Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость.
Эра термоядерного синтеза
Нашей команде сейчас требуется в минимальном объеме всего 10 млн руб. Нам вообще ничего не нужно, кроме аппаратуры реального времени, и еще некоторый объем средств на зарплату и командировки, чтобы молодые люди не уходили в коммерческие компании. И мы тогда можем идти по намеченному пути. В заключение можно отметить тот факт, что первая атомная электростанция была введена в эксплуатацию в городе Обнинск в 1954 году, а пуск первого токамака произведен также в 1954 году в ИАЭ им. Но это была экспериментальная установка и все последующие, включая ITER, — также экспериментальные установки типа токамак. Беседу вела Ирина Татевосян 2018 год Тем временем в Китае 30. Он может стать первым реактором ядерного синтеза, генерирующим достаточно энергии для производства электричества. По словам одного из ведущих ученых, Китай сможет производить электроэнергию с помощью предлагаемого "искусственного солнца" уже через десять лет, если проект получит окончательное одобрение правительства. Строительство реактора ядерного синтеза может быть завершено к началу 2030х годов, если официальный Пекин даст добро, сказал профессор Сонг Юнтао сотрудникам средств массовой информации на конференции по контролю за выбросами углерода в Пекине в воскресенье. Китайский испытательный реактор Fusion Engineering Технология термоядерного синтеза, также известная как искусственное солнце, может обеспечить бесконечный запас чистой энергии, имитируя процесс ядерного синтеза на солнце, хотя технические сложности значительны, и попытки международного сообщества разработать данную технологию столкнулись с трудностями и растущими затратами.
Руководство страны попросило ученых провести подготовительные работы по созданию Китайского испытательного реактора термоядерного синтеза CFETR , включая проектирование и строительство крупного испытательного центра в городе Хэфэй. Но Сонг, директор Института физики плазмы в Хэфэе, сообщил Beijing News, что окончательное разрешение еще не получено. Цель этого проекта заключается в том, чтобы CFETR стал первой установкой, вырабатывающей электроэнергию за счет тепла термоядерного синтеза. Для этого необходимо контролировать работу экстремально горячего газа - водорода, температура которого в реакторе должна достигать 100 миллионов градусов Цельсия 180 миллионов по Фаренгейту или даже превышать их. Фото: Синьхуа На первом этапе работы реактор рассчитан на получение стабилизированного выхода мощности - необходимой для выработки электроэнергии - в 200 мегаватт, что примерно соответствует мощности небольшой угольной электростанции. Китайский термоядерный реактор, вероятно, не будет первым в мире: строительство Международного термоядерного экспериментального реактора ITER на юге Франции почти завершено, и он может быть запущен к 2025 году. Но после многочисленных задержек с момента начала строительства в 2007 году ИТЭР стал самым дорогим международным научным проектом в истории, который обойдется странам-участницам, включая Китай, в сумму от 45 до 65 миллиардов долларов США. И хотя он впервые воплотит в жизнь идею искусственного солнца, вырабатываемое им количество тепла не может быть устойчивым, чтобы генерировать достаточно энергии для производства электричества, как это делает китайский реактор. Сонг сказал, что Китай и другие страны оказывают содействие и следят за прогрессом во Франции, используя знания и технологии, разработанные для ITER, для совершенствования своих собственных проектов термоядерных реакторов - гонка за их разработку разгорается.
