Центр индустриальных технологий и предпринимательства Сеченовского университета провел презентацию проектов.
Новое слово в биотехнологиях
Биотехнологии – медицине будущего | Презентация на тему "Биотехнология: достижения и перспективы развития", предназначена для сопровождения урока по аналогичной теме для обучающихся 10 класса. |
Успехи современной биотехнологии | И каковы перспективы развития биотехнологий и продуктов биотехнологоческого производства? |
Презентация «Пищевая биотехнология» - Информационно-библиотечный комплекс УрГЭУ | Вот почему их можно считать настоящим прорывом биотехнологической науки. |
Презентация, доклад по теме Биотехнологии
Последние новости биотехнологий в России: достижения и анонсы мероприятий, предстоящие проекты. Биотехнологии сегодня — Владелец импланта Neuralink написал пост силой мысли. Биология, презентация, доклад, проект на тему.
Информация о презентации
- Статьи по теме «биотехнологии» — Naked Science
- Презентация биотехнологической компании Евроген
- Презентации по экологической биотехнологии
- Презентация - Биотехнология-наука будущего
- Содержание
Зимняя школа «Современная биология и Биотехнологии будущего»: передружить всех между собой!
Изображения по запросу Биотехнология | Вот почему их можно считать настоящим прорывом биотехнологической науки. |
Биотехнология: современные достижения, перспективы, проблемы | В данном разделе вы найдете много статей и новостей по теме «биотехнологии». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из. |
Биотехнологии — последние и свежие новости сегодня и за 2024 год на | Известия | Биотехнология — наука, изучающая использование живых организмов и биологических процессов в производстве. |
Презентация программы «Клеточная и молекулярная биотехнология» — Video
На кафедре химии ведется разработка технологий переработки отходов лесного комплекса. Осуществляется и работа по геномному анализу крупного рогатого скота, - отметила Светлана Анатольевна. Уже в сентябре на базе ВоГУ откроется Дом научных коллабораций, где ребята смогут познакомиться с основами биотехнологий и генной инженерии». Представила учебник по биотехнологии сама Елена Бахтенко. По словам автора труда, на написание пособия ушло два года.
В рамках Форума пройдет Третья Международная конференция «Перспективные подходы и технологии в задачах биомедицины и клинической практики» Сопредседатели: академик Ю. Гуляев, научный руководитель ИРЭ им.
Левшина Сеченовского университета, профессор Сурендра Кумар Верма, действительный член Индийской академии биомедицинских наук. В рамках конференции будут представлены, как результаты экспериментов, например, нетепловое воздействие мощных ультракоротких электромагнитных импульсов на карциному академик РАН Черепенин В. Котельникова РАН и коллагеновая мембрана для применения в кардиохирургии B. Будут обсуждаться актуальные вопросы и достижения в области пищевых технологий и функциональных продуктов питания в России и за рубежом.
Концепция курса. Содержание курса отличается от традиционного... Советы как сделать хороший доклад презентации или проекта Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться где это уместно. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание.
Производство этанола из тростника на сегодняшний день экономически более выгодно, чем из кукурузы из-за низких заработных плат у сборщиков сахарного тростника. Большим потенциалом также обладает маниок. Маниоку в больших количествах производят Китай, Нигерия, Таиланд. Биоэтанол используется в основном как топливо для двигателей автомобилей. Для использования чистого этанола созданы другие двигатели они называются Flex-fuel - «гибкое топливо». Многотопливными также являются двигатели всех современных танков. Использование биоэтанола в качестве топлива позволяет снизить выбросы диоксида углерода, являющегося парниковым газом. Содержащийся в этаноле кислород позволяет более полно сжигать углеводороды топлива. Перспективы: Хорошие. Речь, конечно же, не идёт о полном переводе всей экономики Земли на биотопливо, мощностей просто не хватит. Тем не менее, этот экологически чистый источник энергии является существенным подспорьем для экономики стран с развитым агропромышленным комплексом, и, наоборот, для мелких крестьянских хозяйств в развивающихся странах. В отношении генно-модифицированных животных справедливы, в принципе, те же опасения, что и в случае генно-модифицированных растений. В настоящее время мясо генетически модифицированных животных использовать в пищу запрещено. Исследования тем не менее проводятся, в том числе и в нашей стране. Имеются определённые достижения в этой области и направления