации, так и катализ химических реакций выполняли ансамбли молекул. Гипотеза мира РНК утверждает, что первые жизненные формы могли появиться на основе РНК. “[Гипотеза мира РНК] была сведена ритуальным злоупотреблением к чему-то вроде креационистской мантры”, и. гипотеза, с которой срослась проблема внезапного (для учёных особенно) возникновения жизни на совсем молодой, не оформившейся, подвергающейся. Понятно, что существенный аргумент гипотезы РНК-мира состоит в том, что эта гипотеза создает "простой" переходный мостик между абиогенной органикой и клетками. Таким образом, новое весомое доказательство получила так называемая гипотеза РНК-мира, согласно которой именно молекулы РНК стояли у истоков земной жизни, и они стали первыми сохранять и передавать генетическую информацию.
Эффективный полимеразный рибозим подкрепил гипотезу мира РНК
Пост автора «Хайтек+» в Дзене: Найдено подтверждение гипотезы «РНК-мира» Эволюция, по определению Дарвина, это наследование с модификациями. Согласно этой гипотезе, первые репликаторы на Земле были представлены РНК-молекулами, способными к самовоспроизведению без участия белковых ферментов. Пост автора «Хайтек+» в Дзене: Найдено подтверждение гипотезы «РНК-мира» Эволюция, по определению Дарвина, это наследование с модификациями.
Найдено подтверждение гипотезы «РНК-мира»
Согласно гипотезе РНК-мира, молекула РНК играла ключевую роль в молекулярных процессах и биохимических реакциях, которые привели к появлению жизни на Земле. Новости Российского национального комитета мирового нефтяного совета. Ученые из Университета Иллинойса представили новые доказательства в поддержку гипотезы РНК-мира, которая является важной теорией о происхождении жизни на Земле. Проблемы гипотезы РНК-мира, по А.С. Спирину: КОГДА, ГДЕ И В КАКИХ УСЛОВИЯХ МОГ ВОЗНИКНУТЬ И ЭВОЛЮЦИОНИРОВАТЬ МИР РНК?
Обнаружены новые доказательства РНК-мира
История изучения РНК походит то на мелодраму, то на детектив. Впервые она была выделена в далеком 1868 году. Тогда швейцарский физиолог Иоганн Фридрих Мишер выделил ее вместе с ДНК в виде непонятного нового вещества, которое он назвал нуклеином — в честь клеточного ядра по-латински nucleus. Потом удалось выяснить состав сахаров, и РНК получила свое современное название. Вплоть до 1940-х годов многие считали , что РНК — это нуклеиновая кислота растений и одноклеточных, тогда как ДНК можно найти только у животных. Когда экспериментально было показано, что это не так, тут же начались разговоры о том, зачем вообще она нужна.
Уже в середине века стала складываться концепция молекулярной догмы, когда было обнаружено, что РНК участвует в синтезе белка, связываясь с микросомами — теперь мы знаем эти органеллы под названием рибосом. Постепенно РНК заняла свою позицию в догме — она работает как агент, связывающий ДНК и белок, параллельно с этим выполняя ряд других функций: от переноски аминокислот до регуляции генов. И чем больше открывали у РНК возможностей, тем больше было вопросов к ее реальному месту в жизненном цикле клетки и организма в целом. Предпосылки развития гипотезы РНК — уникальная молекула. Основная ее функция — это связь между геном и белком, она выражена в центральной догме молекулярной биологии: ДНК — РНК — белок.
Нужный для синтеза ген, представленный в виде двухцепочечной ДНК, служит матрицей для создания одноцепочечной РНК, точно повторяющей структуру этого гена и способной перенести инструкцию по сборке белка из ядра в цитоплазму клетки. В цитоплазме РНК «находит» рибосому — молекулярную «машину» для синтеза белка. Рибосома, «читая» нуклеотиды в РНК, подбирает для будущего белка аминокислоты согласно генетическому коду — почти каждому триплету то есть трем нуклеотидам соответствует какая-то аминокислота есть еще несколько стоп-кодонов, прерывающих синтез белка, и старт-кодон, с которого всё начинается. Так, нанизывая аминокислоту за аминокислотой, рибосома формирует белок. И если раньше считалось, что РНК — это просто помощник, то за последние годы появилось много данных, опровергающих ее подчиненное положение.
Вполне возможно, что РНК не серая мышь рядом со своей куда более известной сестрой, а серый кардинал за ее троном. Оказалось, что РНК не только играет роль посредника между ДНК и синтезом белка, но и обладает каталитической активностью, то есть может работать как фермент. Долгое время считалось, что ферментами могут быть исключительно белки, и открытие рибозимов — РНК-ферментов — перевернуло представления науки о функциях РНК. Обнаружили каталитическую активность практически случайно. Зачем в ферментах РНК?
Белок и нуклеиновую кислоту «разделили» и… неожиданно отметили, что и лишенная белка РНК справлялась со своей каталитической функцией. Сначала биохимики подумали, что это ошибка, артефакт, оставшийся или занесенный извне белок — но и искусственно созданная РНК с той же последовательностью работала как фермент. Стало понятно, что ферментативная активность больше не прерогатива белков. Дальше — больше. Помимо каталитической активности удалось обнаружить еще одно свойство — это регулирование экспрессии генов, то есть степени их проявления.
