Новости красноярские ученые использовали наноалмазы

Ученые из Новосибирска и Красноярска создали новый композиционный материал на основе углеродных нанотрубок и наноалмазов. Город - 14 марта 2018 - Новости Красноярска - Красноярские ученые вместе со специалистами НПП "Радиосвязь" холдинга "Росэлектроника" (входит в Ростех) разработали метод быстрого сращивания костей с помощью доработанных наночастиц, а также слабых магнитных полей.

Красноярские ученые научились выращивать нанокристаллы с заданной формой

Красноярские ученые создали нанодиски для выжигания злокачественных клеток При этом частицы наноалмазов можно использовать многократно — до семи раз.
Telegram: Contact @nzzhit Ученые из Новосибирска и Красноярска создали новый композиционный материал на основе углеродных нанотрубок и наноалмазов.

Красноярские учёные изобрели магнитные нанодиски для борьбы с онкологией

  • В Сибири разработали композит для обнаружения токсичных веществ в воде
  • Покрытые крахмалом магнитные наночастицы помогут в очистке биомедицинских молекул
  • Красноярские ученые получили магнитные наночастицы для медицины биогенным путем
  • Мобильное меню

«Летим на Марс!»: истории самых громких научных открытий в Красноярске

Открытие позволит проводить оперативный мониторинг загрязнения окружающей среды. Берем воду, проводим реакцию с катализатором-суспензией и, если там был фенол, получаем окрашенный продукт. Спектральным методом по количеству образовавшегося цветного продукта определяем концентрацию фенола в водном образце», — рассказал доктор биологических наук, заведующий лабораторией нанобиотехнологии и биолюминесценции Института биофизики ФИЦ КНЦ СО РАН Владимир Бондарь.

Красноярские ученые создали нанодиски для выжигания злокачественных клеток Они оказались эффективнее, чем наночастицы Новости Общество 16.

Оказалось, что нанодиски эффективнее, чем обычные наночастицы, разрушают раковые клетки. Основываясь на полученных данных, ученые создали диски для наноскальпеля, способного «выжигать» раковые клетки. Результаты обзорного исследования можно прочитать в журнале Nanomaterials.

Магнитные наночастицы нагреваются до критических для опухоли температур или механически разрушают раковые клетки под воздействием магнитного поля.

Если их добавить к смеси реагента для определения фенолов аминоантипирина, перекиси водорода и фенола, то раствор станет ярко-малиновым. Это делает возможным использование наноалмазов для оперативного обнаружения фенола в воде. Спектральным методом по количеству образовавшегося цветного продукта определяем концентрацию фенола в водном образце». Сейчас биофизики трудятся над созданием индикаторной системы для определения фенола при помощи твердой подложки.

Опустив ее, например, в виде палочки в воду, можно сравнить цвет с тестовыми образцами, и узнать, насколько жидкость загрязнена фенолом.

По информации пресс-службы, эксперименты по разрушению злокачественных клеток ученые проводили на лабораторных мышах. По словам руководителя лаборатории биомолекулярных и медицинских технологий Красноярского медицинского университета Анны Кичкайло, чтобы добиться результата, пришлось объединить усилия специалистов из нескольких областей: физики, химии, биологии, медицины, математики и инженерии. Для дальнейшего использования в клинике надо провести полные доклинические и клинические испытания препарата", - сказала она.

Красноярские ученые создали новый нанокомпозитный 2D-материал

Он используется в производстве пластмасс, фармацевтических препаратов, пестицидов и гербицидов. Существующие высокочувствительные методы определения фенола занимают много времени, требуют многоэтапных и трудоемких процедур пробоподготовки и использования дорогостоящего специализированного оборудования. В то же время для эффективного мониторинга промышленных сточных вод необходимы быстрые и недорогие методы определения опасных веществ. Коллектив красноярских ученых из ФИЦ «Красноярский научный центр СО РАН» и Сибирского федерального университета разработал недорогой, простой в производстве и использовании композитный материал для обнаружения фенола в промышленных сточных водах. Он состоит из нановолокон оксида алюминия и детонационных наноалмазов. Композиционный материал имеет сетчатую структуру, в которой кластеры наноалмазов распределены по поверхности нановолокон.

Специалисты отмечают, что такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон. Например, они имеют более высокую термическую и механическую стабильность, повышенную химическую и биологическую стойкость, простоту очистки и более длительный срок службы.

Если их добавить к смеси реагента для определения фенолов аминоантипирина, перекиси водорода и фенола, то раствор станет ярко-малиновым. Это делает возможным использование наноалмазов для оперативного обнаружения фенола в воде. Спектральным методом по количеству образовавшегося цветного продукта определяем концентрацию фенола в водном образце». Сейчас биофизики трудятся над созданием индикаторной системы для определения фенола при помощи твердой подложки. Опустив ее, например, в виде палочки в воду, можно сравнить цвет с тестовыми образцами, и узнать, насколько жидкость загрязнена фенолом.