использования трансгенных животных весьма разнообразны. Одним из них является создание животных с улучшенными хозяйственными признаками: повышенной продуктивностью например, усиление роста шерсти у овец. Другое — использование в качестве биофабрик по наработке различных медицинских препаратов инсулина, интерферона, фактора свертываемости крови и гормонов , которые выделяются с молоком. Ведутся работы по созданию трансгенных свиней, чьи органы не отторгаются иммунной системой человека и могли бы использоваться для трансплантации. Трансгенные лабораторные животные широко используются в исследовательских целях — на них моделируют различные заболевания человека, отрабатывают методы лечения, изучают функции различных генов и др. Дикой популярностью в лабораториях пользуются зелёные флуоресцирующие мышки, которым внедрили ген медузы Aequorea victoria. Перспективы: Неясные. Методы изменения генетической информации у животных намного сложнее, чем у растений или микроорганизмов. По словам ученых, многое декларируется, но не всё получается. ГМ-животные вряд ли будут в дальнейшем использоваться в качестве пищи, а вот в медицинских целях - вполне возможно. Наиболее захватывающие перспективы открываются перед генной инженерией именно в медицине. Производство лекарственных препаратов с помощью генно-модифицированных организмов и опыты по трансплантации органов животных уже упоминались. Но нас ждет нечто новое - генная терапия человека. На людях технология генной инженерии была впервые применена для лечения четырёхлетней девочки, страдавшей от тяжёлой формы иммунодефицита. Работающая копия необходимого ей гена была введена в клетки крови с помощью модифицированного вируса. Клетки получили возможность самостоятельно производить необходимый белок. После этого область генной терапии получила толчок к дальнейшему развитию. Сегодня мы знаем, что с помощью генной терапии можно лечить диабет, анемию, некоторые виды рака и даже очищать артерии. Сейчас идёт более 500 клинических испытаний различных видов генной терапии. Наибольшие ожидания связаны с использованием стволовых клеток. Они являются неспециализированными клетками, которые возобновляют сами себя в течение долгого времени путем клеточного деления. При определенных физиологических или экспериментальных условиях они могут быть индуцированы для превращения в клетки со специальными функциями, такие как клетки сердечной мышцы или инсулин-синтезирующие клетки поджелудочной железы. Области применения стволовых клеток обширны. Их можно пересадить в пораженный орган, где стволовые клетки превращаются в здоровые соматические. Так, в Японии в декабре 2007 года сообщили об успешном завершении эксперимента по восстановлению работы сердца путем пересадки клеток-миобластов, извлеченных из скелетной мышцы пациента. Новый метод оказался настолько эффективным, что врачи решили отказаться от пересадки сердца, которая была рекомендована больному до начала лечения. Из стволовых клеток уже удалось вырастить в пробирке клетки печени, мышц, нейроны, роговицу глаза и даже целый мочевой пузырь. В ближайшем будущем ожидается, что из стволовых клеток пациента можно будет выращивать целые здоровые органы и пересаживать их донору клеток. Иммунная система должна принять такой орган за родной, что исключит возможность отторжения. До недавнего времени в экспериментах использовались клетки эмбриона человека. По этическим соображениям, в развитых странах лечение стволовыми клетками было запрещено, но проводилось подпольно или в странах третьего мира без должного контроля. Существует мнение, что именно лечение некачественно очищенными стволовыми клетками привело к заметному изменению внешности бывшего президента Украины Ющенко. Настоящая революция в генной терапии произошла в 2006 году, когда японскими учеными были получены так называемые индуцированные плюрипотентные стволовые клетки ИПСК из фибробластов взрослой мыши. Команда Шинья Яманака из Университета Киото определила гены, которые особенно активны в эмбриональных стволовых клетках, и использовала ретровирусы для трансфекции некоторых из этих генов в фибробласт. В следующем году эта же команда получила стволовые клетки из фибробласта человека, а затем - из клеток кожи и крови. А в 2012 году китайские ученые получили стволовые клетки и вовсе из урины точнее, из эпителиальных клеток почек, выделяемых человеком в окружающую среду. Самое невероятное, что в процессе перепрограммирования дифференцированных клеток в стволовое состояние и обратно, над генетическим материалом можно провести корректирующие манипуляции. Затем дважды перепрограммированные, но уже здоровые клетки возвращаются в исходный организм.