Китайские исследования в области термоядерного синтеза изначально проводились с использованием российского оборудования и технологий, но в последние годы, по словам Сонга, Китай занял лидирующие позиции в этой области. В мае на моделирующем устройстве в Хэфэе была создана горящая плазма с температурой 150 миллионов градусов Цельсия, которая поддерживалась на стабильном уровне более 100 секунд, что является мировым рекордом. Ученые удерживали горячий газ, который был чрезвычайно непредсказуем и мог разрушить все, чего бы он ни коснулся, с помощью сверхсильного магнитного поля, созданного на основе сверхпроводников. Сонг сказал, что следующей целью китайского проекта будет увеличение продолжительности горения до 400, а затем до 1 000 секунд. По словам Сонга, эта разработка принесла положительные результаты и в других отраслях. Благодаря достижениям в исследованиях термоядерного синтеза, китайские производственные мощности по выпуску сверхпроводящих материалов увеличились в 10 000 раз, отметил он. Сверхпроводниковая продукция необходима в самых разных отраслях, от транспорта до медицинского оборудования, и рост производства позволяет значительно снизить ее цену. Китайское правительство планирует начать массовое строительство термоядерных электростанций до 2060 года - крайнего срока для достижения поставленной страной цели по обеспечению углеродной нейтральности окружающей среды. В Британии 24.
Утверждается, что технология приведёт к коммерчески выгодным компактным термоядерным реакторам и намного эффективнее альтернативных систем. Демонстрация установки состоится в 2022 году, а коммерческое распространение ожидается к 2030 году. Компания Tokamak Energy на государственные субсидии и частные инвестиции планомерно совершенствует сферические токамаки. Проведённые с тех пор модернизации позволяют поднять температуру плазмы до рекордных для такого малыша значений. Внутри токамака разогретая плазма удерживается сильнейшим магнитным полем, поэтому роль магнитов сложно переоценить. Особенно важны параметры магнитов для сферических токамаков с небольшим по объёму соленоидом по центру. Компания Tokamak Energy делает ставку на высокотемпературные сверхпроводящие магниты и технологии масштабирования магнитов. Чем сильнее магнит в меньшем исполнении, тем меньше размеры рабочей камеры реактора, и здесь на передний план выходит защита сверхпроводящих магнитов от повреждений плазмой. По словам Tokamak Energy, они разработали не имеющую аналогов технологию защиты сверхпроводящих магнитов и готовятся создать установку с её использованием.
К сожалению, деда рано не стало, и он многое не успел мне рассказать. И вот недавно я случайно узнал, что, в каком-то роде, пошел прямо по дедушкиным стопам! Перебирая домашний архив, я обнаружил грамоту более, чем 40-летней давности, которую в свое время вручили моему деду за вклад в автоматизацию экспериментов на токамаках ФТИ, где я сейчас работаю! Так что, в науку я попал неслучайно В школе я любил алгебру, геометрию и физику. С девятого класса я учился в специализированном лицее с физико-математическим уклоном. А потом поступил на кафедру экспериментальной ядерной физики в Политехнический тогда еще институт в Санкт-Петербурге.
Нынешний рекорд составил 403 секунды чуть менее 7 минут. Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду.
С момента начала работы в 2006 году EAST является открытой испытательной платформой для китайских и международных ученых для проведения экспериментов и исследований, связанных с термоядерным синтезом.
Она первая за последние 20 лет. А запустили ее в рамках Года науки в Курчатовском институте. Размеры компактные, но мощность запредельная. И перспективы для энергетики тоже. Когда мы ее полностью нагреем — 100 миллионов градусов», — сообщил научный руководитель комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт» Петр Хвостенко.
Температура в 10 раз больше, чем в центре Солнца, и задачи космического масштаба — запустить термоядерные реакции, которые происходят в недрах звезд. Звезда по имени токамак — рукотворное Солнце на поверхности на Земле. Эта установка дает надежду на светлое будущее — термоядерный синтез может обеспечить человечество чистой энергией на тысячелетия вперед. И запуск российской установки — большой шаг на этом пути. Токамак Т-15 МД размером с небольшой дачный домик полностью спроектировали и построили в России за 10 лет.
Американские физики повторно добились термоядерного зажигания
Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку. Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М.
