Новости квантовый компьютер новости

Новость, опубликованная Daily Telegraph, может означать поворотный момент в развитии этой новой технологии. Квантовые компьютеры открывают огромные перспективы для потенциально революционных секторов, таких как наука о климате и открытие лекарств. ТУТ НОВОСТИ: квантовый компьютер последние новости сегодня, фото, видео, факты, события, информация и многое другое. квантовый компьютер: В России создали первый 20-кубитный квантовый компьютер на ионной платформе, Российские учёные первыми в мире обнаружили необычные свойства «жидкого света», Прорыв кукварта. Как полагают многие физики в мире, дальнейшее развитие квантовых компьютеров потребует создания систем, способных автоматически находить и корректировать случайные ошибки в их работе. «В области производства квантовых компьютеров всё идёт в соответствии с графиком, 20 кубитов нам обещает Росатом показать в конце этого года.

Искусственный интеллект / ИТ Новости

  • Глава IBM уверен, квантовым компьютерам найдут коммерческое применение уже через несколько лет
  • В России появился 16-кубитный квантовый компьютер на ионах
  • Комментарии
  • Задача коммивояжера не под силу даже суперкомпьютеру

Когда квантовые вычисления станут реальностью?

В привычном для нас процессоре информация представлена в виде последовательности нулей и единиц, так называемых битов. Физически это контакты транзисторов. Так называемом кубите. Это значит, что он может быть немножечко 0, но в основном единицей.

В основном 1 и немножечко 0. Это дает нам большие возможности, мы можем закодировать больше информации в меньшем объеме». В качестве примера можно привести человека.

В случае обычного компьютера он может находиться только в одной из двух точек, допустим, это Северный или Южный полюс. В квантовом же мире с некоторой вероятностью человек может находиться в Москве, Владивостоке, на Шри-Ланке или в Дубае. Такими свойствами, расширяющими возможности, могут обладать ионы, фотоны, атомы цезия, лития или рубидия.

Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «Ловим атом, каждый в специальную ловушку.

Компании взяли классический алгоритм управления биржевыми рисками и с помощью квантового глубокого обучения натренировали модель на совершение защитных сделок. Фармацевтическая и биотех-компания Moderna объединила усилия с IBM для использования квантовых вычислений в улучшении технологии мРНК, которая легла в основу вакцины от Covid-19. Moderna с помощью квантов IBM планирует применить мРНК для борьбы с другими заболеваниями, помимо Covid: как респираторно-синцитиальный вирус и некоторые виды рака. Автопроизводители тоже решили воспользоваться преимуществами квантовых технологий для вычислительной химии. Ford и BMW в сотрудничестве с Quantinuum смоделировали химический состав материалов аккумуляторов электромобилей — без квантового компьютера просчитать поведение молекул сложных веществ в обычных условиях было бы невозможно, утверждают исследователи.

Похожие эксперименты проводила и химическая компания BASF — благодаря программной платформе CUDA Quantum ей удалось смоделировать нитрилотриуксусную кислоту, которая удаляет токсичные металлы из городских сточных вод. В сегмент все активнее заходят бигтехи. Например, Intel в середине 2023 года выпустил свой первый 12-кубитный квантовый кремниевый чип Tunnel Falls. В компании это трактуют как очередной шаг к созданию полнофункциональной коммерческой системы квантовых вычислений.

Его разработали ученые из Физико-технического института ФТИ им.

Иоффе РАН. Прибор найдет применение в квантовых компьютерах. Изображение C.

В 2020 Россия не обладала достижением в виде кубитов на ионах и располагала только 2 кубитами на других платформах, сегодня же российские ученые добились результата в 16 кубитов на нескольких платформах, при этом наибольшую вычислительную мощность показывает ионный процессор. До конца 2024 года планируется увеличить число кубитов до 50-100, что позволит решать задачи, которые обычный компьютер решать не сможет или будет делать это очень долго. В будущем, с ростом количества кубитов, подобные вычислительные устройства смогут решать сложные задачи гораздо быстрее, чем самые мощные суперкомпьютеры: оптимизация логистики в масштабах всей страны; моделирование химических соединений, с помощью которых можно создать новые лекарства и новые материалы; ускорение обучения искусственного интеллекта и криптоанализ современных алгоритмов шифрования.