Достижения биотехнологии
Современные биотехнологии и проблемы биоэтики Выполнила студентка VI | Лента новостей. Курс евро на 20 апреля EUR ЦБ: 99,58 (-0,95) Инвестиции, 19 апр, 16:51 Курс доллара на 20 апреля USD ЦБ: 93,44 (-0,65) Инвестиции, 19 апр, 16:51. |
Медицинские новинки: редактирование генов, компьютер внутри человека и лекарство от рака | Презентация учебника «Биотехнология: основы биотехнологии и медицинской нанобиотехнологии» педагога и депутата ЗСО Елены Бахтенко прошла в ВоГУ. |
Презентация биотехнологической компании Евроген
Главная Работы на конкурс Предметное образование Естественно-научные дисциплины Презентация к исследовательской работе «Зеленые биотехнологии». Биотехнологии сегодня — Владелец импланта Neuralink написал пост силой мысли. И каковы перспективы развития биотехнологий и продуктов биотехнологоческого производства? Новый выпуск журнала «НАУКА из первых рук» вышел «по следам» всероссийской конференции с международным участием «Биотехнология – медицине будущего».
Успехи современной биотехнологии
И каковы перспективы развития биотехнологий и продуктов биотехнологоческого производства? Новый выпуск журнала «НАУКА из первых рук» вышел «по следам» всероссийской конференции с международным участием «Биотехнология – медицине будущего». ЗАДАЧИ, МЕТОДЫ И ДОСТИЖЕНИЯ - Презентация абсолютно бесплатно. Генная инженерия - Мировые площади занятые трансгенными культурами - Направления клеточной. Одним из направлений биотехнологии является селекция – выведение ценных для человека сортов растений или пород животных.
Презентация биотехнологического комплекса в Министерстве науки и образования РФ
Молочные продукты с антиоксидантами Авторы В. Янковская, Н. Дунченко, М. Гинзбург, С. Купцова, А. Одинцова, А.
Роль клеточной теории в становлении и развитии биотехнологии Роль клеточной теории в становлении и развитии биотехнологии Создание клеточной теории позволило связать наследственность и изменчивость с их материальной основой — ДНК, а также определить, что клетка является элементарной единицей живых организмов. Уже в середине ХХ века были получены первые растения, выращенные из отдельных клеток на питательной среде, а в 1973 году родился первый «ребенок из пробирки». Операции с клетками генная и клеточная инженерии позволили клонировать сначала холоднокровных животных, а затем и млекопитающих. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты Прогресс биотехнологии позволил совершить прорыв в таких отраслях человеческой деятельности, как селекция, сельское хозяйство, медицина, фармация и др. Так, введение в растения бактериальных генов устойчивости к поеданию насекомыми и поражению вирусами, а также способных расти на бедных или загрязненных почвах способствует решению продовольственной проблемы, особенно в странах с быстро растущим населением. В настоящее время значительная часть посевных площадей занята трансгенными культурами в США, Канаде и Китае. Культивирование клеток растений на фоне высоких концентраций солей и других соединений позволяет сократить сроки выведения новых сортов пшеницы, сои и других важнейших сельскохозяйственных культур до… Культивирование клеток растений на фоне высоких концентраций солей и других соединений позволяет сократить сроки выведения новых сортов пшеницы, сои и других важнейших сельскохозяйственных культур до одного-двух лет. Клонирование животных, особенно с генетически измененными признаками и свойствами, позволяет вывести более продуктивные породы и добиться их быстрого размножения, однако этот процесс пока еще слишком трудоемок и дорог, чтобы применяться в промышленном масштабе. Трансформация бактерий позволила уже в начале 80-х годов Трансформация бактерий позволила уже в начале 80-х годов ХХ века получать биологически активные вещества — инсулин, соматотропный гормон, интерферон, которые применяются в медицине, а также создать новые штаммы микроорганизмов, предназначенных для очистки сточных вод, ликвидации нефтяных разливов и т. Путем селекции выведены также и формы бактерий, с помощью которых получают антибиотики, извлекают цветные металлы, получают биогаз. В будущем возможно использование клонирования в сочетании с другими отраслями биотехнологии не только для размножения растений, микроорганизмов и грибов, но и для восстановления исчезнувших видов… В будущем возможно использование клонирования в сочетании с другими отраслями биотехнологии не только для размножения растений, микроорганизмов и грибов, но и для восстановления исчезнувших видов животных, возобновления природных популяций исчезающих видов. Однако для этого необходимо вначале создать генные банки, поскольку ДНК довольно быстро подвергается разрушению в окружающей среде. Этические аспекты развития некоторых исследований в биотехнологии клонирование человека, направленные изменения генома Этические аспекты развития некоторых исследований в биотехнологии клонирование человека, направленные изменения генома С помощью биотехнологии стало возможным преодоление бесплодия, лечение многих наследственных и приобретенных заболеваний, решение продовольственных и экологических проблем современности. С другой стороны, активное вторжение современных технологий в медицину сопряжено с операциями с клетками и тканями человека. Большинство стран законодательно ограничило эксперименты по клонированию человека в основном по этическим соображениям, поскольку они направлены не просто на воспроизведение человека, но и на последующее… Большинство стран законодательно ограничило эксперименты по клонированию человека в основном по этическим соображениям, поскольку они направлены не просто на воспроизведение человека, но и на последующее использование клеток, тканей и органов зародыша для экспериментов, а также в качестве их донора. В связи с этим во всем мире активно обсуждается вопрос о допустимости подобных действий.
