Новости термоядерная физика

Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times. И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час.

Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака

Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Ученые Института ядерной физики а СО РАН (ИЯФ, Новосибирск) добились ускорения плазмы в термоядерной установке "СМОЛА", где вещество удерживается.

Академик В.П. Смирнов: термояд — голубая мечта человечества

Если мы хотим, чтобы центральная область не просто загорелась и потухла, а породила самоподдерживающийся термоядерный синтез во всей капсуле, нужно, чтобы топливо разогревало само себя. Это происходит тоже при высоких плотностях, когда рождающиеся в термоядерном синтезе альфа-частицы поглощаются прямо внутри топливной капсулы, а не улетают прочь. Таким образом, можно сформулировать три ключевых задачи для установки NIF: 1 добиться существенного термоядерного синтеза — количество энергии, выделившейся при синтезе, должно превышать энергию, поглощенную топливом; 2 добиться устойчивого термоядерного горения всей топливной капсулы за счет саморазогрева альфа-частицами; 3 добиться полной эффективности выше единицы — то есть энергетический выход должен превышать всю энергию, затраченную на зажигание реакции, а не только ту часть, которая поглощается непосредственно топливом. Достижение этих целей — задача исключительно непростая. Если просто изготовить капсулу из нужного топлива и сфокусировать на ней мощный лазерный луч, то никакого сжатия не произойдет: капсула просто нагреется и испарится. Даже если сфокусировать несколько лазерных лучей со всех сторон, тоже проку будет немного.

Капсула частично испарится, частично сожмется, но сжатие будет сопровождаться сильными искажениями формы это неустойчивость Рэлея—Тейлора , характерная для многих гидродинамических течений. При неравномерном сдавливании капсулы они быстро нарастают, и в результате вместо сильного сжатия оболочку с топливом просто разорвет на куски. Преодоление этих трудностей и является пока главной задачей в инерционном термоядерном синтезе. Установка NIF использует две идеи, помогающие бороться с этими проблемами: слоистую капсулу и непрямое обжатие рис. Чтобы не потерять топливо при нагревании, внешняя оболочка капсулы делается из пластика, а дейтериево-тритиевая смесь наносится в виде льда на внутренную поверхность этой оболочки.

Внешний слой поглощает лазерный импульс, резко нагревается и расширяется, ударным образом сжимая при этом внутреннюю часть капсулы. Эта внутренняя часть разгоняется до высоких скоростей — и резко останавливается, когда схлопывающаяся ударная волна проходит через центр. Именно этот процесс сжатия и прохождения ударных волн сильно уплотняет центральную область и разогревает вещество до многих миллионов градусов. Интересно отметить, что похожие процессы, но при меньших масштабах температур и давлений, происходят и при ультразвуковой кавитации. Принцип работы инерциального термоядерного синтеза с непрямым обжатием.

Мощная лазерная вспышка попадает внутрь маленькой камеры, превращает ее в облачко плазмы высокой температуры. Эта плазма излучает тепловое рентгеновское излучение, которое уже и сжимает слоистую капсулу с топливом структура капсула показана в разрезе. Схема из статьи G. Brumfiel, 2012. Laser fusion put on slow burn Для равномерного давления на капсулу в установке NIF используется не только большое число лазерных лучей 192 синхронизованных луча, которыми можно независимо управлять , но и так называемое непрямое обжатие капсулы рис.

Лазеры не светят прямо на поверхность капсулы, они освещают внутренность маленькой, сантиметрового размера, цилиндрической камеры, в центре которой находится слоистая капсула с топливом рис. Попадая на стенки камеры, лазерная вспышка резко ее испаряет и нагревает получившуюся плазму до 3 млн градусов. Плазма начинает светиться в рентгеновском диапазоне, и уже это рентгеновское излучение давит на капсулу. Такая схема работы позволяет получить более равномерное обжатие, а также позволяет избежать слишком быстрого испарения внешней оболочки капсулы. Центральная камера сантиметрового размера, внутри которой помещается капсула с топливом.

