Презентация по математике Презентация «Все действия с обыкновенными дробями» скачать. Предлагаю Вашему вниманию презентацию к уроку математики в 5 классе «венные дроби» по учебнику Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Что такое Числа Фибоначчи? Числа Фибоначчи — элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, в которой.
Презентация на тему по математике на тему: Цепные дроби
На нашем сайте презентаций вы можете бесплатно ознакомиться с полной версией презентации "Презентация по теме "Десятичные дроби и проценты"". Повторить и закрепить изученный материал, отработать навыки выполнения действия над обыкновенными дробями Цель урока. Презентация по математике Презентация «Все действия с обыкновенными дробями» скачать. На нашем сайте презентаций вы можете бесплатно ознакомиться с полной версией презентации "Презентация по теме "Десятичные дроби и проценты"". ать презентацию на тему дроби ать занимательную историю по теме дроби вать газету по теме дроби. Скачать школьные презентации PowerPoint бесплатно | Портал бесплатных презентаций
Презентация по теме "Понятие обыкновенной дроби"
Представление процента дробью и перевод дроби в проценты. Скачать презентацию на тему: "Дроби" с количеством слайдов в размере 6 страниц. ВСЁ по обыкновенным дробям. 9.9.17 Сложение и вычитание смешанных чисел ЧТОБЫ СЛОЖИТЬ (или вычесть) СМЕШАННЫЕ ЧИСЛА, НАДО: ПРИВЕСТИ ДРОБНЫЕ ЧАСТИ ЭТИХ. Правильными дробями называют дроби у которых числитель меньше знаменателя, неправильными — у которых числитель больше или равен знаменателю.
Правильные и неправильные дроби 5 класс презентация
В докладе вы узнаете о том как получить равенство и как связать между собой данные равенства. В презентации расположены примеры действий над дробями. Скачать бесплатно презентацию на тему "Урок-презентация по математике 5 класс «Обыкновенные дроби»" в (PowerPoint). Числитель стоит ___ чертой дроби и означает, сколько равных частей _____ от целого взяли. Презентация по теме обыкновенные дроби 5 класс. Зачем вообще нужны эти дроби? Дроби это сложно!Почему формируется такое представление у современных школьников, и как это происходит?Наши каналы:•Телеграмм. Учебно-методический портал УчМет предлагает ознакомиться с материалом «Обобщающий урок-презентация "Умножение и деление дробей"», автор: Игорь Чернов.
Картинки дроби для презентации
Теоретические уроки, тесты и задания по предмету Обыкновенные дроби, 5 класс, Математика. Презентация про дроби обыкновенные дроби. Правильными дробями называют дроби у которых числитель меньше знаменателя, неправильными — у которых числитель больше или равен знаменателю. Математика 5 класс дроби презентация 5 класс.
Презентация по математике 5 класс "Действия с обыкновенными дробями"
Цель: Обобщить знания по теме «Действия с обыкновенными дробями». Закрепить и усовершенствовать навыки выполнения действий с обыкновенными дробями. По кнопке ниже вы можете скачать методическую разработку «Презентация к уроку "Дроби"» категории «Математика 3 класс» бесплатно. Предмет: Математика 6 класс Слайдов: 22 Формат Размер: 2.31 Мб Тема: Десятичные и обыкновенные дроби. Просмотр содержимого документа «Презентация к уроку "Понятие о дроби. Правильными дробями называют дроби у которых числитель меньше знаменателя, неправильными — у которых числитель больше или равен знаменателю.
Действия над обыкновенными дробями
Какие действия и как можно с ними производить? Более подробно о дробях можно прочитать в уроке « Обыкновенные дроби ». Число наверху называется числителем, внизу — знаменателем. Знаменатель показывает, на сколько частей разделили целое, а числитель — сколько частей взяли. Например, одну вторую половину и одну треть.
Как записать двадцатую долю?
Как записать вторую долю? Как записать третью долю? Как записать четвертую долю? Запись и чтение. Как из долей получаются дроби?
На сколько равных долей разделили круг? Сколько долей зеленого цвета?
