Произведение – это умножение. ПРОИЗВЕДЕНИЕ — ПРОИЗВЕДЕНИЕ — в математике — результат умножения. Произведение Произведение — в математике результат операции умножения. Умножение — это одна из операций в математике, которая предназначена для упрощения сложения цифр с одинаковым значением. Если перемножить два числа а и в, то результатом будет произведение.
Что такое частное? Делимое? Произведение? Разность? Множитель? Уменьшаемое?
Сегодня в математике умножение имеет конкретный смысл, различные свойства и определения для разных математических объектов, а не только для определения чисел. Вычисление произведения чисел в математике может быть выполнено с помощью умножения в столбик, использования калькулятора или программного обеспечения, специализированных функций в программировании и других методов. в данном ролике явно показывается, как благодаря чисто логике можно решить подобный.
Произведение (математика)
Если перемножить два числа а и в, то результатом будет произведение. Умноже́ние — одна из основных математических операций над двумя аргументами, которые называются множителями или сомножителями (иногда первый аргумент называют множимым. Произведение чисел является одной из основных операций в арифметике и математике в целом. Чтобы найти один из множителей, надо произведение разделить на известный множитель. Произведение двух целых чисел, в котором одним из множителей является единица, равно другому множителю.
Арифметические действия с числами
- Общее представление об умножении натуральных чисел
- Что такое произведение в математике? - Определение, свойства и примеры
- Свойства умножения и деления. Распределительное и переместительное свойство
- Как вычислять произведение чисел?
Что такое произведение в математике и частное
Первый множитель второй множитель произведение правило 2 класс. Что такое произвадениечисел. Математика разность чисел. Что такое разность в математике. Что токое р азнгость сисел. Свойства суммы. Свойства суммы разности произведения частного. Произведение частного. Сумма разница произведение. Сусса Разнгость пророизведение. Математические выражения сумма разность.
Произведение чисел 2 класс математика. Произведение числа на произведение. Произведение трех чисел. Таблица компоненты сложения вычитания деления. Компоненты сложения вычитания умножения и деления. Компоненты сложения вычитания деления. Таблица компонентов умножения и деления. Множитель произведение сумма. Произведение математика. Математика произведение чисел.
Значение в математике. Значение частного чисел. Что Тауо чное в математике. Частные числа в математике 3 класс. Сумма это результат сложения. Умножение множитель множитель произведение. Компоненты умножения множимое множитель. Таблица название компонентов умножения. Математика 3 класс множитель множитель произведение. Произведение суммы чисел.
Стенд компоненты математических действий. Названия компонентов математических. Компоненты математических действий. Название компонентов в математике. Множить множитель произведении. Множитель произведение таблица. Множитель множитель произв. Разность слагаемое сумма правило по математике. Честное разность произведение сумма. Слагаемые сумма вычитаемое разность.
Уменьшаемое вычитаемое разность таблица правило. Правило сумма и разность. Слагаемое слагаемое сумма правило. Компоненты действий сложения и вычитания умножения и деления. Математика 2 класс компоненты действий. Компоненты при сложении вычитании умножении делении таблица. Схема множитель множитель произведение. Компоненты действия умножения таблица. Множитель компоненты при умножении. Правила по математике 1 класс слагаемое вычитаемое разность.
Слагаемые это в математике. Названия в математике слагаемое сумма.
Теперь, когда мы знаем основы умножения чисел в пределах 10 и его свойства, мы можем приступить к решению задач и примеров. Свойства произведения чисел Свойство коммутативности Согласно свойству коммутативности, порядок сомножителей не влияет на результат умножения. Например, произведение чисел 2 и 3 равно 6, а произведение чисел 3 и 2 также равно 6. Свойство ассоциативности Свойство ассоциативности говорит о том, что результат умножения не зависит от того, какие числа будут сомножителями, если их порядок сменить. Например, произведение чисел 2, 3 и 4 равно 24, и произведение чисел 3, 2 и 4 также равно 24. Умножение на 0 и 1 При умножении числа на 0 результат всегда будет 0.
Это особенность умножения, которую необходимо запомнить. Например, если умножить число 5 на 0, то получится 0. Умножение на 1 не меняет число. Любое число умноженное на 1 остается равным самому себе. Например, если умножить число 9 на 1, то результат будет равен 9. Умножение на 0 и 1 важно для понимания других математических концепций, таких как деление и обратные операции. Например, при делении числа на 1 получается исходное число, а при делении на 0 результат не определен. Знание свойств умножения на 0 и 1 поможет вам лучше понять мир чисел и решать математические задачи.