Основными темами докладов Форума стали применение нанотехнологий и IT в здравоохранении и медицине, современные подходы к диагностике, лечению и реабилитации пациентов при социально значимых заболеваниях, разработка и внедрение инновационных биомедицинских технологий, профилактика онкологических заболеваний, биотехнологии в производстве продуктов питания в том числе, функциональных и специализированных и другие направления. Секция Форума «Пищевые биотехнологии и стратегии развития пищевых систем» прошла во второй день работы Форума и была организована в ФНЦ пищевых систем имени В. Горбатого РАН. С пленарными докладами о новых разработках в области пищевых технологий, функционального и специализированного питания выступили профессор Линдси Браун из Университета Гриффита в Австралии и доцент Института пищевых наук Чжэцзянской академии сельскохозяйственных наук Кэ Кэ Чжао, Китай. Академик РАН Владимир Алексеевич Черепенин рассказал о возможности применения мощных ультракоротких электромагнитных импульсов для борьбы с онкологическими заболеваниями, в том числе с карциномой. Уже внедрённой в клиническую практику инфракрасной термографии посвятил свой доклад ведущий научный сотрудник Института радиотехники и электроники им.
Не менее важную роль в организации Школы сыграла Антонина Беркут , которая — так уж вышло — была одновременно аспиранткой Василевского и членом команды «Современная биология». По мнению многих, лучшего таск-менеджера, чем Тоня, не найти. Рисунок 4. Не только наука: на зимних школах много времени уделено активностям участников. Иначе где проводить встречу с инвестором? Но утомительное. Конкурс на школу был выше, работа организаторов — слаженней, ожидания — больше и страх разочарования — тоже. На школу приехали лучшие русскоязычные ученые, предприниматели и инвесторы, а главное — молодые и перспективные участники — «дети» — будущее российской науки. Среди заокских январских сугробов вдруг возникли толпы молодых людей, с горящими глазами обсуждающих едва появившуюся тогда криспр-историю — и способы нахождения инвестиций в науку; карьерные траектории — и механизмы долговременной памяти; бороду Гельфанда — и прическу Северинова. Между чуть знакомыми людьми прямо на глазах начинались химические реакции, некоторые из которых продолжаются и по сей день. Школа стала перекрестком, где сплетаются жизни, меняются судьбы и научные траектории направляются на взлет рис. А со стороны всё выглядит так невинно: лекции, семинары, круглые столы и ночные посиделки за пивом. На этой же школе, кстати, произошло знакомство команды Future Biotech с ее нынешним исполнительным директором Денисом Куреком , не замедлившим присоединиться ко всем образовательным инициативам ребят. За подробностями лучше всего обратиться к официальному пост-релизу или неофициальному отзыву по итогам школы; а также не помешает посмотреть фотографии. Пять дней лекций обо всём на свете, дебатов, бизнес-игры и научных боев. А самое главное — люди. Вы с равным вниманием слушали и об анаэробном метаболизме бактерий, и о масс-спектрометрии, и об иммунологических аспектах атеросклероза. Нереальное вдохновение от вас всех! А сколько новых знаний! Спасибо вам! Оригинал: www. Рисунок 5. Научные бои и прочая самодеятельность. На осеннем интенсиве 2015 года и на ЗШ-2016 прошли настоящие Научные бои под руководством их основателей из Политехнического музея. Так и повелось Так и повелось. Начиная с 2012 года, провели две летние школы «Биотехнологии будущего» об одной уже рассказали выше, о другой — 2013 года — для краткости тут рассказано не будет , четыре зимние совместные «Современная биология и Биотехнологии будущего» и еще два осенних интенсива — в 2014 и 2015 годах интенсив — это что-то вроде школы, только короче по времени и без выезда из Москвы — то есть без совместного проживания и ночных посиделок. Мероприятия крепчали и матерели: ясны уже