Конечно, последствия термоядерной реакции были замечены, но эта реакция была слабоватой. Даже если сравнивать выделившуюся энергию с той энергией, которая непосредственно поглощается топливом, то выход тут до недавнего времени составлял от силы 20—30 процентов рис. Таким образом, NIF долгое время не удавалось даже достичь первой цели из приведенного выше списка. Результаты работы NIF за последние два с половиной года. По горизонтали отмечены отдельные лазерные «выстрелы» шестизначный номер кодирует год-месяц-день выстрела и для каждого выстрела показаны три величины: энергия, поглощенная топливом черная отметка , энергия, выделившаяся в термоядерном синтезе за счет сжатия синяя колонка , дополнительная термоядерная энергия, связанная с саморазогревом топлива альфа-частицами красная колонка.

Полная высота колонки показывает всю термоядерную энергию, выделившуюся при выстреле. Правая часть гистограммы, отмеченная как «high foot», отвечает новому режиму сжатия капсулы. Вставка показывает распределение выстрелов на диаграмме двух величин: по горизонтали обобщенный критерий Лоусона GLC единица соответствует полноценному запуску реакции , по вертикали — доля нейтронного потока, вызванного разогревом альфа-частицами, по сравнению с прямым сжатием.

Самой дорогостоящей частью "термоядерного" федерального проекта, как и всей программы РТТН, принято считать модернизацию существующей инфраструктуры и создание новых экспериментальных установок. Что тут в приоритетах? Где и на каких площадках уже ведутся такие работы? Виктор Ильгисонис: В действующей версии программы главный приоритет - это вывод на рабочие режимы токамака Т-15МД в Национальном исследовательском центре "Курчатовский институт", который должен быть оснащен различными системами дополнительного нагрева плазмы, диагностики, сбора и обработки данных, генерации тока и другими современными элементами. Осуществляются поддержка и развитие экспериментальной базы термоядерных исследований на площадках Физико-технического института имени Иоффе в Санкт-Петербурге, Института ядерной физики имени Будкера в Новосибирске, Национального исследовательского ядерного университета МИФИ в Москве.

Серьезные "задельные" работы по развитию инфраструктуры, ориентированные на следующий до 2030 года этап реализации федерального проекта, ведутся в научном центре ТРИНИТИ в Троицке. Год назад вы говорили о 110 контрольных точках по этому проекту, на 2023-й их в полтора раза больше. Как продвигаетесь по маршруту и что требует особого внимания? Виктор Ильгисонис: Движемся по плану, скрупулезно выполняя намеченное. Трудности, конечно, есть. Серьезный момент - заметное удорожание любого строительства в связи с известными причинами. Это может привести к смещению графика завершения строек на следующий этап проекта и к "заморозке" сооружения новых запланированных объектов. Чтобы этого избежать и обеспечить полноценное продление РТТН на период до 2030 года, как это определено Указом Президента Российской Федерации, абсолютно необходима поддержка правительства, всех вовлеченных в процесс федеральных органов исполнительной власти.

Без этого, если финансирование федерального проекта и РТТН в целом будет вестись по остаточному принципу и подвергаться периодическому "обрезанию", наши амбициозные цели останутся таковыми лишь на бумаге. Токамак - это тот редкий случай, когда название научной установки, созданной в нашей стране, разошлось по миру и стало международным брендом. А что означает словосочетание "токамак с реакторными технологиями"? И какие перспективы у такого, извините за сравнение, мутанта? Или это "токамак плюс"? Виктор Ильгисонис: Это рабочее название установки следующего поколения, сооружение которой должно было стать основной задачей программы РТТН на этапе 2025-2030 годов. Токамак с реакторными технологиями, сокращенно - ТРТ, призван совместить уже имеющиеся достижения в удержании высокотемпературной плазмы с практической отработкой технологий, необходимых для создания энергетического термоядерного реактора. Какие именно технологии и системы для этого нужны?

Виктор Ильгисонис: Это инновационные разработки магнитных систем, конструктивных элементов бланкета, дивертора, первой стенки.

Это могло бы стать альтернативой как обычным атомным электростанциям, работающим наоборот за счёт расщепления атомов, так и углеводородному топливу и, конечно, избавиться от вредных выбросов в атмосферу. В Ливерморской национальной лаборатории воспроизвели т. Эксперимент проходил в минувшие две недели. В Министерстве энергетики США уже назвали результаты эксперимента «крупным научным прорывом». Полученные данные всё ещё проверяются. Однако точные данные о выходе энергии все еще уточняются, и мы не можем подтвердить, что в настоящее время она превышает пороговое значение, — говорится в сообщении Ливерморской лаборатории.