Комментарии
- Цитаты о СНГ
- Отсюда • «Это надо делать быстро!». Сводка термоядерных новостей
- Статьи по теме «термоядерный синтез» — Naked Science
- Термоядерный запуск. Как Мишустин нажал на большую красную кнопку | Аргументы и Факты
- Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя
FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв
Нынешний рекорд составил 403 секунды чуть менее 7 минут. Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду. С момента начала работы в 2006 году EAST является открытой испытательной платформой для китайских и международных ученых для проведения экспериментов и исследований, связанных с термоядерным синтезом.
Им удалось разогреть экспериментальный реактор до 70 миллионов градусов по Цельсию.
При такой температуре установка проработала 17 минут 36 секунд, уточнило издание South China Morning Post. Установка находится в городе Хэфэй провинции Аньхой. EAST к представляет собой установку в форме бублика для магнитного удержания плазмы.
Термин «токамак» придумал советский физик Игорь Головин еще в конце 1950-х годов. Сейчас экспериментальный усовершенствованный сверхпроводящий токамак называют «искусственным солнцем». В своей работе он имитирует реакцию ядерного синтеза, питающую настоящее Солнце.
Первый пуск EAST состоялся в 2006 году. Установку построили на основе модифицированного реактора HT-7. Радиус ее внешнего корпуса составляет 1,7 метра.
Поначалу был определенный уровень недоверия, но потом решили проверить результаты в совместном эксперименте на «Ангаре-5-1». В 1993 г. Сначала в 1992 г. Они просили приехать в следующем году со своей диагностикой и проверить наши результаты.
Министерство разрешило нам провести совместный эксперимент. Оказалось, что результаты, которые они получили, даже лучше, чем то, что намерили мы. Но в основном все совпало. Повторилась ситуация, которую мы имели в конце 1960-х гг.
Академик Л. Арцимович, руководитель программы УТС того времени, пригласил английских физиков приехать в Курчатовский институт с новой диагностикой и сопоставить измеренные параметры с нашими измерениями. Все подтвердилось, и даже больше. После этого практически все лаборатории мира, связанные с работами по магнитному удержанию плазмы, стали делать токамаки.
Сейчас с нашим участием строится первый экспериментальный реактор ITER, в котором мощность термоядерной реакции должна в 10 раз превзойти мощность, затрачиваемую на поддержание реакции. ITER — это тоже токамак. Работы по физике высоких плотностей энергии продолжаются, лидером этого направления у нас был В. Фортов, с которым мы здесь тоже работали.
Сегодня мы переживаем новый этап в области термоядерных исследований благодаря новой федеральной программе. Она очень сложна. Существуют проблемы создания такого реактора. Одна из важнейших — взаимодействие плазмы со стенкой, то есть эрозия стенки.
Было предложено несколько способов ее защиты. Кстати, самые активные исследования этой проблемы проводятся здесь на токамаке Т-11М под руководством С. Энергетический термоядерный реактор предполагает, что мощность, выделяемая в процессе интенсивной термоядерной реакции, должна превосходить затрачиваемую на поддержание плазмы не менее чем в десять раз. И тогда на стенку камеры идет очень высокий поток частиц, который ее разрушает.
Проблема первой стенки — одна из важнейших для энергетического реактора. Если вы снизите требования к интенсивности реакции, то эти потоки уменьшаются и проблема защиты стенки перестает быть такой острой. Но возникает вопрос: а где мы можем применять эти нейтроны? Оказывается, мы можем их использовать в целях создания топлива для обычных атомных реакторов.
Это так называемые гибридные системы «синтез — деление», и они сейчас здесь очень активно обсуждаются и развиваются. Практическая реализация таких систем важна. Но чего сейчас здесь удалось достичь? Каков сегодня мировой рекорд ее удержания, где он достигнут?
Первый токамак со сверхпроводящими магнитными системами был построен в Курчатовском институте. Потом, в силу ряда обстоятельств, эта система не получила развития. Точнее, она получала развитие в токамаке Т-15, который создавался в Курчатовском институте, но из-за слома Советского Союза дело не было доведено до конца. На Западе и Востоке довели.