Пресс-служба Президента России.

Мнения экспертов

  • Квантовый компьютер + Новости
  • Создан ИИ, который предсказывает действия людей
  • Сверхбыстрые кванты: ускорение вычислений на сотни миллиардов лет - «Ведомости. Наука»
  • Когда квантовые вычисления станут реальностью?
  • Сейчас на главной

Microsoft открыл «новую эру» в области квантовых компьютеров

В этом компьютере кубиты (квантовые биты) генерируются с помощью сверхпроводящих электронных резонансных цепей. Но это не есть квантовый компьютер, поскольку при работе квантовых компьютеров неизбежны ошибки, которые возникают при выполнении операций. Российский квантовый центр (РКЦ) — это уникальная для России научно-технологическая организация, созданная по передовым международным моделям. Проблема в паролях: сегодняшние компьютеры защищаются от своих современников, а на квантовых скоростях подбор любого ключа может стать тривиальной задачей. Новость, опубликованная Daily Telegraph, может означать поворотный момент в развитии этой новой технологии. Квантовые компьютеры открывают огромные перспективы для потенциально революционных секторов, таких как наука о климате и открытие лекарств.

Ученые продолжили попытки понять квантовую запутанность: есть большой прогресс

РАН: «Росатому» на квантовый компьютер не хватит времени и денег Китайский квантовый компьютер решил задачу, которая заняла бы у обычного компьютера миллиарды лет вычислений.
VK будет развивать квантовые вычисления на своей облачной платформе Об этом 21 февраля «Известиям» заявил директор Института спектроскопии РАН Виктор Задков, комментируя новость о том, что российские ученые создали 20-кубитный квантовый компьютер.

Что такое квантовый компьютер и как он работает

Новости об исследованиях Майкрософт в области квантовых вычислений см. Оценка ресурсов Квантовые компьютеры, доступные сегодня, позволяют проводить интересные эксперименты и исследования, но они не могут ускорить вычисления, необходимые для решения реальных задач. Поделиться новостью. В Росатоме заявили о создании 20-кубитного квантового компьютера. Квантовый компьютер — вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных.

В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный

В данном разделе вы найдете много статей и новостей по теме «квантовый компьютер». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых журналов. Квантовый компьютер — вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Но время идет, новости о квантовых компьютерах с завидной периодичностью выходят в свет, а мир все никак не перевернется. Разработка квантового компьютера на холодных ионах кальция – один из самых молодых проектов центра. Первый отечественный четырехкубитный квантовый процессор продемонстрировала команда ученых МФТИ и Национального исследовательского технологического университета МИСИС.

Что такое квантовый компьютер и как он работает

Но в последние месяцы физики заинтересовались альтернативной схемой исправления ошибок, называемой квантовой проверкой четности с низкой плотностью qLDPC. Согласно препринту исследователей из IBM, комп ани я обещает сократить число нужных кубитов в 10 и более раз. Препринт IBM — это « отл ичная теоретическая работа. При этом реализация этого подхода со сверхпроводящими кубитами кажется чрезвычайно сложной задачей, и, вероятно, пройдут годы, прежде чем на этой платформе можно будет провести хотя бы эксперимент по проверке концепции», — говорит Михаил Луки н, физик из Гарвардског о университета. Загвоздка в том, что метод qLDPC требует, чтобы каждый кубит был напрямую связан как минимум с шестью другими.

В обычных сверхпроводящих чипах каждый кубит связан только с двумя или тремя.

Повышенная температура и загрязнения рядом с кубитом способны очень быстро приводить к потере информации. Для того чтобы он нормально работал, температура возле него должна быть близкой к абсолютному нулю. Чем дольше кубит способен хранить информацию, тем меньше ошибок получается в результате вычислений. Мы привыкли, что обычные компьютеры практически никогда не делают ошибок, и работают строго в соответствии с заданной программой, однако еще несколько десятилетий назад это было не так.

Так и с квантовыми компьютерами, — чем выше будет надёжность кубитов, тем более сложные алгоритмы они смогут выполнять. Недавно мы с коллегами из МГТУ им. Баумана собрали другой, двухкубитный процессор, у которого кубиты имели время жизни около 100 микросекунд — это сопоставимо с американскими и китайскими сверхпроводниковыми квантовыми процессорами, которые в мире считаются наиболее продвинутыми. Почему вы до сих пор не числитесь среди лидеров? К примеру, нашему долгоживущему процессору не хватает примерно 50-100 кубитов.

Микроволновое оборудование для управления квантовым процессором. Совсем недавно IBM презентовала 433-кубитный процессор, но подробные результаты пока не опубликованы.

Смотрим, что такое квантовая запутанность. Начнем с того, как возникает квантовая запутанность. Возникает она таким образом, что каким-то способом нам для понимания не важно, каким , кванты разделяют на группы по какому-то основанию. Как, к примеру, разбирают пару обуви по основанию "правый или левый" ботинок. Если каждую абсолютно одинаковую пару ботинок слепой сортировщик, оперирующий механическим приспособлением, не дающим ему информации о том, правый или левый ботинок он упаковывает в коробку, разложит по одинаковым коробкам, так, что сам не будет знать, в какую положил правый ботинок, а в какую — левый, то мы получим запутанные ботинки, то есть ботинки, обладающие квантовой запутанностью. Тогда, если мы откроем одну коробку, мы уничтожим суперпозицию — узнаем состояние одного кванта ботинка — левый , и по методу исключения мы вычислим состояние второго запутанного с ним кванта ботинка — правый При этом мы не определим состояние парного ботинка — мы сделали это раньше, когда разделили пару, мы его вычислим, потратив время и иные ресурсы.

При этом расстояние, на котором находились запутанные ботинки, действительно не имело значения для скорости нашего вычисления. Для вычисления состояния второго запутанного ботинка нам надо было знать 2 вещи: 1 что ботинки запутаны ранее составляли пару , 2 что один из ботинок — правый.

А также температурный режим. Все атомы с температурой более абсолютного нуля по определено находятся в вибрационной форме, и любая температура более чем на 10-15 тысячных доли градуса выше нулевого значения попросту сотрясает квантовые биты до такой степени, что они не могут сохранять "когерентность". По этой причине квантовые компьютеры, созданные по последнему слову техники, должны быть охлаждены криогенным способом с помощью дорогостоящих и сложных устройств, перед тем как кубиты будут поддерживать свое состояние в течение длительного времени и станут востребованными. Но австралийская компания утверждает, что она создала квантовый микропроцессор, которому не требуется ничего из перечисленного. Он прекрасно работает при комнатной температуре. Сейчас он размером со стоечный блок.

В ближайшее время он достигнет размеров обычной видеокарты, а затем станет настолько мал, что его можно будет устанавливать в мобильные девайсы наравне с обычными процессорами. Если эта компания сделает то, о чем утверждает, то преимущества квантовой технологии можно будет интегрировать в компьютеры практически любого размера, освободив эту сверхмощную технологию от ограничений, связанных с размерами и стоимостью суперкомпьютеров.

Будущее квантовых компьютеров: перспективы и риски

Эти типы компьютеров могут увеличить вычислительную мощность сверх того, что достижимо на современных обычных компьютерах. Давайте уточним, что мы знаем о квантовых вычислениях в настоящее время. Мы собрали некоторые интересные факты о квантовых компьютерах, которые определенно ошеломят вас. Схема хранения информации Компьютеры, которые мы используем сегодня, хранят данные в двоичном формате - серии 0 и 1. Каждый компонент памяти называется битом, и им можно манипулировать с помощью шагов булевой логики. С другой стороны, квантовый компьютер будет хранить данные в виде 0, 1 или квантовой суперпозиции двух состояний. Такой квантовый бит также известный как кубиты обладает гораздо большей гибкостью по сравнению с двоичной системой. Кубиты могут быть реализованы с помощью частиц с двумя спиновыми состояниями - "вверх" и "вниз". Пылающая скорость Поскольку квантовый компьютер может существовать не только в 0 и 1, они могут выполнять вычисления параллельно. Квантовый компьютер покажет вышеуказанный результат, когда он находится в состоянии декогеренции, которое длится, пока он находится в суперпозиции состояний, пока он не упадет до одного состояния.

