Алгоритм единый для перевода в любую систему счисления (хоть в 5-ричную). Перевод чисел в двоичную, троичную, восьмеричную, девятеричную, десятичную, шестнадцатеричную системы счисления.
Таблица систем счисления
- Дополнительный материал
- Перевод в десятичную систему счисления
- Познакомьтесь с нашими дополнительными инструментами
- Как перевести из восьмеричной в шестнадцатеричную
- Восьмеричная и шестнадцатеричная системы счисления • Информатика, Кодирование • Фоксфорд Учебник
- Перевод из восьмеричной системы счисления — Про числа
Урок 32. Перевод чисел между системами счисления
Чтобы перевести из восьмеричной в шестнадцатеричное, обычно делают так: переводят восьмеричное число в двоичное, а затем уже в шестнадцатеричное. Перевод единиц системы счисления, перевести восьмеричные числа в шестнадцатеричные числа, перевести 0 в $. Удобный перевод многих других единиц измерения, таких как температура, площадь, объем, масса, длина. Перевод из восьмеричной в шестнадцатеричную систему и обратно осуществляется через двоичную систему с помощью триад и тетрад.
Перевод чисел из одной системы счисления в любую другую онлайн
К этой группе также относятся СС с различными основаниями 2,8,16. Непозиционные СС — имеет значение именно знак, а не его положение. Единицы, десятки, сотни обозначаются определенными символами. Яркий представитель этой группы — римская СС. Еще одна особенность — чтобы выразить число и не использовать сотни символов, применяется прибавление и вычитание. Цифра слева означает, что ее нужно отнять от большего числа, а справа — прибавить. Первой позиционной СС была вавилонская и была она шестнадцатиричная! А в 19 веке использовали двенадцатеричную СС. Алфавит СС — знаки, которые используются для обозначения цифр.
Поэтому в программировании иногда используют другие системы счисления — восьмеричную и шестнадцатеричную.
В восьмеричной системе счисления используется восемь знаков-цифр от 0 до 7. Каждой цифре соответствует число из трех цифр в двоичной системе счисления: 000 — 0 001 — 1 010 — 2 011 — 3 100 — 4 101 — 5 110 — 6 111 — 7 Для преобразования двоичного числа в восьмеричное надо разбить его на тройки цифр и заменить каждую тройку соответствующей ей одной цифрой из восьмеричной системы счисления.
Вычитаем из 241 это число, получается 1. Выделяем единицу.
Продолжаем деление до тех пор, пока частное не станет меньше 8! Итак, делим 30 на 8, получается 3,75, отбрасываем дробную часть, получается 3. Умножаем 3 на 8, получается 24. Выделяем шестёрку.
Мы закончили деление так как 3 меньше 8. Обязательно выделяем последнее частное тоже у нас это цифра 3. Выделенные красным цифры — это и есть наше число в восьмеричной системе, НО они написаны наоборот. То есть, чтобы правильно прочитать число в восьмеричной системе, необходимо сделать это справа налево.
Таким образом, десятичное число 15 45010 в восьмеричной системе будет выглядеть как 36 1328. Итого, алгоритм перевода чисел из десятичной системы в восьмеричную следующий: Разделить исходное число на 8. Найти максимальное частное и убрать дробную часть от него. Значит в частное мы записываем число 2.
Умножить полученное частное на 8. Записать его под исходным числом. Найти остаток между этими числами и выделить его — это кусочек переведённого в восьмеричную систему числа. Затем разделить в столбик полученное частное на 8, записать ответ и проделать шаги 2 и 3.
Производить деление до тех пор, пока делимое не станет меньше 8. Выделить это делимое тоже. Выписать все выделенные числа справа налево то есть последнее делимое будет на первом месте, затем идёт остаток, найденный на последнем шаге, затем остаток, найденный на предпоследнем шаге и т. Полученное при такой записи число и будет нашим искомым восьмеричным.
Теперь перейдём к переводу восьмеричного числа в десятичную систему счисления. Перевод из восьмеричной системы счисления в десятичную Перевести восьмеричное число в десятичное даже проще, чем наоборот. Давайте рассмотрим пример: переведём восьмеричное число 36078 в десятичное. Для начала мы делаем такую запись: с конца берём каждую цифру нашего исходного числа, каждое из них умножаем на 8, и все в целом складываем.
Должно получиться примерно так: Однако, это ещё не всё!