Надо понимать, что, помимо времени удержания, еще есть требования на плотность, температуру, и вообще для того, чтобы термоядерный реактор работал, необходимо, чтобы тройное произведение — время удержания, плотность и температура — было выше некоторой величины. Длительность удержания разряда в высокотемпературной плазме на китайском токамаке — более 100 с. Требуемые температуры также достигнуты. Реализовать их одновременно в одной установке предполагается в ITER.
Сегодня здесь лидеры китайцы. У них разряд в высокотемпературной плазме держится больше сотни секунд. В ITER будет два режима. Один — режим удержания в течение пяти часов, другой, более короткий — в течение нескольких десятков секунд.
Ядра заряжены положительно, поэтому, согласно закону Кулона, они отталкиваются. Чтобы соединиться, им нужно преодолеть кулоновский барьер и сблизиться на расстояние действия ядерных сил — 10-15 метра один метр, деленный на единицу с пятнадцатью нулями. Для этого необходима огромная энергия, которую можно получить в виде тепла.
Солнечный климат для этого идеален, температура внутри звезды достигает экстремальных величин — 15 миллионов градусов. Вещество при такой температуре переходит в состояние плазмы, работать с которой в земных условиях не так-то просто. Плазма считается четвертым агрегатным состоянием вещества.
Если нагреть твердое вещество, оно становится сначала жидким, затем газообразным и, наконец, — плазмой. При температуре в десятки тысяч градусов атомы газа теряют свои электроны и превращаются в ионы — свободные электрические заряды. Такой газ называется ионизованным и является средой, проводящей электрический ток.
В естественных условиях Земли плазма встречается в виде разрядов молний или в магнитосфере планеты при полярном сиянии. В космосе она буквально повсюду: материя в межгалактическом пространстве существует именно в плазменной форме. Солнце и звезды тоже являются сгустками сильно нагретой плазмы.
Вещество в состоянии плазмы видел каждый, когда в небе сверкала молния , а вот удержать и сжать такое вещество — задачка не из легких, но ее необходимо решить для реализации управляемого термоядерного синтеза на Земле. Фото iStock Удержать плазму внутри построенных человеком установок тяжело — нагреваясь до миллионов градусов, она плавит даже самое прочное покрытие. Поэтому стенки камер реактора для управляемого синтеза не должны соприкасаться с плазмой.
Другое важное условие использования плазмы — сжатие. Если не сжимать разогретую плазму со всех сторон равномерно, она выскользнет, остынет, и реакции в ней прекратятся. Плазма подобна надутому воздушному шарику — как бы равномерно вы ни надавливали на него, шар всегда будет просачиваться через пространство между пальцами.
Солнечная плазма не разлетается по всему космосу из-за огромной массы звезды — ее гравитационное давление постоянно сжимает ядра атомов вместе. Масса Земли в 330 тысяч раз меньше, поэтому создать подобное давление на нашей планете невероятно трудно. Каждый раз, когда ученые пытались сжать плазму в реакторе, она выплескивалась наружу.
Как причесать ежа, или попытки удержать плазму К решению задачи удержания плазмы вплотную подошли советские ученые Института им. Курчатова в 1950-х. В магнитной ловушке, созданной под руководством академиков Андрея Сахарова и Игоря Тамма, горячая смесь дейтерия и трития удерживалась с помощью магнитного поля и не касалась стенок реактора.
Термоядерный запуск. Как Мишустин нажал на большую красную кнопку
Как рассказал «Звезде» научный сотрудник частного учреждения Государственной корпорации по атомной энергии «Росатом» «Проектный центр ИТЭР» Кирилл Артемьев, речь идет об алмазном детекторе. Плазма просто так долго держаться не может, ее различными методами дополнительно нагревают», - пояснил суть работы устройства ученый. Установка EAST - это полноценный сверхпроводящий экспериментальный термоядерный токамак, который, по словам Артемьева, как и строящийся во Франции токамак Международного термоядерного экспериментального реактора ИТЭР являются важными шагами к построению установки DEMO. По проекту, электростанция будет запущена в конце 2040-х годов и станет переходным звеном между ITER и первыми коммерческими термоядерными реакторами.