были подводные камни организации, закреплялись характер и стиль школы, а постепенно сформировавшееся сообщество помогало в организации и самим своим существованием давало понять, насколько всё это нужно. Общая концепция получилась такая. Летняя школа и осенний интенсив посвящены больше бизнесу, чем науке. На них зовут: лекторами — молодых, но уже многого добившихся научных предпринимателей и предприимчивых ученых, а также бизнес-ангелов, инвесторов и представителей стартап-инкубаторов; участниками — тоже молодых, но еще не так многого добившихся ученых и предпринимателей. Лекции посвящены не столько тому, что сейчас интересного творится в науке, сколько как это интересное ухватить, превратить в продукт и отправить из лаборатории в реальную жизнь. Особый акцент осенних интенсивов — карьерные траектории: чем можно в жизни заняться человеку, получившему образование в сфере наук о жизни, ну или глубоко интересующемуся ими. Осенью 2015 года на интенсиве провели круглый стол, посвященный вопросам научной политики, на мысли о которых навело закрытие фонда «Династия» , традиционно поддерживавшего всю серию этих зимних школ. На интенсив приехал сам основатель и бессменный руководитель фонда Дмитрий Борисович Зимин рис. Главное правило отбора участников на школу — ощущение, что человек дорос до потолка в той области, которой занимался, и теперь должен что-то менять в своей жизни. Дело тут в том, что многие люди совершенно не представляют себе весь тот веер возможностей, который в наше время дает биотехнологический бэкграунд. Можно остаться в фундаментальной науке, работать в лабе, капать в пробирки, постепенно достигнуть профессиональных и карьерных высот и, может быть, в конце концов совершить какое-нибудь великое открытие. Можно бросить фундаментальную науку и заняться прикладной: на основе своих научных идей организовать стартап и возможно добиться невообразимых успехов в бизнесе. Можно пойти наемным сотрудником в фармацевтическую компанию или биотехнологическое производство зарабатывать хорошие деньги. Можно вообще уйти из науки как таковой и применить свои знания и опыт биотехнолога в финансовой сфере: заняться консалтингом, инвестированием в различные проекты и так далее. Можно пойти в госструктуры: стать чиновником, регулирующим отношения науки и власти, и налаживать научный процесс с этой непростой стороны. Можно, наконец, стать популяризатором науки: писать научно-популярные статьи и книги, делать сайты, снимать научные фильмы и мультики, организовывать научные музеи, праздники науки и так далее. Иными словами, перед молодым и талантливым биотехнологом открыт весь мир, а не только двери лаборатории, и задача летних школ и осенних интенсивов — показать ему, как пользоваться теми потрясающими возможностями, какие дает ему профессия. Итак, прошел день с окончания школы, я немного пришел в себя, вспомнил алфавит и теперь наконец могу что-то написать. Ну, во-первых, привет чатику SC2TV! Ребята, с вами просто нереально весело! Стоит также отметить, что с каждым днем аудитория чата становилась всё серьезнее, и в последний день я даже уже не всегда улавливал нить рассуждений, так что пора переименовывать ресурс в SCienceTV! Что-то я всё про чатик, да про чатик... Но кроме чатика, стоит отметить просто великолепнейших лекторов — цвет и свет российской науки, а самое главное — добрых, умных, интересных и открытых для общения людей! Это профессионалы высшего уровня, их просто невероятно приятно слушать, с ними бесконечно полезно общаться, и я горжусь, что мне выпала честь познакомиться с ними. Ну и, конечно, теперь немного про тех, без кого ничего бы и не было, то есть организаторов! Ребята, вы просто нереально крутые, именно благодаря вам у стольких молодых ученых и не только ученых появилась возможность познакомиться друг с другом, с топовыми людьми из мира науки и самыми последними достижениями и трендами.