Как же происходит синтез наноалмазов методом взрыва? Взрывчатое вещество помещается в закрытую металлическую камеру и подрывается при недостатке кислорода.

Под действием ударной волны всё разлетается до молекулярного состояния. Следом за этой волной идут высокие температура и давление. И в этих условиях из атомов углерода начинает формироваться кристаллическая решётка наноалмазов, которая соответствует кристаллической решётке природного алмаза. Процесс получения наноалмазов взрывом быстрый и грязный. Атомы углерода алмазного ядра, встраиваясь в решётку, успевают использовать друга на друга все свои валентности. А поверхностные углероды не успевают замкнуться, и эти вакантности тут же заполняются самыми разными компонентами использованного взрывчатого вещества — элементами несгоревшей органики, металлами, химическими группами и так далее. Таким образом, уникальность получаемых данным способом частиц состоит в том, что они, имея классическое алмазное ядро, содержат на поверхности ярко выраженную полиморфную химически активную «шубу». После взрыва получается шихта, попросту говоря, сажа, в которой есть некая толика наноалмазов. Чтобы извлечь их, удалив примеси металлов и сажу, шихту промывают сильными кислотами.

При этом происходит массообмен — что-то с поверхности наноалмазов удаляется, что-то добавляется за счёт тех химических примесей, которые вносятся с кислотами. С точки зрения биолога, наноалмазы интересный и перспективный для изучения материал. Наличие на поверхности этих наночастиц химически активной полиморфной «шубы» и возможности её модификации открывают широчайшие перспективы для применения наноалмазов в большом спектре биомедицинских приложений. Так мы доказали, что наноалмазы можно использовать как полифункциональный адсорбент для экспресс-выделения и очистки белков из самых разных белковых смесей. При этом не нужны ни дорогое хроматографическое оборудование, ни дорогие импортные сорбенты. Для эффективного получения целевого белка с помощью наноалмазов необходимы только пробирки, пипетки и центрифуга. В целом технологии очисти белков, основанные на применении наноалмазов, отличает быстрота, простота и эффективность. А также в клинической медицине — ведь чистота лекарственного препарата имеет принципиальное значение: когда препарат содержит примеси, могут возникать побочные эффекты. Приведу пример из нашей практики.

Несколько лет назад мы сотрудничали с коллегами из Института биоорганической химии ИБХ РАН, Москва , в котором было организовано опытное биотехнологическое производство рекомбинантного инсулина. Это крайне востребованный гормон пептидной природы, применяемый для лечения сахарного диабета. Коллеги предоставили нам два финальных препарата инсулина, в которых мы нашли загрязняющую примесь. С помощью наноалмазов удалили эту примесь и получили оба препарата в чистом виде. К сожалению, дальнейшего развития это направление совместных исследований не получило. Хотя нам было бы интересно получить с помощью наноалмазов высокоочищенный инсулин сразу из экстрактов биомассы бактерий-продуцентов. Если бы это удалось, мы бы смогли повысить эффективность процесса выделения этого ценного целевого продукта, сократить время и затраты на его производство. Также на основе наноалмазов мы научились конструировать системы биохимической диагностики. Создали три системы, с помощью которых можно определять физиологически важные вещества, например, в крови человека — мочевину, глюкозу и холестерин.

В перспективе эти тест-системы могли бы найти применение в медицинской диагностике, мы экспериментально продемонстрировали такую возможность. Отмечу, что мне как учёному прежде всего нужно доказать самому себе состоятельность идеи, проверив её экспериментально, и на основании полученных данных определить границы возможного практического применения. Но с позиции определённого опыта считаю, что в этой жизни, используя военную терминологию, у каждого из нас есть свой окоп. Если человек профессионально занимается своим делом в своём окопе, боевые действия успешны. Если начинает метаться между окопами, дело потерпит фиаско. Я определил для себя, чем должен заниматься. И к этому призываю молодых коллег. Мы занимаемся фундаментальными исследованиями, получаем новые знания, пытаемся объяснить механизм выявленного феномена, эффекта, явления. Потом подвергаем накопленные экспериментальные данные глубокому и всестороннему анализу, на основании которого делаем более взвешенный вывод о возможности или невозможности применения этого знания на практике.

Спектральным методом по количеству образовавшегося цветного продукта определяем концентрацию фенола в водном образце", - отметил заведующий лабораторией нанобиотехнологии и биолюминесценции Института биофизики Владимир Бондарь. Фенолы - ядовитые и высоко опасные для человека вещества, которые при попадании в организм, способны вызвать тяжелое отравление. Это может происходить при использовании воды из загрязненных фенолом водоемов.

