это быстро вращающаяся нейтронная звезда.
Астрономы обнаружили самый мощный пульсар в далекой галактике
Международная команда астрономов обнаружила белый карликовый пульсар, который считается одной из самых редких звезд в нашей галактике. Пульсар (нейтронная звезда), движущийся по эллиптической орбите вокруг соседней звезды массой 30 Солнц, как предполагается, пробил дыру в ее газовом диске. PSR J0952-0607, так называемый миллисекундный пульсар, уничтожил и поглотил почти всю массу своего звездного компаньона и в процессе превратился в самую. Некоторые из них, взорвавшись, уже превратились в пульсары, которые, в свою очередь, провоцируют взрывы гигантских облаков пыли и газа, что приводит к образованию новых звезд. Пульсарами называют один из типов нейтронных звезд, образующихся после сверхновых. Сайт PULSAR – новости астрономии и космонавтики. Здесь вы найдете материалы, которые относятся к темам космоса, НЛО, аномалий на Земле и во Вселенной.
Астрономы зафиксировали гамма-лучи с рекордно высокой энергией от мертвой звезды
ядро сколлапсировавшей звезды. Реактивный двигатель пульсара в созвездии Парусов Сомнения в существовании планеты у пульсара PSR 1257+12. Обычно, если такая звезда движется, то же относится и ко всем остаткам сверхновой – эмиссионной туманности. Иначе обстоит дело с пульсаром IGR J11014-6103.
Звезды могут поглощать черные дыры — нестандартная гипотеза
Этот снимок Крабовидной туманности получен телескопом «Хаббл». На нем видно множество деталей: газовые волокна, узлы, конденсации. Общие размеры Крабовидной туманности превышают 5 световых лет. Крабовидная туманность в оптике, тепловых и рентгеновских лучах. В центре туманности находится пульсар — сверхплотная нейтронная звезда, излучающая радиоволны и генерирующая рентгеновские лучи в окружающем ее веществе рентгеновское излучение показано голубым. Наблюдения Крабовидной туманности на разных длинах волн дали астрономам фундаментальную информацию о нейтронных звездах, пульсарах и сверхновых. Это изображение — комбинация трех снимков, полученных космическими телескопами «Чандра», «Хаббл» и «Спитцер» Последняя из вспышек сверхновых, наблюдавшихся невооруженным глазом, произошла в 1987 году в соседней галактике, Большом Магеллановом Облаке.
Блеск сверхновой 1987А достиг 3 величины, что немало с учетом колоссального расстояния до нее порядка 160000 св. После взрыва на месте звезды осталась расширяющаяся туманность и загадочные кольца в виде цифры 8. Ученые предполагают, что причиной их появления может являться взаимодействие звёздного ветра звезды-предшественника с газом, выброшенным во время взрыва AD AD Остаток от сверхновой Тихо. Сверхновая вспыхнула в 1572 году в созвездии Кассиопеи. Яркую звезду наблюдал датчанин Тихо Браге, лучший астроном-наблюдатель дотелескопический эпохи. Книга, написанная Браге по следам этого события, имела колоссальное мировоззренческое значение, ведь в ту пору считалось, что звезды неизменны.
Уже в наше время астрономы долго охотились за этой туманностью при помощи телескопов, и в 1952 году обнаружили ее радиоизлучение.
Важное открытие Хотя ученые теоретически знают, что такое антиматерия, они до сих пор не понимают, откуда она взялась в нашей Галактике. Но в исследовании , которое скоро будет опубликовано в Astrophysical Journal, исследователи Мартин де Врис и Роджер Романи предполагают, что они, возможно, нашли ответ: позитроны могут возникать в энергетических полях, генерируемых быстро вращающимися пульсарами, такими как тот, что попал на снимок обсерватории «Чандра». Это открытие связано с поистине ошеломляющими цифрами.
Он проносит свой радиолуч мимо Земли примерно каждые 76 секунд - в три раза медленнее, чем предыдущий рекордсмен.