Присутствующие могли ознакомиться с проектами: «Разработка биотехнологических процессов получения хитозана и его производных для использования в качестве регуляторов роста растений и индукторов устойчивости к фитопатогена», «Разработка научных подходов к оценке биобезопасности новой продукции сельского хозяйства растительного происхождения», «Разработка наукоемких технологий интенсивного культивирования растений», «Новые подходы в валоризации сельскохозяйственных отходов с использованием электромикробиологии». Также на Форуме состоялось награждение научно-исследовательских коллективов. В номинациях «Конкурс молодых ученых, изобретателей, аспирантов и студентов» и «Конкурс инновационных разработок и проектов в области биотехнологий» золотые медали и дипломы получили представители РГАУ-МСХА им. Тимирязева за исследования, которые проводятся ими в ходе деятельности НЦМУ «Агротехнологии будущего»: Метод создания генетически редактированных растений путем доставки целевых биомолекул через пыльцевые зерна Авторы Л. Хрусталева, Мардини Мажд, А. Молочные продукты с антиоксидантами Авторы В.
Скачать Первый слайд презентации: Биотехнология «Нет ничего более изобретательного, чем сама природа…А человек - ее венец, который может многое изменить…» Цицерон Биотехнология Изображение слайда Слайд 2: Основополагающий вопрос Ученые утверждают, что биотехнология открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы. Миф это или реальность?
Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике. Термин «клонирование» в том же смысле нередко применяют и по отношению к клеткам многоклеточных организмов. Клонированием называют также получение нескольких идентичных копий наследственных молекул молекулярное клонирование. Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул. Группа генетически идентичных организмов или клеток — клон.
В этом году мероприятие проводится в 17 раз и традиционно было организовано при сотрудничестве трех отделений Российской академии наук: Отделения нанотехнологий и информационных технологий, Отделения медицинских наук и Отделения сельскохозяйственных наук РАН. На Форуме были представлены достижения в области фундаментальных и прикладных биотехнологических исследований. На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства и награждение научно-исследовательских коллективов за актуальные разработки. Основная цель Форума — предоставить специалистам в фундаментальных и прикладных отраслях биотехнологий, медицины, фармацевтических и пищевых производств возможность презентовать свои исследования, наладить контакты, провести плодотворные научные дискуссии, в том числе для возможности инициирования совместных проектов — междисциплинарных и международных. На мероприятии встретились учёные и разработчики наукоёмких технологий из России, Индии, Китая, Ирана, Австралии, Кубы и других стран. Требуется взаимодействие между людьми разных специальностей, это дает толчок к развитию», — обратился с приветствием к участникам Алексей Николаевич Фёдоров, директор ФИЦ Биотехнологии РАН.
Навигация по сайту
- Презентация «Успехи современной биотехнологии» на различные темы - для образования и обучения
- Биотехнологии в современной науке
- РНК-вакцины и 3D-печать органов: главные достижения биотеха. Карточки
- Последние комментарии
- Биотехнологии
- Презентация "Биотехнология и её достижения" скачать
Навигация по сайту
- Смотреть слайды презентации Успехи современной биотехнологии
- Биотехнология: современные достижения, перспективы развития - ВГУИТ
- Изображения по запросу Биотехнология
- Презентация биотехнологического комплекса в Министерстве науки и образования РФ
- Презентация «Успехи современной биотехнологии» на различные темы - для образования и обучения
- Подписка на дайджест
РНК-вакцины и 3D-печать органов: главные достижения биотеха. Карточки
Более того, в случае печати из стволовых клеток, полученных от пациента, этот орган будет полностью иммунологически совместим с ним, то есть будет приживаться и не будет отторжен. Это хорошая возможность решить проблему, связанную с донорскими органами, ведь в этом случае решаются проблемы совместимости и долгого ожидания подходящего органа для пересадки. Искусственный хрусталик Очень частой проблемой в пожилом возрасте становятся заболевания глаз, чаще всего речь идет о катаракте или глаукоме. Дело в том, что лазерная коррекция зрения может помочь далеко не во всех случаях. К счастью, проблема ухудшения зрения с возрастом может быть решена с помощью новых технологий. Победить катаракту поможет искусственный хрусталик — линза из органического стекла, силикона или акрила, которая может заменить испортившийся собственный. Сейчас заменить поврежденный хрусталик на искусственный — вполне реально. А значит, у пациентов появился шанс снова увидеть мир четко и ярко. Более того, возможности современной офтальмологии уже не исчерпываются одними лишь лазерной коррекцией зрения и искусственным хрусталиком. Уже появились бионические протезы глаз, которые также помогают людям, потерявшим зрение, восстановить его по крайней мере, частично.