Умножение чисел с нулем в конце Умножение чисел с нулем в конце обладает особыми свойствами.
Каждый день они проходили одинаковый путь по 4200 м. Какое расстояние они прошли за три дня? Решите задачу двумя способами. Решение: Рассмотрим задачу подробно.
В первый день туристы прошли 4200м. Во-второй день тот же самый путь прошли туристы 4200м и в третий день — 4200м.
Если в произведении имеется описание каких-либо практических действий, то воплощение этого описания на практике использованием произведения не считается этим авторское право отличается от патентного. Зато его использованием считаются такие действия, как воспроизведение в юридическом смысле этого слова так называют только копирование , публичные показ и исполнение, передача в эфир и по кабелю, создание производных произведений, перевод на другой язык, а также так называемое доведение до всеобщего сведения, то есть, говоря простым языком, выкладывание в интернет или другую телекоммуникационную сеть.
В английском языке для обозначения произведения в юридическом смысле этого слова используется термин work - буквально, «работа». Видео по теме.
Правила и свойства умножения
Утроить разницу чисел. А как выполнить такой пример, когда требуется удвоить или утроить разницу? Вновь прибегнем к правилам: Удвоенное число — это величина, умноженная на два. Утроенное число — это величина, умноженная на три. Удвоенная разность — это разница величин, умноженная на два. Утроенная разность — это разница величин, умноженная на три. Ответ: 6 — разница чисел 7 и 5. Пример 7. Найти разницу величин 7 и 18.
Вычитаемое больше уменьшаемого? И опять есть применяемое для конкретного случая правило: Если вычитаемое больше уменьшаемого, разница окажется отрицательной. Ответ: — 11.
Шарыгин И.
Задачи на смекалку: 5-6 кл. Шарыгин, А. Шевкин — М. Теоретический материал для самостоятельного изучения Мы уже изучали правила умножения целых чисел.
Сегодня рассмотрим свойства произведения целых чисел. Умножение целых чисел на 0. Произведение любого целого числа a и нуля равно нулю. Найдите произведение нуля и целого отрицательного числа — 29.
Умножение целого числа на 1 Произведение целого числа и 1 равно cамому числу. Вычислите произведение положительного целого числа 64 и единицы. Вычислите произведение единицы и отрицательного целого числа — 475. Найдите произведение нуля и единицы.
Цифру 2 пишем под чертой в разряде десятков, а над разрядом сотен множимого 975 в уме ставим маленькую цифру 3: 4 раза по 9 сотен — это 36 сотен. Прибавим к ним 3 сотни, которые держим в уме, получаем 39 сотен, или 3 тысячи и 9 сотен. Значит, пишем под горизонтальной чертой в разряде сотен цифру 9 и, поскольку в множимом 985 нет ни одной тысячи, то сразу запишем в результате под чертой цифру 3 в разряде тысяч: Умножение многозначных чисел Прежде чем рассказать, как в общем случае умножить одно многозначное число на другое, я расскажу о двух частных случаях умножения многозначных чисел: умножение на число, которое начинается на единицу, и заканчивается любым количеством нулей; умножение на число, которое начинается на любые, отличные от нуля, цифры, и заканчивается одним или несколькими нулями. Умножение на число, состоящее из единицы и любого количества нулей Пусть необходимо умножить 327 на 10. Это означает, что мы должны 10 раз взять сложить число 327. Известно, что если мы возьмем сложим одну единицу 10 раз, то мы получим 1 десяток, значит, взяв 327 единиц 10 раз, у нас будет 327 десятков, то есть, 3270 единиц. Умножим 327 на 100, то есть, 100 раз возьмем сложим число 327.
Если единицу повторить 100 раз, получится 100 единиц, или одна сотня. Значит, 327 единиц, повторенные 100 раз, дадут нам 327 сотен, что можно записать так: 32700. Умножение на число, которое начинается цифрами, и заканчивается любым количеством нулей Например, умножим то же самое число 327, но уже на 20. Сумму в скобках мы можем, согласно определению действия умножение, заменить на произведение, поскольку слагаемые суммы у нас одинаковые. Но здесь мы опять видим, что выражение состоит из десяти одинаковых слагаемых, каждое из которых представляет собой произведение. Здесь нам нужно найти сумму 300 чисел, каждое из которых — это число 764. Эти 300 слагаемых мы группируем в 100 групп, в каждой из которых содержится 3 слагаемых 764.