Возможность одновременного выполнения нескольких задач называется квантовым параллелизмом. Переопределение безопасности Скорость квантового компьютера также является серьезной проблемой в области шифрования и криптографии. Современные системы финансовой безопасности в мире основаны на факторизации больших чисел алгоритмы RSA или DSA , которые буквально не могут быть взломаны обычными компьютерами в течение жизни Земли. Тем не менее квантовый компьютер может рассчитывать числа в разумный период времени. С другой стороны, квантовые компьютеры смогут обеспечить небьющиеся функции безопасности. Они могут блокировать важные данные например, онлайн-транзакции, учетные записи электронной почты с гораздо лучшим шифрованием. Многие алгоритмы были разработаны для квантовых компьютеров - наиболее известными являются алгоритм Гровера для поиска в неструктурированной базе данных и алгоритм Шора для факторизации больших чисел. Энергоэффективность Потребляемая мощность является критическим фактором для любого устройства, работающего на электричестве. Огромному массиву процессоров требуется изрядное количество блоков питания для поддержания их производительности.

Но это другая история. Двери завода открыла компания IonQ в присутствии делегации от властей штата Вашингтон. Квантовые компьютеры IonQ выглядят как обычные серверные стойки, и этим они подкупают заказчиков, среди которых ряд крупнейших компаний из США, Пентагон и даже швейцарская компания QuantumBasel. Предприятие раскинулось на площади 6000 м2 в пригороде Сиэтла Ботелле. Кроме сборочных цехов на территории предприятия развёрнут квантовый ЦОД компании с облачным доступом второй по счёту в США , исследовательские центры и научный кампус.

Компания IonQ не удовлетворилась достигнутым и объявила о расширении площадки до более чем 9000 м2. В настоящий момент компания способна производить и поставлять заказчикам квантовые системы Forte на 35 алгоритмических кубитах AQ , и в будущем запустят сборку систем Tempo на 64 AQ. Благодаря квантовым законам система Tempo будет производительнее Forte не в два раза, что можно было бы ожидать от обычных классических компьютеров, а в 536 млн раз, за что мы любим и ждём квантовые вычислители. Они обладают невиданным потенциалом в сфере расчётов, но мы пока не можем распорядиться этими возможностями даже на начальном уровне. Две системы хотят приобрести военные, а ещё две системы ждут в Швейцарии.

И это наряду с тем, что ведущие облачные платформы уже предоставляют доступ к квантовым платформам IonQ, включая сервис Amazon Braket. Квантовая платформа IonQ опирается на кубиты из ионов под управлением лазеров. Такие системы не требуют криогенного охлаждения или, по крайней мере, охлаждаются до относительно высоких температур. Это делает работу с ними удобной и достаточно гуманной по затратам. Когда-нибудь заводы по производству квантовых компьютеров будут открываться пачками, но первый останется таким навсегда.

Для этого пришлось заново изучить данные сотен научных работ и исследований. В результате проделанной работы в журнале Nature Physics вышла статья 30 авторов, которая объясняет, как можно минимум на один порядок снизить вероятность появления ошибок в квантовых вычислениях. Типичная криогенная структура квантового компьютера. Эта модель принесла Брайану Джозефсону Нобелевскую премию по физике в 1973 году. Она хорошо представлена математически и широко используется для работы со сверхпроводящими кубитами на основе переходов около 15 лет.