Дальнейшие наблюдения с помощью MeerKAT выявили не только медленное устойчивое радиоизлучение пульсара - показатель скорости вращения, но и еще одну важную деталь: темп, с которым вращение замедляется по мере старения пульсара. И эти два фактора выявили кое-что странное в этом пульсаре. Согласно теории, он не должен излучать радиоволны. И все же он их излучает.
Предел массы белых карликов составляет около 1,44 солнечных масс. А вот более плотная звезда массой от 10 до 29 солнечных масс может стать нейтронной звездой.
Дело в том, что в этот момент плотность звезды настолько велика, что преодолевает вырождение электронов: электроны по-прежнему не хотят занимать одно и то же состояние, поэтому вынуждены объединяться с протонами, в результате чего образуются нейтроны и испускаются нейтрино. Таким образом, нейтронные звезды почти полностью состоят из нейтронов и удерживаются благодаря их вырождению, которое схоже с вырождением электронов у белых карликов. Сфера в середине представляет нейтронную звезду, кривые показывают линии магнитного поля, а выступающие конусы — зоны излучения. При этом, соавтор исследования Скотт Рэнсом отмечает, что у нейтронных звезд существует переломный момент, когда их внутренняя плотность становится настолько экстремальной, что сила тяжести подавляет способность нейтронов противостоять дальнейшему коллапсу. Каждая «самая массивная» нейтронная звезда, которую обнаруживают ученые, постепенно приближает специалистов к определению того самого переломного момента, который удерживает нейтронную звезду от коллапса. Хотите быть в курсе последних научных открытий?
Подписывайтесь на наш новостной канал в Telegram. Как астрономы ищут нейтронные звезды? В Млечном Пути насчитывается не менее 100 миллионов нейтронных звезд, однако большинство из них — древние, холодные звезды, поэтому их очень трудно обнаружить.
Такое случается раз в 80 лет: на Земле увидят взрыв «полыхающей звезды»
В ее центральной зоне находится быстровращающаяся нейтронная звезда-пульсар, которая инжектирует в окружающее вещество релятивистские потоки заряженных частиц, что приводит. Hercules X-1 является рентгеновским пульсаром, который, как выяснили исследователи, относится к классу аккрецирующих. Нейтронная звезда должна быть пульсаром, вращающимся на высоких скоростях, обладающим сильным магнитным полем и испускающим с полюсов мощное излучение. Стоит объяснить, что пульсар – это сильно намагниченная вращающаяся компактная нейтронная звезда, выделяющая пучки электромагнитного излучения. Материя этой звезды перетягивается на пульсар, вызывая ускорение его вращения, по мере чего вокруг пульсара формируется тонкий диск звездного вещества, который постепенно. Это и придаёт белому карлику сходство с пульсаром. Однако, несмотря на некоторые из этих характеристик, J1912–4410 определённо не нейтронная звезда.
Астрономы разгадали загадку быстрого «мигания» пульсара
Пульсар находится от Земли на расстоянии в 2,5 миллиона световых лет, это большая проблема для изучения радиоизлучения звезды: в минуту видно только 12 фотонов, а их потребовалось 50 миллиардов для изучения. В нашей Галактике ни в одном из полутора сотен шаровых скоплений не наблюдается таких медленных рентгеновских пульсаров. Это говорит о том, что ядро с чрезвычайно плотным расположением звезд в скоплении B091D намного больше, чем у обычного скопления. А значит, мы имеем дело с более крупным и довольно редким объектом — с плотным остатком небольшой галактики, которую некогда поглотила галактика Андромеды.
Черная дыра «на обед» Фото: Shutterstock. Гипотетически предполагается, что во Вселенной существуют так называемые первичные черные дыры. Обычные черные дыры образуются как нейтронные звезды — в результате сверхновых. А первичные, полагают ученые, соткались из сверхплотной материи в первые секунды существования Вселенной. Вероятно, размер их разнится от массы булавки до примерно 100 000 масс Солнца.
Возможно, обнаружить их смогут новые телескопы, которые сейчас на Земле готовят к запуску. И вот именно такую черную дыру, довольно небольшой массы, по мнению группы Кайоццо могла поглотить звезда, каким-то образом вступив с ней во взаимодействие.