Клонированием называют также получение нескольких идентичных копий наследственных молекул молекулярное клонирование. Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул. Группа генетически идентичных организмов или клеток — клон. Может осуществляться в пределах одного вида внутривидовая гибридизация и между разными систематическими группами отдалённая гибридизация, при которой происходит объединение разных геномов. Для первого поколения гибридов часто характерен гетерозис, выражающийся в лучшей приспособляемости, большей плодовитости и жизнеспособности организмов.
В то же время логика на ДНК способна на колоссальный параллелизм, что позволит умножить мощность компьютеров, в чём далеко продвинулись китайские учёные. Это базовая опция дезоксирибонуклеиновой кислоты. Запись и хранение данных относительно нетребовательны к скорости работы платформы, которая зависит от скорости протекания биохимических реакций. Другое дело вычислительные цепи, скорость работы которых должна быть максимальной.
В принципе, параллелизм частично решает эту проблему. Но до последнего времени электронные цепи на ДНК, с которыми работали учёные, не могли похвастаться универсальностью — они выполняли лишь ограниченный круг алгоритмов. Группа исследователей из Китая разработала интегральную схему ДНК, которая способна выполнять множество разнообразных операций. По словам учёных, реконфигурируемый базовый элемент электронная цепь с 24 адресуемыми двухканальными затворами может быть представлен в виде 100 млрд вариаций цепей, каждая из которых сможет выполнять собственную подпрограмму.
Из этого следует, что на основе этого решения можно спроектировать процессор общего назначения для запуска любых программ. В своей работе, которая была опубликована в журнале Nature, исследователи показали, как с помощью трёхслойной матрицы из цепей на базе их ДНК-чипа можно обеспечивать простейшие математические операции. Представленная платформа легко масштабируется, что позволяет рассчитывать на создание в будущем очень мощных процессоров. Для решения вопроса масштабирования учёные проделали другую работу.
Ведь для прохождения сигнала в цепях из ДНК потребуется передача биохимических данных в заданном направлении и без затухания. И чем длиннее будет этот путь масштаб , тем выше будет вероятность потери «сигнала» — фрагмента ДНК или концентрации фрагментов ДНК. В качестве «сигнала» китайские учёные испытали олигонуклеотиды — короткие фрагменты ДНК, которые уже используются как детекторы и носители ДНК-информации. В своих экспериментах китайцы показали, что типовые одноцепочечные олигонуклеотиды хорошо работают в качестве унифицированного сигнала для передачи, что позволяет надёжно интегрировать крупномасштабные цепи с минимальной утечкой и высокой точностью для вычислений общего назначения.
Вычисления в пробирке. Источник изображения: Nature В качестве примера учёные создали схему, решающую квадратные уравнения, которая собрана с использованием трёх слоев каскадных ЦВМ, состоящих из 30 логических вентилей и содержащих около 500 нитей ДНК. Иными словами, предложенная платформа сможет не только работать как обычный компьютер, но также будет способна на мгновенную диагностику вирусных и других заболеваний. И ещё большой вопрос, которая из этих возможностей окажется наиболее полезной.
Такое кажется невозможным, но поставленный учёными эксперимент показал , что активностью генов в клетках человека можно управлять электрическими импульсами. Учёные представили то, что они назвали «электрогенетическим» интерфейсом. Перспективный интерфейс способен запускать целевые гены по команде в те моменты, когда наш организм будет нуждаться в стимуляции или в коррекции состояния здоровья. Здесь мы предоставляем недостающее звено».
Как сообщается в статье учёных в журнале Nature Metabolism, эксперимент был поставлен на мышах, больных диабетом 1-го типа. Мышам имплантировали клетки поджелудочной железы человека. Раздражение этих клеток электрическим током по команде с внешнего устройства приводило к принудительной выработке инсулина. С оговорками, но животных фактически избавили от неизлечимой болезни.