В Красноярске ученые предлагают проверять воду на яд наноалмазами

Браслет, найденный на Алтае, признан самым древним в мире Крошечный композит, созданный на основе наноструктур углерода и светящийся под воздействием магнитного поля, может быть применен в разных сферах. Например, при создании миниатюрных светильников или новых технологий в медицинской диагностике. Учеными красноярского института биофизики и новосибирского института неорганической химии Сибирского отделения РАН получен композитный материал на основе наноалмазов и углеродных нанотрубок. Материал представляет собой слойную конструкцию из прочно связанных между собой вертикальных нанотрубок, на поверхности которых распределен слой наноалмазов. Ученые говорят, что получившийся композит уникален по своим свойствам. Об этом сообщает журнале Scientific Reports издательства Nature.

Тесты подтверждают, что композит можно использовать повторно, он сохраняет каталитическую функцию в течении года при хранении при комнатной температуре. Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра. В качестве альтернативы изображение цветного продукта может быть снято камерой даже обычного телефона. Проанализировать результаты можно будет специально созданной программой. Полученные результаты открывают перспективы для разработки нового класса систем индикации многоцелевого использования, например, 2D и 3D сенсоров. Кроме того, предлагаемый композит может быть использован в качестве матрицы-хозяина для иммобилизации ферментов, что создает предпосылки для создания новых многоразовых систем медицинской диагностики», — рассказал Илья Рыжков, доктор физико-математических наук, ведущий научный сотрудник Института вычислительного моделирования СО РАН. Работа частично поддержана Российским фондом фундаментальных исследований проект 18—29—19078.

Чтобы извлечь их, удалив примеси металлов и сажу, шихту промывают сильными кислотами. При этом происходит массообмен — что-то с поверхности наноалмазов удаляется, что-то добавляется за счёт тех химических примесей, которые вносятся с кислотами. С точки зрения биолога, наноалмазы интересный и перспективный для изучения материал. Наличие на поверхности этих наночастиц химически активной полиморфной «шубы» и возможности её модификации открывают широчайшие перспективы для применения наноалмазов в большом спектре биомедицинских приложений. Так мы доказали, что наноалмазы можно использовать как полифункциональный адсорбент для экспресс-выделения и очистки белков из самых разных белковых смесей. При этом не нужны ни дорогое хроматографическое оборудование, ни дорогие импортные сорбенты. Для эффективного получения целевого белка с помощью наноалмазов необходимы только пробирки, пипетки и центрифуга. В целом технологии очисти белков, основанные на применении наноалмазов, отличает быстрота, простота и эффективность. А также в клинической медицине — ведь чистота лекарственного препарата имеет принципиальное значение: когда препарат содержит примеси, могут возникать побочные эффекты. Приведу пример из нашей практики. Несколько лет назад мы сотрудничали с коллегами из Института биоорганической химии ИБХ РАН, Москва , в котором было организовано опытное биотехнологическое производство рекомбинантного инсулина. Это крайне востребованный гормон пептидной природы, применяемый для лечения сахарного диабета. Коллеги предоставили нам два финальных препарата инсулина, в которых мы нашли загрязняющую примесь. С помощью наноалмазов удалили эту примесь и получили оба препарата в чистом виде. К сожалению, дальнейшего развития это направление совместных исследований не получило. Хотя нам было бы интересно получить с помощью наноалмазов высокоочищенный инсулин сразу из экстрактов биомассы бактерий-продуцентов. Если бы это удалось, мы бы смогли повысить эффективность процесса выделения этого ценного целевого продукта, сократить время и затраты на его производство. Также на основе наноалмазов мы научились конструировать системы биохимической диагностики. Создали три системы, с помощью которых можно определять физиологически важные вещества, например, в крови человека — мочевину, глюкозу и холестерин. В перспективе эти тест-системы могли бы найти применение в медицинской диагностике, мы экспериментально продемонстрировали такую возможность. Отмечу, что мне как учёному прежде всего нужно доказать самому себе состоятельность идеи, проверив её экспериментально, и на основании полученных данных определить границы возможного практического применения. Но с позиции определённого опыта считаю, что в этой жизни, используя военную терминологию, у каждого из нас есть свой окоп. Если человек профессионально занимается своим делом в своём окопе, боевые действия успешны. Если начинает метаться между окопами, дело потерпит фиаско. Я определил для себя, чем должен заниматься. И к этому призываю молодых коллег. Мы занимаемся фундаментальными исследованиями, получаем новые знания, пытаемся объяснить механизм выявленного феномена, эффекта, явления. Потом подвергаем накопленные экспериментальные данные глубокому и всестороннему анализу, на основании которого делаем более взвешенный вывод о возможности или невозможности применения этого знания на практике. Это абсолютно правильный путь — все практические достижения человечества основаны на фундаментальных знаниях и их анализе. К сожалению, сегодня у нас норовят «поставить телегу впереди лошади». И часто задают преждевременный вопрос: где вы собираетесь это использовать? Опережая события, хотят сразу видеть практическую реализацию. Но даже при наличии обоснованности практического применения реализовать научную разработку непросто. Приведу пример из нашего опыта. Несколько лет мы пытались «пробить» практическое применение наноалмазов. В частности, их использование в качестве присадок к автомаслам и консистентным смазкам. Мы собрали кипу экспертных заключений с положительными отзывами из целого ряда крупных предприятий. Но осуществить практическое использование так и не смогли.

