Новости коэффициент джини показывает

Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. "РГ"), подготовленный Росстатом, также демонстрирует снижение неравенства. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%. Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково.

Что такое индекс Джини?

  • Коэффициент Джини, значение по странам мира и в России
  • Индекс концентрации Джини
  • Related research and writing
  • Коэффициент Джини

Среди населения России растет доходное неравенство: почему ускорился этот процесс?

Однако эти различия в большинстве своем являются результатом выбора самого человека. Так, кто-то после окончания 11-го класса пойдет работать, а кто-то поступит в ВУЗ. Итак, выпускник ВУЗа имеет больше возможностей для получения большего дохода, чем люди, не имеющие высшего образования. Различия в профессиональном опыте. Доходы людей отличаются, в том числе и вследствие различий в профессиональном опыте. Так, если Иванов работает в фирме один год, то понятно, что он будет получать зарплату меньше, чем Петров, который в этой фирме более 10 лет и имеет больший профессиональный опыт. Различия в распределении собственности. Различия в распределении собственности является наиболее веской причиной неравенства доходов. Немалое количество людей имеют небольшую или вообще не имеют собственности и, соответственно, или получают небольшой доход или не получают его вообще. А другие являются владельцами большего количества недвижимости, оборудования, акций и т. Риск, удача, неудача, доступ к ценной информации.

Эти факторы также оказывают существенное влияние на распределение доходов.

Полученная кривая и будет характеризовать степень концентрации. Такое распределение отображается прямой, проходящей из нижнего левого угла графика к верхнему правому углу и являющейся линией равномерного распределения. Чем сильнее концентрация изучаемого признака, тем заметнее кривая Лоренца отклоняется вниз от линии равномерного распределения, и наоборот, чем слабее концентрация, тем ближе будет кривая к прямой.

Степень концентрации определяется площадью фигуры А, ограниченной линией равномерного распределения и кривой Лоренца.

И тем не менее, доверительный интервал коэффициент Джини существует. В этом посте хочу познакомить экспертов, занимающихся оценкой качества моделей, с таким малоизвестным инструментом как «доверительный интервал коэффициента Джини» Вопрос происхождения и расчета указанного показателя очень мало освещен в интернете: поисковики выдадут одну внятную англоязычную ссылку с попыткой интерпретации соответствующей формулы, которая без дополнительной информации будет недостаточно понятна. Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле: Указанная формула приведена в статье «The Meaning and Use of the Area under a Receiver Operating Characteristic ROC Curve». Кратко поясню смысл приведенной формулы. Второй блок — это вероятность того, что два случайно выбранных аномальных класса будут оцениваться выше, чем случайно выбранный нормальный класс.

Однако, в бизнесе не всегда важные показатели являются числовыми. Поэтому используют различные способы кодирования переменных.

В данной задаче применили WOE-преобразование. Такой подход позволяет придать значимость признаку в формате числа WOE-вес и включить его в набор факторов для обучения модели прогнозирования. Важно, чтобы значения показателей были ранжированы, где А — лучшее значение, B — хорошее значение, С — удовлетворительное значение и т. WOE-веса рассчитываются как натуральный логарифм от отношения доли хороших наблюдений к доле плохих отношений.

Частный случай кривой Лоренца и коэффициента Джини: попарное сравнение.

  • Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца
  • Измерение неравенства: что такое коэффициент Джини?
  • Коэффициент Джини по странам и в России. Кривая Лоренца. Пример по годам
  • What you should know about this indicator

Вы точно человек?

В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395. Коэффициент Джини может использоваться для выявления уровня неравенства по накопленному богатству. Коэффициент Джини (индекс концентрации доходов) в целом по России и по субъектам Российской Федерации.

Коэффициент джини в России

Коэффициент Джини. Из экономики в машинное обучение - Самым распространенным показателем измерения уровня экономического неравенства коэффициент является коэффициент Джини.
Gini Coefficient показателе расслоения общества.
Как рассчитать коэффициент Джини в Excel (с примером) В 2023 году коэффициент Джини (индекс концентрации доходов) составил 0,403, сообщил Росстат.
В России вырос уровень доходного неравенства | Ямал-Медиа Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше.
Индекс Джини и неравенство доходов | Conomy Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают.