Можем ли мы узнать, какое число единиц содержит каждая из 100 групп? Да, можем. Для этого нам нужно найти сумму трех слагаемых 764, или просто 764 умножить на 3. Зная, сколько единиц содержится в одной группе и количество этих одинаковых групп, мы можем найти, сколько единиц находится во всех этих группах. Групп у нас 100, значит, мы находим сумму 100 слагаемых, каждое из которых — это найденное нами число 2292. То есть, 2292 умножаем на 100. Итак, чтобы умножить какое-нибудь число на другое, начинающееся любыми цифрами и заканчивающееся нулями, достаточно умножить первое число на число, образованное первыми цифрами второго, а к результату приписать справа столько нулей, сколько их было в конце второго числа.
Иными словами: нужно от второго числа отбросить нули в конце, умножить получившиеся числа, а к результату приписать справа столько нулей, сколько изначально отбросили. Общее правило умножения чисел Допустим, необходимо найти произведение двух многозначных чисел 2834 и 168.
По сочетательному свойству: два соседних множителя можно заменить произведением. По распределительному свойству при умножении суммы на число можно умножать на него в отдельности каждое слагаемое, и потом складывать полученные результаты. Другие свойства Чтобы умножить сумму на какое-то число, сначала необходимо выполнить сложение, а потом полученный результат умножить на число. Чтобы умножить число на произведение, нужно сначала сделать умножение в скобках, а затем умножить на полученный результат. Чтобы умножить число на сумму, сначала необходимо выполнить сложение, а потом умножить число на результат, который получился. Если при умножении хотя бы один множитель будет равным нулю, то и само произведение также будет равно нулю. Таким образом, при умножении любого числа на 0, мы будем брать это число 0 раз, т. В случае, когда мы умножаем ноль на любое число, мы будем находить сумму нулей, но она, как известно, равна 0.
При умножении любого целого числа на единицу в результате всегда получится то же самое число. Другими словами, при умножении на единицу умножаемое число никогда не изменяется.
Математика. 5 класс
это и есть общий вес яблок. Что такое произведение чисел? Ответ: произведением чисел или умножение чисел называется выражение m⋅n, где m – слагаемое, а n – число повторений этого слагаемого. Сумма чисел разность чисел произведение чисел частное чисел. В арифметике под умножением понимают краткую запись суммы одинаковых слагаемых.
Значение слова «произведение»
Затем аналогично умножим десятки второго числа на первое. Что Такоепроизведение? Произведение — это ответ при умножении любых чисел: дробных, целых, натуральных. Если совершить математическое действие устно сложно, выполняют умножение в столбик. Что обозначает первый множитель при умножении двух чисел? Компоненты умножения называются множители. Первый множитель показывает, какое число прибавляют, второй множитель показывает — сколько раз прибавляют это число.
Результат умножения называется произведение. Что такое произведение в математике 2 класс? Умножение — это сложение одинаковых слагаемых. Результат умножения — произведение. Какой результат получается при сложении? При сложении чисел получается новое число.
Выглядеть в виде формулы это будет так: Умножение единицы на натуральное число Умножение на единицу является исключительным случаем, когда результат произведения равен оставшемуся множителю. Правило 5 При умножении целого натурального числа на единицу результат будет равен тому же числу, что умножалось на 1. Формула выглядит следующим образом: Умножение нуля на натуральное число Главной характеристикой умножение на нуль любого натурального и не только числа будет являться тот факт, что операция умножения будет приводить к одному и тому же варианту решения независимо от числового значения множителей. Правило 6 Если один из множителей примера равен нулю, то произведение всего примера равно нулю. То есть при любом значении a, b, c и далее результат будет равен 0: Примеры использования свойств для 5 класса Переместительное свойство умножения или переместительный закон. Сочетательное свойство. Распределительное свойство умножения относительно сложения. Распределительное свойство умножения относительно вычитания.
Произведение нескольких чисел В математике произведение нескольких чисел определяется как результат умножения этих чисел. Для вычисления произведения нескольких чисел необходимо умножить каждое из них друг на друга. Произведение может быть вычислено для любого количества чисел. Если одно из чисел, участвующих в произведении, равно нулю, то произведение также будет равно нулю. Например, произведение чисел 0 и 10 равно 0. Произведение нескольких чисел является одной из основных операций в математике и широко применяется в различных областях, таких как физика, экономика и другие. Видео:Производная: секретные методы решения. Произведение в математике — это операция умножения двух или более чисел, позволяющая получить результат, равный их сумме. Например, произведение чисел 3 и 4 равно 12. Как определить произведение двух чисел?
Так, при умножении любого числа на 0, мы берем это число 0 раз, то есть, не берем ни разу. А если ничего не брать, то ничего и не получится. А при умножении нуля на любое число, мы находим сумму нулей, которая, как вам известно, равна 0. Умножение однозначных чисел Умножение двух однозначных натуральных чисел a и b — это нахождения суммы b слагаемых, каждое из которых равно числу a, и при этом a и b являются натуральными числами. Для облегчения вычисления, были посчитаны результаты умножения всех однозначных чисел друг на друга, и сведены в специальные таблицы умножения. Умножение однозначных чисел — это основа быстрого и точного вычисления произведений любых чисел, поэтому очень важно знать на память все таблицы умножения. Умножение многозначного числа на однозначное Допустим, нам нужно умножить 985 на 4. Таким образом, чтобы умножить многозначное число на однозначное, достаточно умножить это однозначное число на количество единиц в каждом разряде многозначного числа, и сложить полученные результаты.
Умножение в столбик многозначного числа на однозначное Удобно и быстро умножить многозначное число на однозначное, и при этом не запутаться в расчете помогает запись вычисления в столбик. Для этого пишем множимое 985, и под цифрой его разряда единиц записываем множитель 4. Проводим под множителем горизонтальную черту, ставим между сомножителями знак умножения точку или косой крест , и получаем такую запись: 4 раза по 5 единиц — это будет 20 единиц, то есть, 2 десятка и 0 простых единиц. Поэтому, пишем под чертой в разряде единиц 0, а 2 десятка запоминаем или записываем маленькую цифру 2 над разрядом десятков множимого 985: 4 раза по 8 десятков — это 32 десятка. Прибавим к ним 2 десятка, которые получились после умножения однозначного числа на единицы, получим 32 десятка, то есть, 3 сотни и 2 десятка. Цифру 2 пишем под чертой в разряде десятков, а над разрядом сотен множимого 975 в уме ставим маленькую цифру 3: 4 раза по 9 сотен — это 36 сотен. Прибавим к ним 3 сотни, которые держим в уме, получаем 39 сотен, или 3 тысячи и 9 сотен. Значит, пишем под горизонтальной чертой в разряде сотен цифру 9 и, поскольку в множимом 985 нет ни одной тысячи, то сразу запишем в результате под чертой цифру 3 в разряде тысяч: Умножение многозначных чисел Прежде чем рассказать, как в общем случае умножить одно многозначное число на другое, я расскажу о двух частных случаях умножения многозначных чисел: умножение на число, которое начинается на единицу, и заканчивается любым количеством нулей; умножение на число, которое начинается на любые, отличные от нуля, цифры, и заканчивается одним или несколькими нулями.
Умножение на число, состоящее из единицы и любого количества нулей Пусть необходимо умножить 327 на 10. Это означает, что мы должны 10 раз взять сложить число 327. Известно, что если мы возьмем сложим одну единицу 10 раз, то мы получим 1 десяток, значит, взяв 327 единиц 10 раз, у нас будет 327 десятков, то есть, 3270 единиц. Умножим 327 на 100, то есть, 100 раз возьмем сложим число 327. Если единицу повторить 100 раз, получится 100 единиц, или одна сотня. Значит, 327 единиц, повторенные 100 раз, дадут нам 327 сотен, что можно записать так: 32700. Умножение на число, которое начинается цифрами, и заканчивается любым количеством нулей Например, умножим то же самое число 327, но уже на 20.
Буквенная запись
- О чем эта статья:
- произведение это что в математике определение
- Что такое произведение в математике и частное
- Правила и свойства умножения
- Произведение чисел: понятие, виды, примеры решения задач
- Что такое произведение в математике?
Математические операции: сложение, вычитание, умножение и деление
- Произведение чисел: что это такое в математике?
- Свойства деления
- Знакомство с математической операцией
- Что такое произведение и частное в математике?
Что такое произведение чисел в математике - 79 фото
Правила и свойства умножения | результат вычитания; произведение - результат умножения; сумма - результат сложения; частное - результат деления. |
Математика 5 класс. Умножение натуральных чисел и его свойства - YouTube | Распределительное свойство умножения относительно вычитания Закон умножения на ноль Математика 4,5,6,7,8,9,10,11 класс, ЕГЭ, ГИА Распределительное свойство умножения относительно сложения Действия с числами. |
Что такое сумма разность произведение частное в математике правило | В математике произведением называется операция, с помощью которой можно найти результат умножения двух или более чисел. |
Что такое произведение чисел в математике 3 | Произведение чисел m и n — это сумма n слагаемых, каждое из этих слагаемых = m. |
Что такое произведение в математике: определение и примеры (6 видео) | в данном ролике явно показывается, как благодаря чисто логике можно решить подобный. |
Произведение в математике что это такое?
Произведение чисел: понятие, виды, примеры решения задач | Сегодня в математике умножение имеет конкретный смысл, различные свойства и определения для разных математических объектов, а не только для определения чисел. |
Произведение в математике что это такое? | Произведение Произведение — в математике результат операции умножения. |
Действия с числами | Что такое сумма разность произведение частное в математике правило Ссылка на основную публикацию. |
Значение слова «произведение» | Число цифр первого произведения 6 равно числу цифр в множимом 3728 и во множителе 496 без единицы. |
Что такое произведение чисел? - Ответы на вопросы про технологии и не только | Смотреть что такое «Произведение (математика)» в других словарях. |
Произведение чисел
Первое число в выражении будем называть первым множителем, оно будет показывать стоимость одного учебника. Смотреть что такое "Произведение (математика)" в других словарях. Правильный ответ: Чтобы найти произведение нескольких чисел, нужно найти произведение двух первых чисел, умножить на третье число и так далее. Степени Добавить комментарий Отменить ответ Произведение чисел с разными знаками Что такое произведение чисел (онлайн калькулятор на умножение) Умножение многозначного числа на однозначное. это одна из основных операций в математике, которая позволяет узнать результат умножения двух или более чисел. Произведением двух комплексных чисел в алгебраической форме записи, называется комплексное число, равное.
Что такое произведение чисел?
Некоторые математики[кто? Вектор … Википедия Функция математика — У этого термина существуют и другие значения, см. Запрос «Отображение» перенаправляется сюда; см. Операция отображение, ставящее в соответствие одному или нескольким элементам множества аргументам другой элемент значение. Термин «операция» как правило применяется к… … Википедия Ротор математика — У этого термина существуют и другие значения, см. Ротор, или вихрь векторный дифференциальный оператор над векторным полем.
Обозначается в русскоязычной[1] литературе или в англоязычной литературе , а также как векторное умножение … Википедия Что такое произведение в математике? Произведение — это умножение.
Произведение — теоретико-категорное обобщение декартового произведения множеств. Как найти произведение в математике? Чтобы найти произведение нескольких чисел, нужно найти произведение двух первых чисел, умножить на третье число и так далее. Что такое произведение в математике правило? Умножение это действие, заменяющее сложение. Произведение чисел это результат умножения этих чисел.
Краткая запись суммы одинаковых слагаемых. Результат умножения называется произведением, а умножаемые числа — множителями. Что называется произведение двух чисел? Произведение чисел, алгебраических выражений, векторов или матриц; может быть показано точкой, косой крестик или же просто написанием их последовательно один за другим, т. Как найти произведение в умножении? Умножить некоторое число множимое на целое число множитель — значит повторить множимое слагаемое столько раз, сколько указывает множитель. Результат называется произведением.
На множестве натуральных чисел в настоящее время используется алгоритм поразрядного умножения.
При этом следует рассматривать умножение как процедуру в отличие от операции. Примерный алгоритм процедуры поразрядного умножения двух чисел Процедура достаточно сложная, состоит из относительно большого числа шагов и при умножении больших чисел может занять продолжительное время.
Именно поэтому всегда работает правило: «Решать последовательно, нельзя менять местами». Действия в выражениях выполняются в следующем порядке: 1. Вычисление значений функций; 2. Вычисление значений в скобках; 3. Вычисление значений вне скобок. При этом, если в примере: — и умножение с делением действия второй ступени , — и сложение с вычитанием действия первой ступени , то сначала выполняются действия второй ступени, а после действия первой ступени. Действия с числами разных знаков Для подробного разбора этой темы необходимо ввести понятие абсолютной величины или модуля числа.
Рассмотрим числовую прямую и числа на ней: положительные числа будут расставляться в порядке возрастания слева направо, отрицательные числа, напротив, будут уменьшаться справа налево. Можно представить, что мы подставляем к 0 зеркало, тогда в нем в обратном порядке отображаются положительные числа, но с отрицательным знаком, то есть они зеркально повторяют положительную часть прямой. Рассмотрим числа -4 и 4. Относительно ноля они лежат на одинаковом расстоянии: четыре условных единицы, отложенные влево и вправо. Отсюда мы можем вывести определение модуля — это расстояние от начала координат ноля до точки. Модуль обозначается двумя вертикальными палочками. Подробнее про модуль и его свойства можно узнать в другой нашей статье. Теперь мы можем рассмотреть действия с числами разных знаков. Сложение Если мы складываем числа с одинаковым знаком, то складываются их абсолютные величины, а перед суммой ставится общий знак.
Произведение - это результат умножения чисел: важные понятия в математике
Вам нужно только включить видео — я объясню все легко и быстро! Если в домашней работе по математике вашему ребенку встретилось такое задание - составь выражение, используя математические термины: частное, уменьшаемое, вычитаемое, делимое, делитель, произведение, сумма, и т. Подсказки с терминами прикреплю внизу под видео.
Умножение в алгебре В более сложных разделах математики - алгебре и математическом анализе - умножение чисел обобщается до умножения. Хотя формально запись похожа, смысл здесь более абстрактный и общий. Но базовые знания о свойствах и особенностях умножения, полученные в начальной школе, помогают глубже понимать более сложный математический аппарат. Поэтому владение терминами "произведение" и "умножение" крайне важно на всех этапах изучения математики. Умножение в приложениях Помимо теоретических областей, умножение и произведение широко применяются на практике - в физике, химии, экономике и других прикладных науках. Это связано с тем, что умножение позволяет быстро находить количество, объем, стоимость и другие числовые характеристики объектов.
Например, умножая цену товара на количество, получаем его полную стоимость. А умножая объем одной детали на число деталей в партии, находим общий объем продукции. Таким образом, умножение - важнейший инструмент в прикладных вычислениях.
Произведение нескольких чисел В математике произведение нескольких чисел определяется как результат умножения этих чисел. Для вычисления произведения нескольких чисел необходимо умножить каждое из них друг на друга. Произведение может быть вычислено для любого количества чисел. Если одно из чисел, участвующих в произведении, равно нулю, то произведение также будет равно нулю. Например, произведение чисел 0 и 10 равно 0.
Произведение нескольких чисел является одной из основных операций в математике и широко применяется в различных областях, таких как физика, экономика и другие. Видео:Производная: секретные методы решения. Произведение в математике — это операция умножения двух или более чисел, позволяющая получить результат, равный их сумме. Например, произведение чисел 3 и 4 равно 12. Как определить произведение двух чисел?
Чтобы умножить число на произведение, нужно сначала сделать умножение в скобках, а затем умножить на полученный результат. Чтобы умножить число на сумму, сначала необходимо выполнить сложение, а потом умножить число на результат, который получился. Если при умножении хотя бы один множитель будет равным нулю, то и само произведение также будет равно нулю. Таким образом, при умножении любого числа на 0, мы будем брать это число 0 раз, т. В случае, когда мы умножаем ноль на любое число, мы будем находить сумму нулей, но она, как известно, равна 0. При умножении любого целого числа на единицу в результате всегда получится то же самое число. Другими словами, при умножении на единицу умножаемое число никогда не изменяется. Так как при умножении любого числа на единицу это число берется только один раз, то в результате можно получить только это же число. Умножение многозначного числа на однозначное Чтобы умножить многозначное на однозначное число, необходимо умножить это однозначное число на количество единиц в разряде многозначного числа, после чего все полученные результаты сложить.