Композитный материал светится в электрическом поле, что является необычным явлением, так как обычно для освещения используются материалы другого состава. Ведь для того, чтобы засветились наноалмазы, необходимы очень большие электрические поля. Но сибирским ученым удалось выяснить, что наноалмаз засветится, если он будет находиться на кончике углеродной трубки, которая в несколько раз усиливает мощность даже небольшого электрического поля», - сообщил подробности уникальной разработки один из авторов исследования - младший научный сотрудник ИНХ СО РАН Юлия Федосеева.

«Летим на Марс!»: истории самых громких научных открытий в Красноярске

Красноярские ученые использовали наноалмазы Красноярские ученые использовали наноалмазы. Наука в Красноярском крае.
Красноярские ученые создали нанодиски для выжигания злокачественных клеток — ИА «Пресс-Лайн» Группа ученых из Красноярского научного центра СО РАН, Туниса, Индии и Саудовской Аравии синтезировали кристаллы на основе органики и азотной кислоты.
Красноярские ученые создали нанодиски для выжигания злокачественных клеток — ИА «Пресс-Лайн» Красноярские ученые разработали новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов.
Новый наноиндикатор - Самарский центр охраны труда Красноярские ученые создали технологию переработки рыбных костей, внутренностей и чешуи, способную стать одним из звеньев замкнутой системы жизнеобеспечения человека во время пребывания в космосе.
Биолюминесцентные тесты откроют дорогу наноматериалам в медицину Сейчас ученые подбирают и культивируют наиболее подходящие к условиям среды и живущие в смеси измельченных руд с водой штаммы.

Ученые из Красноярска научились определять загрязнение воды с помощью наноалмазов

Домой Новости Ученые использовали наноалмазы для обнаружения загрязнений в воде. Красноярские ученые придумали новый способ лечения онкологических заболеваний с использованием наночастиц золота, сообщает ТАСС. Ученые из Красноярского государственного медицинского университета разработали метод победить онкологию при помощи слабого магнитного поля и наночастиц. Но сибирским ученым удалось выяснить, что наноалмаз засветится, если он будет находиться на кончике углеродной трубки, которая в несколько раз усиливает мощность даже небольшого электрического поля». Мы узнаем о достижениях красноярских ученых из случайных новостей и разговоров, но порой недооцениваем значимость этих открытий.

Красноярские ученые синтезировали кристаллы для терапии шизофрении

Красноярские ученные придумали устройство для создания искусственной вечной мерзлоты, сообщает информационное агентство «Арктик-Инфо». Ученые Сибирского федерального университета (СФУ) и Красноярского научного центра СО РАН разработали технологию получения магнитных наночастиц ферригидрита для использования в биомедицине. Красноярские ученые использовали наноалмазы для выявления фенола в воде.

Красноярские ученые разработали биопластырь

Красноярские ученые использовали наноалмазы Сотрудники Красноярского института биофизики продемонстрировали, как алмазы можно использовать для выявления фенолов в воде.
Новый наноиндикатор JRSNZ: ученые открыли новый вид ископаемых дельфинов — Aureia rerehua.

«Летим на Марс!»: истории самых громких научных открытий в Красноярске

Используя биолюминесцентные тесты, ученые выяснили, что токсичность и антиоксидантная активность фуллеренолов зависит от количества присутствующих в них кислородсодержащих заместителей. Учёные Красноярского научного центра СО РАН разработали новое перспективное применение биолюминесцен. 21 янв 2022. Пожаловаться. Первые наноалмазы получили красноярские ученые Института биофизики. Красноярские ученые разработали метод получения нанокристаллов силицида железа в форме прямоугольных и треугольных нанопластин за счет нанесения частиц золота на кремниевую подложку для выращивания кристаллов.

Похожие новости:

Оцените статью
Добавить комментарий