А сейчас рядом с ней находится туманность. Впрочем, природу астрономического объекта ученые поняли только в 1960-х годах, хотя еще в 1913 году Весто Слайфер, изучая спектры Краба, увидел, что по сравнению с фотографиями, сделанными несколькими годами ранее, туманность расширилась. В 1963 году было открыто радиоизлучение Крабовидной туманности, в 1964 — рентгеновское излучение. Так случилось первое уподобление остатков сверхновой и нейтронной звезды, которое и послужило поводом отождествить пульсары и нейтронные звезды. Пульсар Крабовидной вращается со скоростью 30 оборотов в секунду. Следующие полвека Крабовидная туманность стала одним из самых наблюдаемых объектов на звездном небе. И наблюдения продолжаются.
Теоретики теперь получат новые фактические данные для моделирований, а мы — еще один инструмент для исследования параметров нейтронных звезд». Результаты исследования опубликованы в журнале The Astrophysical Journal Letters. Для справки Нейтронные звезды — сверхплотные космические тела, имеющие радиус около 10 км и массу, достигающую 1,4—2,5 массы Солнца. Рождаются они в результате вспышек сверхновых звезд, в результате которых вещество из-за гравитации сжимается настолько сильно, что электроны фактически сливаются с протонами, образуя нейтроны. В результате получаются огромные массы для столь малых размеров. При сжатии сохраняется магнитный поток, и если величина магнитного поля на поверхности звезды-прародителя была порядка 1 Гс как, например, на Земле , то после коллапса магнитное поле на поверхности нейтронной звезды достигает величин 1011—1012 Гс Некоторые нейтронные звезды могут образовывать пару с обычной звездой, вещество которой перетекает на поверхность нейтронной звезды в области магнитных полюсов подобно тому, как на Земле частицы солнечного ветра «выпадают» в районе магнитных полюсов, образуя всем известное полярное сияние.
При этом возникает узкий луч мощного рентгеновского излучения. Когда из-за вращения звезды этот луч направлен на Землю, наблюдатели видят периодический сигнал, как от маяка, — рентгеновский пульсар. По материалам пресс релиза МФТИ.
Остатки от вспышек сверхновых звезд
Астрономы разгадали загадку быстрого «мигания» пульсара | У нейтронных звёзд есть второе название — пульсары. |
"Нет никаких прототипов, двигатель абсолютно новый" | Остатки разрушившейся нейтронной звезды (пульсар) генерируют свет в рентгеновском диапазоне длин волн. |
Астрономы обнаружили тяжёлую нейтронную звезду с массой в 2,5 раза больше Солнца / Хабр | На сегодня теоретическая модель описывает космические пульсары как нейтронные звезды с небольшим и смещенным относительно оси вращения магнитным полем. |
Обнаружена одна из самых редких звезд в нашей галактике | Эта звезда, найденная в двойной системе со звездой-компаньоном, полностью изменила представление учёных о происхождении пульсаров. |
От раскола до пульсара: как звезда родила Краба
Само по себе это не ново, и такие особенности спектров в настоящий момент известны у трех десятков пульсаров. Уникальность сделанного российскими исследователями открытия состоит в том, что в данном случае эта особенность проявляет себя только тогда, когда нейтронная звезда повернута к наблюдателю определенным образом. Возможно, эта звезда станет родоначальником нового семейства пульсаров. Обнаружить это явление астрофизикам удалось после проведения детальной «томографии» системы. Для этого были сделаны рентгеновские снимки «космического пациента» с десяти ракурсов, и только на одном из них был обнаружен дефицит излучения на энергии около 10 кэВ, что соответствует напряженности магнитного поля 1012 Гаусс. Напомним, что самые сильные магнитные поля на Солнце, наблюдаемые в пятнах, достигают нескольких тысяч Гаусс. Полученный результат был настолько необычен, что российские исследователи обратились к американским коллегам с предложением провести дополнительные наблюдения, которые бы подтвердили первоначальные выводы. Неоднородности в структуре магнитного поля как обычных, так и нейтронных звезд теоретически были предсказаны и ранее, но открытие российских астрофизиков впервые представило доказательства того, что магнитное поле нейтронной звезды имеет существенно более сложную структуру, чем считалось ранее. Причём она может сохраняться достаточно продолжительное время. Один из авторов открытия Александр Анатольевич Лутовинов, заместитель директора по научной работе ИКИ РАН отметил: «Одним из фундаментальных вопросов образования и эволюции нейтронных звезд является структура их магнитных полей.