Источник изображения: Nature Metabolism Стимуляция клеток происходит в процессе образования активных форм кислорода — очень активных и «агрессивных» молекул, уровень которых, впрочем, контролировался и не достигал концентрации, после которой молекулы кислорода становятся для организма ядом. Молекулы кислорода напрямую воздействуют на ДНК при делении клеток и могут направлять этот процесс в нужное русло, обеспечивая генную терапию с помощью контролируемых электрических импульсов. Очевидно, что такое произойдёт очень и очень нескоро. Но потенциал в этом есть, и он обещает когда-нибудь справиться с генетическими заболеваниями и не только.
Например, получить возможность выбрать в меню браслета режим «форсаж» и догнать уходящий поезд. Вместо выбросов в атмосферу, где CO2 будет создавать парниковый эффект, открытая цепочка биохимических реакций приводит к синтезу аминокислоты, необходимой для производства кормового белка. При этом территория под комплекс для синтеза будет ощутимо меньше сельхозугодий под те же задачи. Так можно будет «накормить будущее», уверены учёные.
Немецкие учёные придумали реакцию для синтеза аминокислоты L-аланина и намерены разработать процессы для синтеза других необходимых аминокислот, чтобы в конечном итоге из углекислого газа синтезировать полные белковые комплексы. В основе биохимической реакции синтеза L-аланина лежит метанол и не простой, а «зелёный» — полученный из CO2 с использованием возобновляемой энергетики — от ветряных или солнечных ферм. Метанол необходим как промежуточный продукт, потому что напрямую аминокислоту синтезировать из углекислого газа нельзя. Получив из CO2 метанол, учёные запускают с ним серию реакций с использованием синтетических ферментов.
На выходе получается необходимая для синтеза кормового белка аминокислота. Для синтеза этой же аминокислоты природным способом необходимы земля, люди и длительные процессы по выращиванию. В случае природного подхода ресурсные затраты и произведённые в его процессе вредные выбросы проигрывают синтетическим, уверены исследователи. К тому же, синтетический способ производства аминокислот и белков не производит вредных выбросов, если использует возобновляемую энергию.
Предложенное решение поможет устранить конфликт между растущим населением Земли и производством продуктов. Еды хватит всем, и производиться она будет без ущерба для экологической обстановки. Группа учёных смогла решить эту проблему в сфере 3D-печати живых тканей человека — она создала сложнейшее и дорогое оборудование из обычных наборов LEGO и готова поделиться опытом со всеми желающими. Самыми дорогими, по-видимому, оказались интеллектуальный блок Lego Mindstorms и лабораторный насос.
LEGO-принтер печатает биогелем, в котором растворены клетки кожи человека. Сопло принтера создаёт трёхмерную модель тканей кожи в чашке Петри, укладывая в неё слой за слоем. В дальнейшем учёные намерены изучить работу с разными составами геля и соплами разного диаметра, чтобы попытаться максимально точно воспроизводить кожную ткань человека. Всё эту нужно для получения множества образцов живой ткани для проведения медицинских опытов.
В обычных условиях биологический материал получают либо от доноров, либо в виде отходов после операций. В обоих случаях процедура и порядок получения биоматериалов достаточно сложные и становятся всё сложнее и сложнее, поэтому даже такой доморощенный принтер из конструктора LEGO может быть приемлемым решением для медицинских экспериментов. Данные о разработке с детальным описанием сборки, настройки и работы принтера изложены в журнале Advanced Materials и свободно доступны по ссылке.
Деление — быстрое размножение Потрясающая выживаемость Простота генетической организации Слайд 6 Описание слайда: Направления развития -Выращивание бактерий, низших грибов, дрожжей на спец. Продукцию используют для получения пищевых добавок, корма для скота, лекарств более 150 видов продукции, в том числе лизина Слайд 7 -Клеточная инженерия Из отдельной клетки можно вырастить целый организм Слайд 8 Описание слайда: Методы селекции микроорганизмов Традиционные методы- экспериментальный мутагенез и отбор по продуктивности. Новейший метод - генная инженерия В генной инженерии используют два способа: - выделение нужного гена из генома одного организма и внедрение его в геном бактерий; - синтез искусственным путем гена и внедрение его в геном бактерий Слайд 9 Описание слайда: Трансгенные организмы. Трансгенные организмы - животные, растения, микроорганизмы, вирусы, генетическая программа которых изменена с использованием методов генной инженерии.