Однако чтобы работать и использовать профессионально компьютер, следует понимать слово машины. Для этого разработаны восьмеричная и шестнадцатеричная системы. Для того, что бы с лёгкостью оперировать с этими системами, необходимо научится переводить числа из одной системы в другую и наоборот, а так же выполнять простейшие действия над числами - сложение, вычитание, умножение, деление. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицы сложения и умножения для каждой системы получаются свои. Арифметические действия в позиционных системах счисления выполняются по общим правилам.
Перевод чисел из разных систем счисления с помощью MS Excel
Рассмотрим примеры: Чтобы перевести число из восьмеричной шестнадцатеричной системы счисления пользуются простой заменой чисел одной системы на равные им числа другой системы счисления. Примеры: Перевод из восьмеричной в двоичную.
Для этого потребуется перевести вначале целую часть, а затем дробную. Таким образом необходимо: Перевести 357 в шестнадцатеричную систему; Перевести 0. Получаем: 0.
Пример 1: Перевести число 1111001102 из двоичной системы в четвертичную. Если нужно, число дополняется нулями слева. Вычеркнуть из числа незначащие нули. Пример 4: Перевести число 1203234 из четвертичной системы в двоичную.
Переводить число AB572. CDF из шестнадцатеричной системы счисления в десятичную СС. Перевод чисел из десятичной системы счисления в другую систему счисления Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа. Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.
Урок 32. Перевод чисел между системами счисления
Перевод из восьмеричной системы в двоичную: под каждой восьмеричной цифрой записываем соответствующую ей триаду, в первой слева триаде убираем нули слева. Процедура преобразования приведена с помощью схемы на рисунке 5. Преобразование числа из восьмеричной системы счисления в шестнадцатеричную происходит путем перевода числа сначала в двоичную систему счисления, а потом в шестнадцатеричную. Для перевода используется алгоритм, аналогичный переводу из десятичной в ер, требуется перевести десятичное число 450 в шестнадцатеричное. В соответствии с приведенным алгоритмом получим. Здесь рассматривается перевод чисел из системы 10 в системы 8 и 16, а затем их перевод обратно. Перевод из восьмеричной в шестнадцатеричную систему счисления. Для перевода чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную необходимо цифры числа преобразовать в группы двоичных цифр.
Перевод чисел из разных систем счисления с помощью MS Excel
Воспользовавшись нашим онлайн калькулятором Вы получите подробное решение по переводу числа из восьмеричной в шестнадцатеричную систему. Чтобы переводить числа из десятичной системы в шестнадцатеричную и обратно, двоичное представление можно использовать как промежуточное. Перевод числа из восьмеричной системы счисления в другую систему (например, в десятичную или шестнадцатеричную) возможен с помощью соответствующих алгоритмов, которые работают на основе позиционной системы счисления.
Онлайн перевод числа из восьмеричной в шестнадцатиричную систему счисления (8->16)
В каждом разряде позиции может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10. Для примера возьмем число 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы. Двоичная система счисления Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа цифры : 0 и 1.
В каждом разряде допустима только одна цифра — либо 0, либо 1. Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа — 0 и 1? Чтобы компьютер мог работать с двоичными числами кодами , необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое — единице.
Для запоминания отдельного числа используется регистр — группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров — это оперативная память. Число, содержащееся в регистре — машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство АЛУ. Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа — достаточно указать номера ячеек регистров , в которых они находятся, а не сами числа.
Однако, опираясь на неё, нам будет проще понять принципы работы других систем счисления. Например, для записи того же самого числа 1702 в двоичной системе надо придерживаться тех же правил, но вместо десяти цифр нам потребуется всего две — 0 и 1. Цифры, записанные в соседних позициях, будут различаться не в десять раз, а в два. То есть там, где в десятичной системе мы видим 1, 10, 100, 1 000, 10 000, в двоичной будут числа 1, 2, 4, 8, 16 и так далее. Это очень большое двоичное число. Давайте запишем его в привычной форме: Это число могло бы быть очень большим десятичным числом, потому что состоит из тех же цифр. Чтобы отличать двоичные числа от десятичных, в качестве индекса у них указывают основание системы счисления, то есть 2. Это особенно важно, когда в тексте одновременно встречаются десятичные и двоичные числа. Зачем нужна двоичная система Двоичная система выглядит очень непривычно и числа, записанные в ней, получаются огромными. Зачем она вообще нужна? Разве компьютеры не могут работать с привычной нам десятичной системой? Оказывается, когда-то они именно так и работали. Самый первый компьютер ENIAC, разработанный в 1945 году, хранил числа в десятичной системе счисления. Для хранения одной цифры применялась схема, которая называется кольцевым регистром, она состояла из десяти радиоламп. Чтобы записать все числа до миллиона — от 0 до 999 999 — надо шесть цифр, значит, для хранения таких чисел нужно целых 60 ламп. Инженеры заметили, что если бы они кодировали числа в двоичной системе, то для хранения таких же больших чисел им бы потребовалось всего двадцать радиоламп — в три раза меньше! Первое преимущество двоичных чисел — простота схем. Второе, и не менее важное — быстродействие.