Частицы, вытекающие из ветра пульсара, похоже, были ускорены вдоль этой линии межзвездного магнитного поля до скорости, составляющей около трети скорости света. Это заставляет луч ярко светиться в рентгеновских лучах, как вы можете видеть выше. Новая статья об этом явлении была принята к публикации в журнале The Astrophysical Journal и доступна на сервере препринтов arXiv.
Несмотря на то, что пульсаров нет в радиусе примерно 25 парсеков от ядра галактики, до недавнего времени это ученых не слишком смущало: многие просто считали, что пока нет техники, способной их обнаружить, ведь как и все нейтронные звезды, пульсары по размерам сравнимы с небольшим городом на Земле, хоть и обладают массой больше, чем у Солнца. По одной из уже существующих версий, в космосе есть «неработающие» пульсары, которые лишились возможности вращаться. Они, как считается, образуются в двойных звездных системах.
Если одна, более массивная, звезда в процессе сверхновой отталкивает более мелкого компаньона и остается одна, она со временем теряет материал, замедляется и в конце концов не излучает сигнал, по которому ее можно было бы обнаружить. Но разве могут все системы в центре галактики быть двойными и все — пойти по одному пути развития? Черная дыра «на обед» Фото: Shutterstock. Гипотетически предполагается, что во Вселенной существуют так называемые первичные черные дыры.
Здесь всё зависит от массы. Наше Солнце после себя нейтронную звезду не может оставить, и сверхновой оно тоже не может взорваться — оно слишком лёгкое. Оно, конечно, тоже раздуется в красного гиганта, как и Бетельгейзе, но оболочка сойдёт "спокойно", без вспышки, а ядро солнечное сожмётся в белого карлика — звёздочки диаметром в две тысячи километров. Так вот, ядро звезды вроде Бетельгейзе может весить уже, пожалуй, и целых полтора Солнца. А такая масса создаёт собой, конечно, соответствующую гравитацию, что приводит к соответствующему коллапсу. Такое тяжеловесное ядро схлопывается до диаметра километров в сорок. Нейтронная звезда в сравнении с Монреалем. У нейтронных звёзд есть второе название — пульсары.
Самый медленный пульсар
- "Нет никаких прототипов, двигатель абсолютно новый"
- Как действует пульсар?
- Пульсар — источник антиматерии
- Новый рекордсмен Вселенной: магнитное поле найденной звезды удивило ученых | Пикабу
- Обнаружена уникальная нейтронная звезда -
Астрофизики Московского университета изучили «омолаживающийся» пульсар в соседней галактике
"Невозможную звезду" нашли в созвездии Кассиопеи | Художественное изображение рентгеновского пульсара, на котором показан один из полюсов нейтронной звезды с формирующимся рентгеновским излучением (NASA/CXC/S. |
Российские ученые изучили уникальную нейтронную звезду галактики Андромеда - Hi-Tech | Пульсар Vela является нейтронной звездой. |
Новый рекордсмен Вселенной: магнитное поле найденной звезды удивило ученых | Пикабу | Вращаясь, нейтронная звезда вспыхивает рентгеновским пульсаром, как маяк, а продолжающее падать на нее вещество придает ей дополнительный импульс, ускоряющий. |
Telegram: Contact @prokosmosru | В частности, природа магнетизма Swift J0243.6+6124 подтверждает вероятность того, что магнитное поле пульсара сложное, состоит из множества полюсов. |
Астрономы нашли самую тяжелую нейтронную звезду | быстро вращающиеся нейтронные звезды. |