Слайд 3 Понятие непрерывной дроби Цепная дробь или непрерывная дробь — это математическое выражение вида Слайд 5 Действия над непрерывными дробями Слайд 6 Периодические бесконечные цепные дроби можно получить только из квадратичных иррациональностей вида: Слайд 7 Применение непрерывных дробей: Календари: год по 365 суток, а другие по 366 суток, чередуя их по правилу 3 года подряд коротких, 4-ый — длинный; погрешность 11 мин 14 с. Григорий XIII — один год 365,2425 суток, то есть 365 суток 5 ч 49 мин 12с.
Необходимое оборудование: ПК или ноутбук, мультимедийный проектор, экран, презентация. Структура уроков. Сообщение темы и цели урока; Систематизация ЗУН с помощью игрового компонента; Получение новых знаний и сведений; Обсуждение полученных результатов, подведение итогов урока; Задание домашней работы.
Слайд 2: На этом слайде темы, лежащие в основе презентации: Доли, Дроби, их чтение и запись, Правильные и неправильные дроби, Основное свойство дробей, Сравнение дробей. Навигация позволяет открыть любую из тем, а по окончании вернуться снова на этот слайд. Слайд 3-6. Доли: Слайд 3: Читаем внимательно стихотворение Л. Зубковой «Мы делили апельсин». Слайд 4: Вопрос детям: «Сколько долек было в апельсине? Слайд 5: Задание на запись долей.
С помощью триггера проверяется, правильно ли выполнено задание. Слайд 6: Названия некоторых долей.
Презентация к уроку математики в 5 классе "Дроби
Знаменатель показывает, на сколько частей разделили целое, а числитель — сколько частей взяли. Например, одну вторую половину и одну треть. Правильными дробями называют дроби у которых числитель меньше знаменателя, неправильными — у которых числитель больше или равен знаменателю. Любое смешанное число можно представить в виде неправильной дроби и наоборот.
При сложении дробей числители складываются, а знаменатель остается прежним.
Презентация: Арифметические действия с дробями Описание: Учить математики представляет презентацию для поведения открытого урока в шестом классе на тему «Арифметические действия с дробями». Материал презентации тесно связан с такими предметами как география и экология.
Водный настой листьев земляники лесной применяется в качестве мочегонного средства при мочекаменной и желчнокаменной болезнях. Плоды земляники также назначаются при диабете и малокровии. Их применяют как витаминное средство. Если ты порезал ногу, не рыдай и не реви.
Вот растенье на подмогу. Ты скорей его зови!
Следует отметить, что раздел арифметики о дробях долгое время был одним из наиболее трудных. Недаром у немцев сохранилась поговорка: «Попасть в дроби», что означало — зайти в безвыходное положение. Считалось, что тот, кто не знает дробей, не знает и арифметики.
Использование обыкновенных дробей в профессиональной деятельности человека Живя в окружении дробей, мы не всегда их явно замечаем. И все же, мы сталкиваемся с ним очень часто: дома, на улице, в магазине, на работе и так далее. Покажу лишь малую часть того, где мы можно увидеть присутствие дробей. В медицине. Дроби в кулинарии.
Поварам нужны дроби для соблюдения пропорции при приготовлении блюда. В рецептах очень часто используются такие фразы, например, как одна вторая стакана, четверть столовой ложки. Дроби в музыке. Учащиеся музыкальной школы знакомятся с дробями раньше, чем в общеобразовательной школе. С первых дней занятий дети знакомятся с такими понятиями как размер и длительности нот.
Древнегреческий философ Пифагор 570 г. Он создал учение о звуке. Пифагор связал длительность звучания нот с дробями. Счёт длительностей в музыке ведётся от целой ноты, которая считается до четырёх. В целой ноте 2 половинные, 4 четверти, 8 восьмых, 16 шестнадцатых.
Так музыка живёт в согласии с математикой. Дроби в спорте. Дроби в пропорции человека тоже связаны с дробями. Основываясь на этих данных, была создана кукла «Барби». Дроби в юридической деятельности.