Токамак — тороидальная камера, магнитная катушка. Система удержания плазмы токамак изобретена и предложена в Советском Союзе в Курчатовском институте, и это наш главный вклад. То есть вся кооперация, весь мир строит реактор в концепции, предложенной нашими учеными». Интересно и то, что соглашение об ИТЭР состоит из двух частей. Первая: о создании самого проекта и его реализации, а вторая — как страны участники будут делить интеллектуальную собственность, которая создается. Семь партнеров, включая Россию, вкладывают свои ресурсы и технологии. Наша доля — девять процентов.

Взамен мы получаем право на безвозмездную лицензию для уже нашей собственной термоядерной программы и создания нашего реактора. Анатолий Красильников: «Понимаете, мир сейчас очень сложный, турбулентный, разные есть события, отношения между странами.

Цитаты о СНГ

  • ˜˜˜˜˜: истории из жизни, советы, новости, юмор и картинки — Горячее | Пикабу
  • О настоящем и будущем термоядерной энергетики
  • Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае
  • Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае
  • Эра термоядерного синтеза
  • ядерная физика

Начало эпохи Водолея в 2021 году

  • Американцы произвели термоядерный прорыв к 100-летию советского академика Басова - МК
  • Ученые в США провели третий успешный эксперимент с ядерным синтезом
  • Прорыв в термоядерном синтезе | Канал Наука | Дзен
  • Российский инженер рассказала о значении термоядерного прорыва американских ученых

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

Термоядерный синтез И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире.
Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба".

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

Что такое термоядерный синтез и зачем он нужен? Если в ядерных реакциях ядрам урана, плутония, тория выгодней распадаться для запуска цепной взрывной реакции, то при термоядерном варианте, наоборот, балом правит реакция.
Термоядерный запуск. Как Мишустин нажал на большую красную кнопку | Аргументы и Факты Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times.

Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца

Китайский термоядерный реактор поставил рекорд в ядерной энергетике. В Саровском ядерном центре создается аналогичная установка для экспериментов, позволяющих работать с управляемым термоядерным синтезом с инерциальным удержанием. Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. Все самое интересное и актуальное по теме "Ядерная физика".

Академик В.П. Смирнов: термояд — голубая мечта человечества

Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Все самое интересное и актуальное по теме "Ядерная физика". Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции. Российские учёные разработали новый материал для термоядерного реактора. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times.

˜˜˜˜˜ и ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜

Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора. Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму. В результате процесса распыления плазма существенно охлаждается, что может помешать термоядерному синтезу. Чтобы избежать этого, ранее была разработана концепция так называемой потеющей стенки: внутренняя поверхность реактора покрывается сетью каналов, из которых истекает жидкий литий. В данном подходе слой жидкого лития берёт на себя часть защитных функций. Поэтому материал для «потеющей стенки» должен быть тугоплавким и теплопроводным, а также не должен вступать с жидким литием в химическое взаимодействие и при этом хорошо им смачиваться.

Однако, чтобы термоядерный синтез, подобный звездному, успешно протекал, необходимы колоссальные температуры и давление. На Земле создать такое уже давно возможно, однако для этого долгое время требовалось больше энергии, чем получалось на выходе. Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание». Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец.

Положительный КПД в токамаках и стеллараторах стабильно получают как бы не с конца 80х; первая экспериментальная термоядерная электростанция строится в Европе с 90х, и начала бы свою работу до 2030, если бы современные европейские элиты не были полными идиотами. В Китае прототип промышленной термоядерной электростанции был продемонстрирован пару лет назад.

Там активно работает молодая команда", - рассказал он. Кроме того, отметил Багрянский, установлено, что спиралевидное магнитное поле очень эффективно ограничивает поток плазмы, то есть удерживает его. Ранее сообщалось, что для создания реактивного двигателя достаточно температуры плазмы в 100 тыс. По замыслу ученых, в перспективе термоядерная установка позволит создать двигатели мегаваттной мощности, что значительно превышает расчетные показатели разрабатываемых ядерных электрореактивных двигателей и позволяет использовать ее для межпланетных перелетов.

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова

Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия.
Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен!

Термоядерный запуск. Как Мишустин нажал на большую красную кнопку

Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного. Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен! Исследования в области термоядерного синтеза и физики плазмы ведутся более чем в 50 странах, и термоядерные реакции были успешно запущены в ходе многих экспериментов. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков.

Похожие новости:

Оцените статью
Добавить комментарий