Данные измерений выходили за рамки модели, и это заставило учёных искать корень проблем. Под руководством профессора исследователи подняли данные аналогичных исследований учёных Высшей нормальной школы Парижа, работы с 27-кубитовым квантовым компьютером компании IBM и другие. Как позже выяснилось, похожие отклонения в экспериментальных и теоретических данных обнаружили также исследователи из Кёльнского университета. Обе группы объединили усилия и привлекли ещё учёных, заново проанализировав сотни работ по теме. Результат оказался удивительным.

Оказалось, что в стандартной модели описание работы переходов Джозефсона не учитывает ряд важных факторов, и это ведёт к ошибкам вычислений. Влияние гармоник на измерения. На практике мы дошли до такой степени точности измерений, что можем заметить отклонения от идеальной кривой. Всему виной гармоники, самые сильные из которых, как оказалось, влияют на результат измерений. Раньше они никак не учитывались.

Коллектив из 30 авторов собрал столько «компромата» на гармоники, что отмахнуться от них больше нельзя. И это хорошо. Уточнённые формулы расчёта состояний сверхпроводящих кубитов могут привести к тому, что квантовые биты станут в 2—7 раз стабильнее, что, как минимум, на порядок снизит вероятность появления ошибок. Ценность разработки в том, что каждый участвующий в вычислениях логический кубит может быть представлен всего одним физическим кубитом. Все возникающие в процессе ошибки исправляются им самим без привлечения других физических кубитов, что открывает путь к массовым квантовым компьютерам.

Это предполагает крепкое теоретическое обоснование разработок компании в дополнение к возможности производить оборудование на заводе в Шербруке. Свой «альтернативный» кубит Nord Quantique создала в одном экземпляре. Статья и работа базируются на проверке его работы вне рамок вычислений, которые начнут проводиться ближе к концу текущего года. Физическое представление кубита. Источник изображения: Nord Quantique Интересно, что канадцы фактически перевернули с ног на голову архитектуру, давно используемую в квантовых компьютерах IBM и Google в виде так называемых трансмониевых сверхпроводящих кубитов.

Кубиты в компьютерах IBM и Google хранят информацию в сверхпроводящей петле, а управляются микроволновым резонатором, в котором микроволновые фотоны задерживаются на какое-то время. Кубит Nord Quantique, напротив, хранит информацию — квантовые состояния — в микроволновых фотонах, удерживаемых в резонаторах, а сверхпроводящая петля управляет его состоянием. Хитрость в том, что в резонатор можно запустить избыточное количество фотонов. Чем их больше, тем меньше вероятность появления ошибки. Избыточность — это хорошо проверенный и доказанный способ снизить количество ошибок, что широко применяется в обычных вычислениях.

Иными словами, перспективы у него есть, если компания начнёт быстро догонять конкурентов. Квантовый компьютер на сверхпроводящих кубитах Было бы заманчиво увидеть масштабное применение кубита Nord Quantique. Для кубитов IBM и Google безошибочная работа кубитов означает, что каждый логический кубит должен состоять из 1000 физических кубитов. Для логического кубита Nord Quantique нужен всего один физический кубит или, по крайней мере, десятки, а не тысячи всех этих петелек, резонаторов, коаксиальных разъёмов и прочей мелочи, которая в масштабе представляет то, что мы видим на современных фотографиях квантовых систем: огромные хромированные люстры. Для безошибочных квантовых расчётов необходимо тысячу физических кубитов представить одним-единственным логическим кубитом.

Ничем иным как расточительством такое не назовёшь. Это проблема, решить которою пообещали немецкие, чешские и японские учёные. Учёные сделали из фотонов «кошку Шрёдингера». Источник изображения: Peter van Loock Традиционный метод предполагает создание отдельных кубитов — сверхпроводящих, из холодных нейтральных атомов, фотонов или в другом виде — и последующее их запутывание друг с другом. Только запутывание кубитов позволяет запускать на них квантовые алгоритмы и получать результат без ошибок при соблюдении всех необходимых условий.