Какие доли достались каждому из наследников? Дроби для портных.
Презентация к уроку "Понятие о дроби. Обыкновенная дробь"
До наших дней сохранилось деление часа на 60 мин. Вавилоняне внесли ценный вклад в развитие астрономии. Шестидесятеричными дробями пользовались в астрономии ученые всех народов до XVII века, называя их астрономическими дробями. В отличие от них, дроби общего вида, которыми пользуемся мы, были названы обыкновенными.
Слайд 16 Записывать дроби как сейчас стали арабы. Происходит слово "дробь" от слова "дробить, разбивать, ломать на части". У других народов название дроби также связано с глаголами "ломать", "разбивать", "раздроблять".
Презентация сопровождается картинами русских художников и русскими поговорками. Обратите внимание! Основная часть урока строится на базе решения задач!!! В рамках решения дети учатся "обращаться за помощью" к теоретическому материалу на зеленых слайдах.
Теория вместе с практикой, сразу.
Если требуется один стакан — это литра. Это, несомненно, меньше 1 литра. Два стакана тоже меньше 1. При этом два стакана — это литра.
Просвещение, 2002 Н. Истомина, О. Алекссева, Г.
Воителева Обыкновенные дроби. Лебединцева, Е. Беленкова — М.
Савин, В.
Презентация для повторения и подготовки к ВПР по теме "Действия с дробями" в 5 классе
Интересно, а в древности знали про дроби? Слайд 3 Слайд 4 Описание слайда: Даже Пифагор, который трепетно Даже Пифагор, который трепетно относился к натуральным числам, создавая теорию музыкальной шкалы, связал основные музыкальные интервалы с дробями. Слайд 5 Описание слайда: Хочу всё знать и уметь — А как половину записать цифрами? Возьмите полоску бумаги. Разделите её на 2 равные части, свернув полоску пополам.
Открытый урок по математике 6кл. Прослеживается реализация основных дидактических принципов обучения, творческий потенциал автора. Некоторые замечания по слайдам: - слайд 3 почти пустой, который детям не нужен в представленном виде, цель урока можно было дополнить мотивацией к учебному занятию, добавить графический материал для пояснения вопроса: зачем вообще изучать дроби и действия с дробями?
Сложение смешанных чисел.
Вычитание обыкновенных дробей. Вычитание смешанных чисел. Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел. Умножение дробей. Взаимно обратные числа. Переместительное, сочетательное и распределительное свойства умножения дробей. Переместительное свойство умножения дробей. Нахождение дроби от числа.
Деление обыкновенных дробей. Нахождение числа по его дроби. История дроби. Cлайд 3 Деление и обыкновенные дроби Для измерения различных величин длины, времени, массы вводим новые числа, которые называются дробными. Части равные между собой, называют долями. Дробь, записанную с помощью натуральных чисел и дробной черты, называют обыкновенной дробью. Число под чертой показывает, на сколько равных частей разделена единица 1 целое , его называют знаменателем дроби. Число над чертой показывает, сколько таких долей взято, его называют числителем.
Cлайд 4 Основное свойство дроби и сокращение Поскольку обыкновенную дробь рассматривают как частное, то согласно свойству частного: при умножении или делении и делимого, и делителя на одно и то же число, частное не изменится. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь. Это свойство называют основным свойством дроби.
При этом получим дроби с одинаковыми знаменателями. Слайд 7 Сравнивание обыкновенных дробей Если дроби имеют разные знаменатели, то прежде чем их сравнивать, их надо привести к общему знаменателю. Из двух дробей с одинаковыми знаменателями меньше та дробь, числитель которой меньше; больше та дробь, числитель которой больше. На числовом луче меньшая дробь изображается левее большей дроби, большая дробь располагается правее меньшей дроби. Из двух дробей с одинаковыми числителями неравными нулю меньше та дроь, знаменатель которой больше; больше та дробь, знаменатель которой меньше.
Слайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1. Слайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Слайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты. Слайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа.
Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Слайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей. Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей. Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами. Слайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей.