Искусственный интеллект примет участие в Тотальном диктанте. «Капсулы здоровья»: как искусственный интеллект изменит будущее медицины 18 апр. Актуальность данной статьи состоит в том, что в современном мире искусственный интеллект (ИИ) имеет довольно серьезную роль в выполнении множества процессов. Минцифры считает, что данные искусственного интеллекта помогут властям понять, где нужно нарастить инфраструктуру, построить социальные объекты и дороги. Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования».
Около 16% екатеринбуржцев не представляют свою жизнь без искусственного интеллекта
Актуальность: Создание искусственного интеллекта в настоящее время связана со сложностью проблем, которые приходится решать современному человечеству. Новости и обзорные материалы о технологиях искусственного интеллекта: от умного дома до распознавания речи. Год 2030 выбран не случайно, по мнению «AI100» именно к этому времени человечество переживет главный бум внедрения искусственного интеллекта в повседневную жизнь. Энтузиасты искусственного интеллекта говорят о большом потенциале новых технологий, в то время как скептики напоминают о рисках и советуют не слишком спешить навстречу прогрессу.
Вы находитесь здесь: итоги 2023 года в сфере ИИ
Новые алгоритмы и нейросети позволяют внедрить искусственный интеллект практически в любые сферы. Искусственный интеллект Microsoft Copilot следующего поколения будет требовать использования нейронных процессоров с вычислительной мощностью не менее 40 триллионов операций в секунду (TOPS). Технологиям искусственного интеллекта (ИИ) чаще доверяет молодежь 18-24 лет, люди с высшим образованием, материально обеспеченные и более осведомленные россияне.
Что еще почитать
- Ключевые слова
- 82% россиян позитивно относятся к технологиям искусственного интеллекта
- Ключевые тенденции-2024 в области ИИ
- Содержание
«Искусственный интеллект в нашей жизни»
Как искусственный интеллект помогает в диагностике заболеваний? Во-вторых, технология искусственного интеллекта пока еще далеко не настолько совершенна, чтобы прийти на замену человеческому мышлению с его вариативностью. В этой статье мы объясним, что означает искусственный интеллект, расскажем, зачем нужен ии, и рассмотрим, что относится к искусственному интеллекту. Системы искусственного интеллекта занимают сферы от голосовых помощников до медицины и освоения космоса. последние новости сегодня. Искусственный интеллект - все самые свежие новости дня по теме. ТАСС – ведущее государственное информационное агентство России. Искусственный интеллект научился обрабатывать большие массивы данных, выстраивать их последовательность, выдавать результаты, генерировать идеи и даже делать предсказания.
Ключевые тенденции-2024 в области ИИ
Общий тренд на интерес к технологиям искусственного интеллекта и доверие к нему продемонстрировали респонденты с детьми. Заметна и тенденция на рост использования ИИ в повседневной жизни. Респондент мог указать несколько вариантов ответа. ООO «Техкомпания Онор». Место нахождения: 121614, г. Москва, ул. Крылатская, д. Телефон: 495 234—06—86.
По данным информационного портала DataProt, к 2027 г. Это свидетельствует о том, что возможности использования новых высокоинтеллектуальных технологий в будущем будут неуклонно возрастать [9] Zhilin, Safaryan, 2020. Объем инвестиций в разработки на основе искусственного интеллекта в 2020 г. США [3]. Также гигантские денежные ресурсы вкладываются в программы, способные распознавать человеческую речь. Этот сегмент, по данным аналитиков, в 2020 г. По прогнозу, уже в 2022 г. США [1] Arkhipov, 2020. Сегодня ядром сервисов искусственного интеллекта, применяемых в бизнес-сфере, являются ИИ-рекомендации онлайн-магазинов и виртуальные ассистенты например, Alex, Cortan и Siri [3] Bukhtiyarova, 2019. Искусственный интеллект сортирует контент по предпочтениям и популярности пользователей, распознает, понимает и самостоятельно пишет тексты, фильтрует и блокирует СПАМ, распознает человеческую речь, идентифицирует людей по фотографии, селфи, сетчатке глаза и другими способами. Это приводит экономистов и экспертов к противоречивым выводам по вопросу влияния ИИ на рынок труда вследствие ограниченных данных о негативных последствиях такого воздействия [6, 23] Gorodnova, 2021; Kitzmann, Yatsenko, Launer, 2021. В целях коммуникации с клиентами ИИ-компании используют чат-боты, которые вступают во взаимодействие и отвечают на вопросы. Системы искусственного интеллекта активно применяются при оказании телекоммуникационных услуг, в автомобильной промышленности и финансовом секторе. Указанные технологии внедряются и в розничных сетях, при производстве FMCG пер. Технологии искусственного интеллекта широко используются в таких разных сферах бизнеса, как ритейл, строительство, информационные технологии, образование и т. В каждой из указанных бизнес-сфер применяются технологии управления поведением потребителей, изучения будущих тенденций рынка и автоматизации различных рутинных процессов. Рассмотрим сектора применения возможностей искусственного интеллекта. Беспилотные автомобили, использующие алгоритмы искусственного интеллекта с возможностью полного автономного вождения без вмешательства человека, могут существенно трансформировать транспортную систему. Машины с использованием ИИ анализируют трафик и альтернативные маршруты, сокращая время в пути [5]. Применение высокопроизводительных роботов способствует быстрому и качественному выполнению задач, более эффективной, чем у человека, деятельности. Благодаря использованию 3D-технологий и машинного зрения роботы способны в разы ускорить процесс производства в любой сфере. Автономные хирургические роботы, виртуальные помощники медицинского персонала и автоматическая диагностика изображений — это новейшие разработки, благодаря которым искусственный интеллект начинает играть решающую роль в технологическом прогрессе сферы здравоохранения, а также в развитии услуг телемедицины в трансграничном режиме [8] Ermakova, Kovyazin, 2002. Сфера развлечений. Машинное обучение на нейронных сетях позволяет предсказывать сценарии поведения пользователя и предоставлять рекомендации по подбору фильмов, музыки, телешоу и другого интересующего потребителя контента. ИИ в зависимости от предпочтений пользователя осуществляет персонализированный подбор рекламы, что способствует повышению эффективности маркетинга в аспекте таргетированной рекламы и увеличению объемов продаж. Предиктивный анализ и автоматизация, осуществляемая алгоритмами искусственного интеллекта, применяются в целях принятия бизнес-решений, продажи билетов и прогнозирования результатов спортсменов. Искусственный интеллект, применяемый в бизнесе, способствует улучшению показателей во всех сферах. К примеру, к процессам, в рамках которых ИИ решает определенные узконаправленные задачи, следует отнести следующие: 1. Искусственный интеллект осуществляет изучение статистики и выполняет прогностические функции, обрабатывая гигантские массивы информации в целях подбора наиболее оптимального распределения цен на конкретный вид продукции. Это позволяет в несколько раз повысить объемы выручки и доходов компании.
Эти инвестиции учитывают финансирование за счет слияний и поглощений, покупку акций, частные инвестиции, выход на биржу. Неожиданное падение 2022 года По данным исследователей из Стэнфорда, инвестиции в искусственный интеллект после многих лет роста, внезапно упали. Больше всего в ИИ в прошедшем году инвестировала медицинская отрасль. Она останется в лидерах и в будущем, ИИ будет применяться в диагностике, для поиска лекарств и при планировании лечения.
Руководителем проекта, реализуемого представителями Института психологии и образования, Института вычислительной математики и информационных технологий и Института математики и механики им. В связи с этим появился новый для психологии феномен — "цифровая личность", — говорит профессор. Конечным результатом работы станет разработка модели, которая с высокой степенью вероятности поможет психологам объяснять и прогнозировать поведение человека как в реальной, так и в цифровой среде». Идея данного проекта, как отметил один из основных исполнителей, заведующий кафедрой общей психологии ИПО Павел Устин, возникла не на пустом месте.
Значимость искусственного интеллекта и нейронных сетей в современном мире
Это могут быть как большие игроки, например Google или Amazon, так и фирмы, о которых мало кто слышал. Например, одними из самых популярных и успешных компаний, что занимают лидирующие позиции в области изучения ИИ, являются неизвестные большинству организации: BotsCrew, InData Labs, nexocode. Две другие ориентированы на бизнес. Они создают ИИ, который анализирует данные фирмы, проводит статистический анализ и выдает подробные отчеты в зависимости от требований заказчика. Но мы перечислим крупных игроков, от исследований которых в нашей жизни может что-то сильно измениться. Microsoft В 2020 году Microsoft объявила о строительстве нового суперкомпьютера, размещенного в Azure, сети облачных вычислений Microsoft. А его конечной целью является создание больших моделей ИИ и соответствующей инфраструктуры для других организаций и разработчиков.
Не так давно Microsoft запустила Microsoft Designer, приложение для графического дизайна, использующее технологию искусственного интеллекта для создания уникальных постов в социальных сетях, приглашений и другой графики. Alphabet Материнская компания Google и YouTube, использует искусственный интеллект и автоматизацию практически во всех аспектах своего бизнеса — от ценообразования на рекламу до продвижения контента и спам-фильтров Gmail. У Alphabet также есть дочерние компании. Например, DeepMind, которая занимается разработкой программного обеспечения для искусственного интеллекта, а также Waymo — компания по производству автономных транспортных средств. Последняя вошла в историю, запустив в 2020 году первую полностью беспилотную коммерческую службу такси на дорогах общего пользования. Amazon Компания интегрировала искусственный интеллект во все аспекты своего бизнеса, включая таргетированную рекламу, алгоритмы поиска электронной коммерции и Amazon Web Services.
Amazon Alexa — один из самых популярных виртуальных ассистентов, который уже обслуживает многие американские семьи. Amazon также предлагает своим облачным клиентам AWS широкий спектр услуг искусственного интеллекта, включая расширенную текстовую аналитику, автоматические проверки кода и чат-боты. Nvidia Производитель высокопроизводительных чипов обеспечивает огромную вычислительную мощность, необходимую для запуска сложных приложений ИИ. На самом деле, один из самых быстрых суперкомпьютеров в мире, Leonardo, оснащен графическими процессорами Nvidia. Многие крупные организации, не имеющие своего суперкомпьютера, используют суперкомпьютеры, построенные с помощью чипов Nvidia и оснащенные сетевой системой Nvidia Quantum InfiniBand. Intuitive Surgical Продает хирургическую систему da Vinci Surgical System, которая использует передовую робототехнику и компьютеризированную технологию визуализации для выполнения минимально инвазивных операций.
Intuitive работает над интеграцией больших данных и искусственного интеллекта для создания таких инструментов, как руководство в реальном времени для хирургов и расширенное обучение. IBM Компания уже давно не занимает лидирующие позиции на компьютерном рынке, но все еще способна производить научные исследования и двигать развитие ИИ вперед. IBM остается лидером на рынке технологий искусственного интеллекта, а ее продукты AutoML и AutoAI могут помочь специалистам по данным создавать и обучать модели искусственного интеллекта и машинного обучения. Перспектива разработки ИИ в России В России тоже есть свои «неизвестные» герои, фирмы, о которых знают только в крупных организациях, задумывающихся о развитии бизнеса. Например, Ctrl2GO — один из крупнейших поставщиков решений для анализа данных в России, который специализируется на разработке и внедрении цифровых продуктов в промышленности. Или «Группа компаний ЦРТ», отвечающая за синтез речи, распознавание речи, идентификацию и верификацию личности по голосу и лицу, анализ медиаданных, шумоочистку.
В оптимизации контакт-центров может помочь VS Robotics. Развитие ИИ в России зависит от инвестиций, в том числе со стороны государства. Прямо сейчас ИИ активно развивается по всем направлениям. Как ни крути, это прежде всего важно для бизнеса. Компании хотят оптимизировать рабочие процессы, повысить эффективность и, разумеется, получить больше прибыли.
Мы ждём от них умения общаться с пользователями на их родных языках, включая редкие местные наречия. И конечно, будем следить за нейросетями из Китая, эффективность и качество работы которых продолжат расти, догоняя лучшие западные аналоги. При этом LLM ближайшего будущего, скорее всего, будут более стабильны, безопасны и, возможно, скучны. Они не станут генерировать бред и обсуждать скользкие темы. А взлом с помощью джейлбрейк-промптов постепенно станет невозможным. Виктор Носко генеральный директор компании «Аватар Машина», создатель чат-бота-психолога « Сабина Ai », соавтор проекта FractalGPT — Думаю, что в больших языковых моделях в мировом масштабе наступила эпоха стагнации: теперь новые эмерджентные свойства не будут возникать с ростом числа параметров. А совершенствование свойств, которые уже проявились, замедлится. При этом новая нейросеть от Google — Gemini, анонсированная с помпой как конкурент GPT-4, не показала существенного превосходства над ней и не оправдала ожиданий пользователей. Ситуацию подпортил и их фейл с пиаром в виде смонтированного демонстрационного ролика. До сих пор российские учёные отставали от зарубежных примерно на один год по мощности моделей и на два года по уровню научных исследований. Однако в 2024-м этот разрыв может сократиться: главным драйвером здесь может стать Fusion Brain от «Сбера», развивающий идею MoE для мультимодальных решений и VisualQA. Ещё одним драйвером может стать разработка собственной модификации архитектуры «трансформер» — особенно если учесть, что за рубежом даже небольшие компании разрабатывают модификации моделей с механизмом внимания attention model. Роман Душкин генеральный директор ООО «А-Я эксперт» , компании — разработчика систем искусственного интеллекта — LLM продолжат развиваться в сторону мультимодальных моделей и роста числа параметров. Но всё это лишь количественные показатели. Да, они будут расти. Но приведёт ли этот тренд к качественным прорывам? Я сомневаюсь. Моё мнение: большие языковые модели — это бездумные «обезьянки», которые просто достают из «мешков со словами» каждое следующее слово. Они по своей сути такими и останутся, что бы мы с ними ни делали. Используемая сегодня архитектура нейросетей просто не позволит им совершить качественный скачок. Поэтому стоит ожидать концентрации усилий разработчиков на создании когнитивных архитектур, которые называют BICA biologically inspired cognitive architectures. Здесь могут появиться очень интересные решения. Такие модели способны конвергировать с архитектурами, основанными на других принципах. Сейчас есть все предпосылки для развития в этом направлении. Развитие опенсорсных моделей и демократизация ИИ Что случилось за год Параллельно с закрытыми проприетарными моделями развились нейросети с открытым исходным кодом. Если в 2022 году анонс свободной языковой модели BLOOM BigScience large open-science open-access multilingual language model стал громким событием, то в 2023 году IT-комьюнити представило сотни опенсорсных нейронок. Начало этому процессу положила представленная в феврале 2023 года цукерберговская модель LLaMA , а затем её более продвинутый вариант LLaMA 2 , разработанный совместно с Microsoft. Нейросетка, представленная в типоразмерах на 7, 13, 33, 65 и 70 миллиардов параметров, по ряду показателей показала результаты, сопоставимые с GPT-3. Цукерберг решил сыграть против тренда на закрытость и объявил, что LLaMA будет доступна с рядом ограничений для научных организаций, которые его компания посчитает заслуживающими доверия. Но модель вскоре «утекла» в интернет , где её начали распространять и «допиливать» энтузиасты ИИ и свободного ПО. Она стала основой для множества проектов, развивающих модель за счёт экспериментов с архитектурой, вариантами тонкой настройки и обучения. Следующий прорыв случился, когда учёные из Стэнфорда провели тонкую настройку модели и научили один из вариантов LLaMA следовать инструкциям пользователя, затратив на это всего лишь 600 долларов. Нейросеть получила название Alpaca.
К текущему моменту времени на мощностях французской энергетической компании Engie успешно применяются дроны с программами распознавания изображений на основе машинного обучения, которые следят за оборудованием и изучают инфраструктуру в целях предотвращения технологических и иных нарушений. ИИ-системы контроля и мониторинга широко используются и в городской среде. Наиболее простой пример — система распознавания автомобильных номеров с помощью камер видеослежения, применяемая муниципальными организациями. Кроме того, подобные алгоритмы применяются для систем распознавания лиц [17] Porokhovskiy, 2020. Автоматизация ручного труда также является важной и неоднозначной темой, поскольку использование алгоритмов искусственного интеллекта в промышленности способно вытеснить из этой сферы человеческий труд. Автоматизированные технологии выполняют сложные процессы быстрее и качественнее, чем человек, они способны работать 24 часа в сутки. Следует подчеркнуть, что основная цель внедрения высокоинтеллектуальных решений сегодня — это не полная замена человека в производственных и бизнес-процессах, но повышение эффективности человеческого труда. Данная система анализирует данные медицинских полисов по операциям и процедурам в целях вычисления размеров страховых выплат. Еще одно направление применения алгоритмов искусственного интеллекта — это предиктивная аналитика. ИИ-алгоритмические технологии способны обрабатывать огромные массивы данных, выявлять закономерности и осуществлять прогностические функции. Система анализирует характеристики покупателей и товаров и на основании данного анализа автоматически составляет качественные рекомендации [18] Sergeev, 2020. Другой пример применения искусственного интеллекта в бизнесе — это Expedia, крупнейшая в мире онлайн-платформа по планированию путешествий. В рамках этой платформы осуществляется целый ряд процедур от бронирования отелей до аренды транспорта. Компанией довольно эффективно используется сеть машинного обучения для персонализации процесса планирования поездки каждого клиента. В отличие от традиционных типов прогнозирования, предиктивная аналитика легко адаптируется к изменениям поведения, используя массивы вновь поступающих данных. В результате применения возможностей анализа неструктурированных данных с помощью ИИ-сервисов в процессе распространения мобильного контента, в частности сообщений в мессенджерах, электронных писем, фото и видео, осуществляется структурирование сгенерированных данных и сведений в целях получения возможностей их дальнейшей обработки. Указанный принцип заложен в основе работы сервиса Siri, который с помощью алгоритмов программы позволяет обрабатывать и структурировать человеческую речь, обеспечивая тем самым ее подготовку к проведению дальнейшего анализа. В системах анализа неструктурированных данных заложен огромный потенциал для производственных и ресурсодобывающих предприятий, которые накапливают массивы смешанной информации в течение долгого периода времени. Такой анализ способен облегчить работу инженеров, в том числе сэкономить время на сортировку и организацию данных перед тем, как оценить их и выявить важные взаимосвязи. Кроме того, искусственный интеллект — это возможность делегировать роботам утомительные и трудоемкие для человека задачи. Например, роботизированный онлайн-ритейлер Ocado разработал систему компьютерного зрения и сеть роботов в целях замены процесса сканирования баркодов на своих торговых складах. Это позволяет ускорить поиск и выдачу нужных товаров [21] Alizada, Muradli, 2020. Внедрение искусственного интеллекта в различные бизнес-сферы начинается, как было показано выше, со сбора и обработки необходимых данных, трансформирования и систематизации их в нужный структурированный вид. Следующим шагом является разработка ИИ-алгоритмов, которые будут способны к самообучению. Здесь необходимы квалифицированные ИТ-специалисты, которые смогут научить систему искусственного интеллекта всем необходимым для компании или бизнеса действиям. Сегодня на рынке создано достаточно большое количество готовых ИИ-решений, которые помогут настроить алгоритмы искусственного интеллекта быстрее и качественнее. После получения необходимой информации от системы искусственного интеллекта осуществляется перестройка всех технологических и бизнес-процессов, на которые оказывают влияние алгоритмы ИИ. На этом этапе, бесспорно, требуется участие не только машин, но и человека. Однако в дальнейшем ИИ с помощью нейронных сетей способен оптимизировать свою работу самостоятельно. Применение цифровых продуктов и моделей искусственного интеллекта в компаниях по нефтепереработке В качестве примера применения возможностей искусственного интеллекта в различных сферах бизнеса в данном исследовании представлены результаты работы IT-компании DD, функционирующей в г.
Другой крупный игрок — одна из старейших технологических компаний в США, ставшая прародителем современных нейросетей, — IBM. Еще в 2006 году компания представила суперкомпьютер IBM Watson — одну из первых когнитивных систем в мире, способных понимать естественный язык, обрабатывать запрос и выдавать ответ на него. Но возможности IBM Watson широко применимы во многих отраслях. Сегодня мощности суперкомпьютера используют в медицине для подбора лечения, в поиске новых лекарственных препаратов и даже в управлении активами. В январе 2023 на Insider. Но если мы начнем изучать вопрос, то все окажется не так радужно, как пытаются представить авторы статьи. Производители процессоров и чипов памяти, такие как Intel и AMD. Например, в 2017 году Intel стала первой компанией в мире, производящей чипы для искусственного интеллекта и машинного обучения и преодолевшей планку в миллиард долларов продаж чипов для использования в области искусственного интеллекта. Компания производит специальный чип-ускоритель нейросетей — Gaudi. А процессор Intel NCS2 — новейший чип искусственного интеллекта, разработанный специально для глубокого обучения. AMD сфокусировалась на решении проблем представления готовых данных в результате работы нейросетей. Например, ускоритель AMD Alveo U50 для центров обработки данных может запускать 10 млн наборов данных и выполнять графические алгоритмы за миллисекунды.
Как искусственный интеллект изменит мир к 2030 году
В статье узнаете, какие возможности сегодня появились благодаря ИИ в сфере EdTech, как искусственный интеллект может помочь преподавателям и учащимся повысить эффективность и результативность учебного процесса в 2024 году. Как методы искусственного интеллекта помогают сегодня распознавать, выявлять объекты, персоны, ситуации высокой сложности и с высокой точностью. Будущее искусственного интеллекта Искусственный интеллект перестал быть научной фантастикой и уже сейчас основательно входит в нашу жизнь.