Это в корне поменяет всю структуру нашего существования, включая остановку глобального потепления ИТЭР — это экспериментальный реактор, который должен воспроизвести физические реакции, происходящие на Солнце и других звездах, и показать возможность использовать потенциала ядерного синтеза как источника электроэнергии. Несмотря на все ограничения, связанные с коронавирусом, все работы по монтажу начинаются в срок, так что пуск реактора и получение на нем первой плазмы должны состояться уже через пять лет. Бернар Бижо, генеральный директор проекта Международного экспериментального термоядерного реактора: «Мы начинаем работу над этапом сборки, и нам предстоит самая сложная часть работы. Мы должны в жесткие сроки решить сложнейшую головоломку по сбору всех элементов конструкции — этого 3D-пазла , в котором каждый элемент должен работать с точностью швейцарских часов». Подобный проект — это новая веха в международном сотрудничестве. По масштабам его можно сравнить с Международной космической станцией или Большим адронным коллайдером.
ИТЭР — это 35 государств, работающих сообща. Эмманюэль Макрон, президент Франции: «В истории человечества порой наступают такие моменты, когда мы должны оставить в стороне наши разногласия для решения общей, объединяющей всех нас задачи. Создание ИТЭР в середине 2000-х стало именно таким моментом.
Когда материал нагревается до очень высокой температуры, он превращается в плазму, в результате электроны отделяются от атома и превращаются в свободно движущиеся заряженные частицы, которые удерживаются сильным магнитным полем. В Хэфэе испытывали такомак EAST, который представляет собой модификацию установки, созданной в 90-х годах при сотрудничестве с Россией. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы.
Как рассказал «Звезде» научный сотрудник частного учреждения Государственной корпорации по атомной энергии «Росатом» «Проектный центр ИТЭР» Кирилл Артемьев, речь идет об алмазном детекторе.
Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек. И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы. К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии.
К тому же период полураспада трития — 12 лет. Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи. До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались. Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс. Так что же такое ITER?
Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути. Из чего состоит реактор ITER? Токамак — это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития. Вакуумная камера, где и обитает плазма. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов.
Сверхпроводящие магниты, которые обуздают плазму. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева. Дивертор, который отводит тепло и продукты термоядерной реакции. Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры. Криостат — огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру А вот так выглядит «маленькая» вакуумная камера с моделями работников внутри.
Мегаджоули управляемого термоядерного синтеза
Я, знаете, дура-баба, в футболе ничего не понимаю. И вот человек, инженер-радиоэлектроник, говорит мне: «Мы еще знали в советское время, что если произвести в сотнях километрах на нашей же территории где-нибудь над Сибирью термоядерный взрыв, например, ядерный взрыв, то ничего не будет на Земле. Ничего такого страшного. Ни ядерной зимы, которую все боятся. Ни чудовищной радиации, которая убьет всех вокруг, а кого не убьет, то те умрут в течение десяти лет от онкологии. Этого ничего не будет. А что будет — так это будет выведена из строя вся радиоэлектроника. Вся цифра, все спутники». Вот эта камера, на которую меня сейчас снимают, вот этот телефон, который рядом со мной лежит.
Мы вернемся с вами в год этак какой-нибудь 93-й. Проводные телефоны. Двушечка или не двушечка, я не помню, в телефоне-автомате. Я вам скажу: чудесно же жили. Вот право. Я даже обрадуюсь. Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет. Я запрещаю своим детям иметь гаджеты.
Это отдельная тема. Сейчас не об этом. Но как минимум вот это будет гора с плеч. Каждый раз, когда дети возвращаются из школы: «Вот, у всех есть телефоны, айпады, а у нас нет, почему у нас нет? То есть эта опция, она остается.