Учёные из университетов Майнца Германия , Оломоуца Чехия и Токио Япония предложили элегантное решение, которое реализует три возможности в одном: объединили несколько фотонов в одном коротком световом импульсе с присущей системе врождённой способностью исправлять ошибки. Таким образом, нет необходимости генерировать отдельные фотоны в виде кубитов с помощью многочисленных световых импульсов, а затем заставлять их взаимодействовать как логические кубиты, — заявил профессор Питер ван Лоок Peter van Loock из Майнцского университета.

Нашли опечатку?

Квантовое преследование Александр Дубов В гарвардском квантовом симуляторе на холодных атомах 256 кубитов. В российском квантовом симуляторе на холодных атомах — один. Десятикубитный квантовый вычислитель компании Honeywell на ионах — один из лидеров среди всех квантовых компьютеров вообще.

Напомним, в конце октября корпорация Google заявила о достижении квантового превосходства — момента, когда квантовый компьютер окажется в состоянии разрешить задачу, которая ранее считалась неразрешимой для существующей вычислительной техники. Квантовый компьютер Google с 53-кубитным процессором Sycamore якобы смог за 200 секунд выполнить расчеты, на которые самому мощному в мире суперкомпьютеру IBM Summit 200 квадриллионов операций в секунду - НСН понадобилось бы примерно 10 тыс. Однако оказалось, что это была крайне специфическая задача, придуманная специально для квантового компьютера, в которой нет практического смысла, кроме генерации случайных чисел. Позднее специалисты IBM заявили, что их суперкомпьютер при оптимизации процесса сумел бы выполнить ее за несколько дней. Квантовые процессоры Google содержатся в специальных резервуарах - криостатах - при температуре, близкой к абсолютному нулю, что необходимо для поддержания сверхпроводимости.

Помимо них в квантовый компьютер входит классическая электроника, которая отвечает за удаленный доступ к системе для программных исследований и анализа полученных данных. При этом все элементы системы должны быть надежно защищены от взаимных и внешних помех.

Квантовые компьютеры в России и мире: как развивается технология

Куквартная химия: что может 16‑кубитный и 20‑кубитный квантовый компьютер Кроме того, квантовый компьютер можно использовать для расчета больших органических молекул для лекарственных препаратов, построения оптимальных маршрутов автомобилей или оптимизации инвестиционного портфеля.
Квантовые компьютеры - создание, вычислительная мощность, применение, перспективы. Квантовая интегральная микросхема является «сердцем» прототипа квантового вычислительного устройства, состоящего из классического компьютера и квантового «ускорителя».
Разработчик квантовых компьютеров IonQ поможет в модернизации энергосистемы США Квантовый компьютер больше напоминает красную ртуть конца ХХ века, нежели реальную перспективную разработку.
Новости по теме: квантовый компьютер Прибор найдет применение в квантовых компьютерах.

Квантовый вызов потребует от бизнеса инвестиций

Современные конструкции квантовых компьютеров часто имеют вид люстры для удовлетворения экстремальных требований к охлаждению. В России квантовый компьютер разрабатывается в рамках утвержденной дорожной карты по развитию квантовых вычислений, которую ведет Госкорпорация «Росатом». «В области производства квантовых компьютеров всё идёт в соответствии с графиком, 20 кубитов нам обещает Росатом показать в конце этого года.

Миллиарды рублей и почти ноль понимания. Зачем нам квантовый искусственный интеллект

Первый в мире рабочий квантовый компьютер создали трое ученых из MIT, Лос-Аламосской национальной лаборатории и Калифорнийского университета в Беркли еще в 1998 году. Квантовые компьютеры позволяют решать некоторые задачи — например, моделировать молекулярные системы — значительно быстрее, чем самые мощные «классические» суперкомпьютеры. «Когда полнофункциональный квантовый компьютер на основе стабильных топологических кубитов станет доступным, те же самые алгоритмы будут обладать еще большей мощностью», – говорит Матиас Троер, главный исследователь Microsoft по квантовым вычислениям. На сегодняшний день в мире существуют квантовые компьютеры на ионах, вмещающие до 32 кубитов. Современные конструкции квантовых компьютеров часто имеют вид люстры для удовлетворения экстремальных требований к охлаждению.

Похожие новости:

Оцените статью
Добавить комментарий