Необходимо только заменить каждую цифру шестнадцатеричного числа ее эквивалентом в двоичной системе счисления в случае положительных чисел. Как и в предыдущих параграфах, удобно и полезно воспользоваться таблицей соответствия, приведенной в Приложении. Отметим только, что каждое шестнадцатеричное число следует заменять двоичным, дополняя его до 4 разрядов в сторону старших разрядов.
Если частное у не равно 0, принимаем его за новое делимое и повторяем процедуру, описанную в первом шаге. Каждый новый остаток записывается в разряды восьмеричного числа в направлении от младшего разряда к старшему. Например, требуется перевести десятичное число 450 в восьмеричное. Таким образом, искомое восьмеричное число равно 7028. Например, требуется перевести десятичное число 450 в шестнадцатеричное. Таким образом, искомое шестнадцатеричное число равно 1C216.
Конвертер восьмеричной системы в десятичную
Например, требуется перевести восьмеричное число 4754 в десятичное. В этом числе 4 цифры и 4 разряда разряды считаются, начиная с нулевого, которому соответствует младший бит. Частное у запоминаем для следующего шага, а остаток z записываем как младший разряд восьмеричного числа. Если частное у не равно 0, принимаем его за новое делимое и повторяем процедуру, описанную в первом шаге. Каждый новый остаток записывается в разряды восьмеричного числа в направлении от младшего разряда к старшему. Например, требуется перевести десятичное число 450 в восьмеричное.
Дойдя до последней точки, луч возвращается к началу экрана. Таким образом, в течение определенного периода времени изображение перерисовывается. Частоту смены изображений определяет частота горизонтальной синхронизации. Это один из наиболее важных параметров монитора, определяющих степень его вредного воздействия на глаза. В настоящее время гигиенически допустимый минимум частоты горизонтальной синхронизации составляет 80 Гц, у профессиональных мониторов она составляет 150 Гц. Современные мониторы с электронно-лучевой трубкой имеют специальное антибликовое покрытие, уменьшающее отраженный свет окон и осветительных приборов. Кроме того, монитор покрывают антистатическим покрытием и пленкой, защищающей от электромагнитного излучения. Дополнительно на монитор можно установить защитный экран, который необходимо подсоединить к заземляющему проводу, что также защитит от электромагнитного излучения и бликов. Жидкокристаллические мониторы имеют меньшие размеры, потребляют меньше электроэнергии, обеспечивают более четкое статическое изображение. В них отсутствуют типичные для мониторов с электронно-лучевой трубкой искажения. Принцип отображения на жидкокристаллических мониторах основан на поляризации света. Источником излучения здесь служат лампы подсветки, расположенные по краям жидкокристаллической матрицы. Свет от источника света однородным потоком проходит через слой жидких кристаллов. В зависимости от того, в каком состоянии находится кристалл, проходящий луч света либо поляризуется, либо не поляризуется. Далее свет проходит через специальное покрытие, которое пропускает свет только определенной поляризации. Там же происходит окраска лучей в нужную цветовую палитру. Жидкокристаллические мониторы практически не производят вредного для человека излучения. Для получения копий изображения на бумаге применяют принтеры, которые классифицируются: o по способу получения изображения: литерные,матричные, струйные, лазерные и термические; o по способу формирования изображения: последовательные, строчные, страничные; o по способу печати: ударные, безударные; o по цветности: чёрно-белые, цветные. Наиболее распространены принтеры матричные, лазерные и струйные принтеры. Матричные принтеры схожи по принципу действия с печатной машинкой. Печатающая головка перемещается в поперечном направлении и формирует изображение из множества точек, ударяя иголками по красящей ленте. Красящая лента перемещается через печатающую головку с помощью микроэлектродвигателя. Соответствующие точки в месте удара иголок отпечатываются на бумаге, расположенной под красящей лентой. Бумага перемещается в продольном направлении после формирования каждой строчки изображения. Полиграфическое качество изображения, получаемого с помощью матричных принтеров низкое и они шумны во время работы. Основное достоинство матричных принтеров - низкая цена расходных материалов и невысокие требования к качеству бумаги. Струйный принтер относится к безударным принтерам. Изображение в нем формируется с помощью чернил, которые распыляются через капилляры печатающей головки. Лазерный принтер также относится к безударным принтерам. Он формирует изображение постранично. Первоначально изображение создается на фотобарабане, который предварительно электризуется статическим электричеством. Луч лазера в соответствии с изображением снимает статический заряд на белых участках рисунка. Затем на барабан наносится специальное красящее вещество — тонер, который прилипает к фотобарабану на участках с неснятым статическим зарядом. Затем тонер переносится на бумагу и нагревается. Частицы тонера плавятся и прилипают к бумаге. Для ускорения работы, принтеры имеют собственную память, в которой они хранят образ информации, подготовленной к печати. К основным характеристикам принтеров можно относятся: - ширина каретки, которая обычно соответствую бумажному формату А3 или А4; - скорость печати, измеряемая количеством листов, печатаемы в минуту - качество печати, определяемое разрешающей способностью принтера - количеством точек на дюйм линейного изображения. Чем разрешение выше, тем лучше качество печати. Плоттер графопостроитель — это устройство для отображения векторных изображений на бумаге, кальке, пленке и других подобных материалах. Плоттеры снабжаются сменными пишущими узлами, которые могут перемещаться вдоль бумаги в продольном и поперечном направлениях. В пишущий узел могут вставляться цветные перья или ножи для резки бумаги. Графопостроители могут быть миниатюрными, и могут быть настолько большими, что на них можно вычертить кузов автомобиля или деталь самолета в натуральную величину. Виды моделей В зависимости от поставленной задачи, способа создания модели и предметной области различают множество типов моделей: 1. По области использования выделяют учебные, опытные, игровые, имитационные, научно-исследовательские модели. По временному фактору выделяют статические и динамические модели. По форме представления модели бывают математические, геометрические, словесные, логические, специальные ноты, химические формулы и т. По способу представления модели делят на информационные нематериальные, абстрактные и материальные. Информационные модели, в свою очередь, делят на знаковые и вербальные, знаковые — на компьютерные и некомпьютерные. Информационная модель — это совокупность информации, характеризующая свойства и состояние объекта, процесса или явления. Вербальная модель - информационная модель в мысленной или разговорной форме. Знаковая модель - информационная модель, выраженная специальными знаками, то есть средствами любого формального языка. Математическая модель — система математических соотношений, описывающих процесс или явление. Компьютерная модель - математическая модель, выраженная средствами программной среды. Этапы решения задач на ЭВМ Первоначально ЭВМ были созданы для вычислений, но постепенно на ней стали решать задачи по физике, химии, биологии, управлению технологическими процессами, рисованию мультфильмов и т. В общем случае выделяют несколько этапов в подготовке и решении задач на ЭВМ. На первом этапе анализируется условие задачи, определяются исходные данные и результаты, устанавливается зависимость между величинами, рассматриваемыми в задаче. Некоторые задачи имеют множество способов решения, поэтому необходимо выбрать способ решения сделать постановку задачи, составить модель задачи. Для этого необходимо определить математические соотношения между исходными данными и результатом. Выполнив перевод задачи на язык математики, получают математическую модель. Второй этап заключается в составленииалгоритма решения задачи по выбранной модели. На третьем этапе алгоритмзаписывается наязыке программирования и полученная программа вводится в ЭВМ. Далее проводится отладка программы, то есть поиск и ошибок. Различают логические и семантические ошибки. Семантические ошибки возникают, когда программист неправильно записывает конструкции языка программирования.
Укажите его систему счисления. Укажите в какую систему счисления переводить. Нажмите кнопку "Перевести". Калькулятор перевода чисел имеет одно поле для ввода. В это поле необходимо ввести число которое Вы хотите перевести.
Также нужно отметить, что целые числа остаются целыми, а правильные дроби — дробями в любой системе счисления. Правила перевода чисел из двоичной системы счисления в другую Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады тройки цифр , начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4. Рисунок 7.