Проблема в том, что магнитное поле сжимает и удерживает плазму в поперечном направлении относительно силовых линий, а вот вдоль них плазма течет свободно, как по рельсам.
Работа над созданием токамаков стала важнейшим шагом на пути к термоядерной энергетике. Этот параметр фактор Q , естественно, должен быть больше единицы. Для промышленной же электростанции значение Q должно быть не меньше пяти: только в этом случае заряженные альфа-частицы, которые вместе с нейтронами рождаются при термоядерной реакции, но, в отличие от последних, не покидают магнитную ловушку, будут способствовать поддержанию высокой температуры. Таким образом, при Q, равном пяти, достаточно один раз «зажечь» плазму, а потом никаких дополнительных манипуляций с реактором проводить уже не нужно. В идеале значение Q должно достигать десяти. Но создание подобной установки не под силу ни одной стране мира в одиночку.
Поэтому в 1980-х гг. Горбачев, президенты Р. Рейган США и Ф. Миттеран Франция поддержали эту идею. Но прошло еще два десятилетия, прежде чем мир сделал очередной шаг к термоядерному будущему: было определено место для строительства экспериментального реактора. Выбор пал на область Прованс на юго-востоке Франции.
Это место соответствовало всем требованиям, включая комфортный климат и хорошую транспортную доступность, в том числе по морю. Последнее было важно, так как планировалась транспортировка громоздких деталей, вес которых мог достигать 100 т и более. Наконец, уже в середине первого десятилетия нового века, началось строительство токамака ИТЭР. Арцимович, внесший огромный вклад в реализацию советской программы по управляемому термоядерному синтезу, говорил, что термоядерная энергия будет освоена тогда, когда она действительно понадобится человечеству. Состоятельной и обоснованной критики проекта ИТЭР и термоядерной энергетики в целом на сегодня нет. В сборнике, недавно изданном нашим центром, представлено свыше трех десятков подобных новых технологий, которые уже активно внедряют в своих лабораториях и на производствах российские организации, участвующие в реализации проекта.
Но хотя проект ИТЭР сегодня является технологической платформой термоядерной энергетики, для создания самого термоядерного реактора необходимо развить еще ряд технологий, выходящих за рамки проекта. Например, нужно решить проблемы с генерацией стационарного неиндуктивного тока, созданием электромагнитной системы из высокотемпературного сверхпроводника и т. Эксперименты, которые в дальнейшем будут проводиться на ИТЭР, дополнят этот перечень.
Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика? Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Ключевая сложность — условия , которые требуется создать, чтобы атомы водорода соединились друг с другом. В ядре Солнца они подвергаются колоссальному давлению вкупе с огромной температурой. Создать такую гравитацию в лабораторных условиях невозможно, поэтому приходится разогревать среду еще сильнее.
Так, если в центре нашего светила температура составляет около 15 млн градусов Цельсия, то в термоядерном реакторе — около 150 млн. Разумеется, никакое вещество не способно выдержать подобного жара, поэтому основная задача, над которой сегодня бьются ученые — удержание плазмы как можно дальше от стенок реактора, чтобы они не расплавились. Насколько это опасно Эксперты Курчатовского института замечают , что термоядерный синтез не является цепной реакцией. То есть при нарушениях в работе установки процесс попросту остановится. Максимум, какая опасность поджидает обслуживающий персонал и окружающих — расплавление токамака установки удержания плазмы с помощью мощных магнитов. В этом плане УТС гораздо безопаснее классической атомной энергетики, где реакция как раз является цепной и угрожает загрязнением обширных площадей. Чем еще хорош термоядерный синтез Высокая энергоэффективность и относительная безопасность — далеко не все плюсы.
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды 14.