Даже сейчас известны тысячи различных РНК, участвующие в подавлении активности гена на всех стадиях его проявления, от считывания ДНК до непосредственного белкового синтеза.
Популярная теория утверждает, что жизнь появилась из богатого химикатами супа, в котором первой начала воспроизводить себя РНК. Но комбинация из пептидов и РНК может оказаться более эффективной Четыре миллиарда лет назад, кружась в доисторическом химическом супе Земли, появились первые молекулярные предшественники жизни. И хотя точное определение этих молекул остаётся темой раздражённых споров, учёные соглашаются на том, что этим молекулам нужно было осуществлять два основных действия: сохранять информацию и катализировать химические реакции. Современные клетки передают эти полномочия, соответственно, ДНК и её белкам — но согласно популярному объяснению, преобладающему в современных исследованиях происхождения жизни и учебниках по биологии, первой эту роль играла РНК , проложив дорогу для ДНК и белков, перехвативших эти обязанности позднее. Эту гипотезу, предложенную в 1960-х и прозванную " миром РНК " двумя десятками лет позднее, сейчас рассматривают, как наиболее вероятное объяснение начала жизни. Хватает и альтернативных «миров», но они обычно считаются резервными теориями, иллюзорными полётами воображения и причудливыми мысленными экспериментами. В основном потому, что гипотеза мира РНК подкрепляется большим числом экспериментальных свидетельств, чем набрали её конкуренты.
В прошлом месяце мы уже сообщали об альтернативной теории , согласно которой похожие на белки молекулы могли стать первыми самовоспроизводящимися молекулами вместо РНК. Но эти находки были чисто вычислительными — тогда исследователи только начинали эксперименты в поисках свидетельств в пользу их заявлений. Теперь же парочка исследователей выдвинула другую теорию — на этот раз включающую совместную эволюцию РНК и пептидов — которая, как они надеются, сможет поколебать основы мира РНК. Почему РНК не хватало Недавние работы, опубликованные в журналах Biosystems и Molecular Biology and Evolution , схематически описывают свидетельства того, что гипотеза мира РНК не обеспечивает достаточных оснований для последовавших эволюционных событий. Вместо этого, говорит Чарльз Картер , структурный биолог из Университета в Северной Каролине, один из авторов работ, их модель делает подходящее предложение. Чарльз Картер, структурный биолог из Университета в Северной Каролине И этот единственный полимер никак не мог быть РНК, согласно исследованиям, проведённым его командой. Основным возражением против этой молекулы служит катализ : некоторые исследования показали, что для того, чтобы жизнь начала функционировать, загадочному полимеру необходимо было суметь координировать скорость химических реакций, которые могут идти со скоростями, различающимися по величине на 20 порядков. Когда планета начала охлаждаться, РНК, как заявляет Картер, не смогла бы эволюционировать и поддерживать синхронизацию и далее.
Так возникла гипотеза «РНК-мира». Ученым из США удалось получить ее первое подтверждение.
Она состоит из одной спиральной цепи, по структуре схожей с одной из двух цепей, составляющих ДНК. По словам авторов исследования, этот прорыв, опубликованный в журнале PNAS 4 марта 2024 года, является выдающимся.
Однако стоит отметить, что молекула не является самовоспроизводящейся, как настоящая. Поэтому ее нельзя считать живой. Тем не менее, созданная учеными молекула способна копировать другие молекулы РНК.
Обнаружены новые доказательства РНК-мира
РНК - мир. Сомнение в первичности. | Это новое исследование ставит под сомнение гипотезу мира РНК, которая предполагает, что самовоспроизводящиеся молекулы РНК были предшественниками всех современных форм жизни на Земле. |
Происхождение жизни, часть 2: РНК-мир | Согласно гипотезе мира РНК, на заре жизни за Земле молекулы РНК были как носителями наследственной информации, так и ферментами (рибозимами). |
ELife: ученые обнаружили спонтанное возникновение самовоспроизводящихся молекул
Ученые предположили новое объяснение возникновения жизни на Земле | Проблемы гипотезы РНК-мира, по А.С. Спирину: КОГДА, ГДЕ И В КАКИХ УСЛОВИЯХ МОГ ВОЗНИКНУТЬ И ЭВОЛЮЦИОНИРОВАТЬ МИР РНК? |
22-M. «Мир РНК» . ПРОСТЫЕ ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ ТВОРЦА | В рамках своего проекта ученые поставили под сомнение достоверность гипотезы РНК-мира. |
РНК у истоков жизни? | Концепцию мира РНК впервые сформулировал в 1962 году Александр Рич (Alexander Rich), термин ввел в 1986 году Уолтер Гилберт (Walter Gilbert). |
Исследования по гипотезе РНК-мира: возникновение саморепликации
Ученые Института биологических исследований Солка обнаружили доказательства гипотезы РНК-мира, согласно которой ключевым предшественником живых клеток стали самовоспроизводящиеся молекулы РНК. Ученые из Института биологических исследований Солка провели исследования, подтверждающие гипотезу о мире РНК. Открытия, показывающие способность молекул РНК самовоспроизводиться, а также выполнять ферментативные функции, привели к возникновению гипотезы мира РНК. Последние новости дня на этот час.