Экспериментальный усовершенствованный сверхпроводящий токамак EAST непрерывно и стационарно с плазмой с длинным импульсом в течение 403 секунд. Это является ключевым шагом на пути к разработке термоядерного реактора, передает информагентство Синьхуа. Прорыв, достигнутый после более чем 120 000 попыток, значительно улучшил предыдущий мировой рекорд токамака в 101 секунду, установленный в 2017 году.
Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции. Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF.
Мегаджоули управляемого термоядерного синтеза
Хорошие новости продолжают поступать в области исследований ядерного синтеза. Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке». Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку. Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции. Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. Ученые Института ядерной физики а СО РАН (ИЯФ, Новосибирск) добились ускорения плазмы в термоядерной установке "СМОЛА", где вещество удерживается.
Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский. В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития.
Термоядерный синтез
Поэтому сейчас, если подтвердятся полученные на установке NIF результаты, их можно будет считать первым экспериментальным подтверждением идеи Н. Г Басова. Это устройство — конвертер - преобразует лазерное излучение в рентгеновское. И мишень симметрично, со всей сторон обжимается именно этим излучением.
Идея эта оказалась хорошей, сегодня весь мир пошел по этому пути. Николай Басов. Фото: ru.
По сути, это маленький термоядерный взрыв, который отличается от взрыва бомбы тем, что является управляемым. Что дальше? Надо будет полученную энергию как-то собрать, преобразовать в тепло.
Хоть термоядерная реакция и считается самой чистой из всех ядерных, но сильные потоки электронов, которые активируют окружающие вещества, никто отменить не может. Но самый, пожалуй, главный вопрос заключается в том, действительно ли термоядерный реактор поможет нам вырабатывать дешевую электроэнергию? То есть, условно, на мишень попал 1 мегаджоуль, а выделилось 1,2 мегаджоуля.
Но на самом деле надо смотреть, сколько установка потребила энергии из розетки. Это будут совсем другие цифры.
Ранее, 29 октября, в пресс-службе научного дивизиона «Росатома» сообщили , что российские ученые до конца этого года получат «прорывной» прототип оборудования для будущего отечественного термоядерного реактора. Как пояснил Гаспарян, это перспективный источник энергии, который считается будущим энергетики — запас топлива для него практически неисчерпаем.
Работы ведутся по всему миру. Сейчас всё внимание приковано к международному проекту ITER Международный экспериментальный термоядерный реактор. Россия получила ценный опыт при разработке отдельных элементов проекта.
Сегодня в связи со многими изменениями главный помощник Евгения Павловича в термоядерных исследованиях — В. Ильгисонис, который был директором НИЦ «Курчатовский институт». Потом он перешел в «Росатом», где возглавляет направление научно-технических исследований и разработок, в частности по термояду. И я очень рад, на этих выборах мы его избрали членом-корреспондентом. Это замечательный, глубокий ученый. Нам всем повезло, что приходит следующее поколение высокого уровня. Когда вы сюда пришли, все здесь только разворачивалось.
Вы участвовали в создании установки «Ангара 5-1», на фоне которой мы сейчас разговариваем. Расскажите, пожалуйста, для чего создавался этот институт, какие цели и задачи перед ним ставились? Здесь была создана магнитная лаборатория, задача которой состояла в проведении исследований, связанных с размагничиванием военных кораблей. За работой этой лаборатории наблюдал будущий директор Института атомной энергии им. А потом эта лаборатория трансформировалась в филиал Курчатовского института. Этот филиал возглавлял академик М. Миллионщиков, к которому пришел работать Е. Это ученый мирового уровня с очень широким диапазоном интересов. Но главная его активность состояла в развитии термоядерных исследований в нашей стране. Первые работы института были связаны с низкотемпературной плазмой.
Были выполнены замечательные исследования по лазерной физике, по созданию мощных газоразрядных лазеров. Эта работа продолжается до сих пор. Поскольку было необходимо создать площадку для крупномасштабных плазменных работ в области термоядерных исследований, здесь было решено создать два крупных комплекса. Один — «Ангара-5-1», а другой — токамак с сильным полем ТСП. Комплекс ТСП еще больше, он просто громаден, занимает целое здание в семь этажей. К нему примыкают четыре здания с ударными генераторами с общим энергозапасом в 4 ГДж. Строительство таких огромных комплексов, таких термоядерных устройств было начато в 1978 г. В настоящее время этот институт, переживший переименование из Филиала Института атомной энергии им. Исследования по управляемому термоядерному синтезу первоначально начались в середине 50-х гг. У нас же первый термоядерный проект был запущен в начале 1970-х гг.
Куртмуллаев, и у него была очень интересная идея магнитной ловушки. Она была пионерской, лучшей по тем временам, но не смогла стать кардинальным решением термоядерных проблем. Самое интересное, что в настоящее время эта часть работы остановлена, а в США с использованием той физики, которая здесь была наработана, строится термоядерная установка, в которой обещают получать энергию синтеза в безнейтронном цикле. Это реакция «протон — бор-11». Это была трудная работа? Надо сказать, что одновременно с большим токамаком, который здесь строился, был привезен из Курчатовского института небольшой токамак. И на этом токамаке начались и идут по сей день очень важные исследования и по физике, и по технологиям. В термояде существуют два направления. Одно из них, называемое магнитным удержанием, связано с созданием реактора, в котором в плазме, удерживаемой магнитным полем, постоянно выделяется энергия синтеза, как в непрерывно работающей топке. А второе направление — так называемое инерционное удержание, которое предполагает организацию повторяемых взрывов небольшой порции смеси дейтерия и трития и высвобождение энергии.
И если вы делаете такие последовательные взрывы, то это подобно двигателю внутреннего сгорания. Сегодня, спустя очень большое время, по мере развития работ по термоядерной энергетике абсолютное первенство принадлежит системам с магнитным удержанием. В первую очередь это токамаки, изобретенные в Курчатовском институте. Другие магнитные ловушки бесконечно отстали. Системы с инерционным удержанием, может быть, в будущем найдут применение в энергетических реакторах. Но на основе сегодняшних знаний очевидно: энергия взрыва мишени настолько велика, что ее будет трудно удержать в камере разумных размеров. Кроме того, сами средства, способные инициировать этот взрыв, очень большие.
Инженер-физик добавил, что токамаками занимается уже не первый год целая отрасль ученых. Они зарабатывают на этом проекте, поэтому только выигрывают от экспериментов. Ученые могут преуспеть, но от экспериментальной установки до промышленной еще очень далеко. Плюс нужно будет придумать, как превратить термоядерную энергию, например, в электричество. До того, как это стало бы технологией, которая начала бы приносить пользу человечеству, еще пройдет довольно много времени. Даже если эта технология состоится, у меня огромное ощущение зря потраченных ресурсов и зря потраченных денег», — заявил Ожаровский. Причем эксперт отметил, что в научных исследованиях нет ничего плохого. Но если бы все ученые, которые продвигают идею «зажечь солнце» на Земле, занялись совершенствованием солнечных батарей, то всей планете было бы лучше. Полезность для экономики этой установки переоценена, считает Ожаровский, а для науки любая установка полезна. Ученые должны работать над исследованиями, но они должны проводиться в интересах науки.
Ракетчики начали строить термоядерный двигатель
Мегаджоули управляемого термоядерного синтеза / / Независимая газета | Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». |
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика | Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. |
Международный экспериментальный термоядерный реактор — Википедия | Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза. |
Эра термоядерного синтеза | Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". |
«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза | Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. |
Цитаты о СНГ
- Ядерная физика — узнай главное на ПостНауке
- Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
- Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить
- Мегаджоули управляемого термоядерного синтеза
- Выбор сделан - токамак плюс - Российская газета
- Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку. Институт Ядерной Физики (ИЯФ). Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. Когда стали создаваться термоядерные установки, возникла большая наука – это физика высокотемпературной плазмы.