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Коэффициент Джини открывает глаза и показывает социально-финансовые диспропорции внутри страны и по миру. вы делаете те новости, которые происходят вокруг нас. Коэффициент итальянского экономиста, статиста и демографа Коррадо Джини (более известный как индекс Джини) позволяет более точно, количественно измерить степень неравномерности распределения доходов населения. Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%. Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца.

Коэффициент Джини: все ли равны?

Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения. Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.).

Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини

Дополняет данные о ВВП и среднедушевом доходе. Служит своеобразной поправкой этих показателей. Может быть использован для сравнения распределения признака дохода между различными совокупностями например, разными странами. При этом нет зависимости от масштаба экономики сравниваемых стран. Может быть использован для сравнения распределения признака дохода по разным группам населения например, коэффициент Джини для сельского населения и коэффициент Джини для городского населения. Позволяет отслеживать динамику неравномерности распределения признака дохода в совокупности на разных этапах.

Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего.

Сосредоточение относительных объёмов признака у отдельных единиц соответственно приводит к пропорциональному уменьшению относительных объёмов у единиц оставшейся части совокупности, что и вызывает неравномерность распределения. Такая неравномерность возникает в распределении доходов по группам населения, трудовых ресурсов по регионам страны, активов по кредитным организациям и т. Расчёт коэффициента Джини базируется на использовании кривой концентрации кривая Лоренца. Для её построения необходимо иметь частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака.

Можно видеть, что над каждой группой образуется треугольник или четырехугольник — они выделены разными цветами. Рассмотрим, например, вторую группу зеленый четырехугольник. Тогда сумма всех фигур под кривой Лоренца будет равна Эту сумму, как вы помните, нужно вычесть из 0,5, чтобы получить площадь фигуры над кривой И наконец, разделив все это на площадь диагонального треугольника то есть опять же на 0,5 , получим формулу коэффициента Джини: Есть и другие формулы, расчет по одной из них приведен, например, вот тут. Мне кажется, что в ней проще запутаться, а получается ровно то же самое. Чтобы проверить себя, решите задачу. Ответ и решение под спойлерами: Задача Предположим, что в некоторой стране N проживают три группы населения: бедные, средний класс и богатые.

В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи

Поэтому используют различные способы кодирования переменных. В данной задаче применили WOE-преобразование. Такой подход позволяет придать значимость признаку в формате числа WOE-вес и включить его в набор факторов для обучения модели прогнозирования. Важно, чтобы значения показателей были ранжированы, где А — лучшее значение, B — хорошее значение, С — удовлетворительное значение и т. WOE-веса рассчитываются как натуральный логарифм от отношения доли хороших наблюдений к доле плохих отношений. Для прогнозирования использую логистическую модель.

Применение коэффициента Джини в России началось в 1990-х годах — в это время, как и позднее период экономического роста в 2000-е годы , он демонстрировал низкую эгалитарность равенство российского общества [2].

Показатели коэффициента Джини в России за все время измерения 1991—2018 Содержание.

На первый взгляд, равенство выглядит более справедливым и соблазнительным, но, как мы уже говорили, оно подрывает стимулы к труду как у «богатых», так и у «бедных», и позволяет приспосабливаться менее способным и менее трудолюбивым жить за счёт других. Рисунок 1 — Противоречие между равенством и эффективностью в рыночной экономике Сталкиваясь с этим противоречием, каждое общество должно решить для себя два главных вопроса. Разные ответы на эти вопросы раскрывают и одно из главных различий между капитализмом и социализмом. Тем не менее, проблему оптимальности размеров перераспределения доходов государством вынуждены решать многие общества. Необходимо помнить, что вмешательство государства должно быть осторожным и гибким. Что же касается неравенства доходов, то получается, что оно не только неизбежно, но даже необходимо. Для поощрения трудовой активности людей: чтобы расслабленные и ленивые хотели брать пример с усердных и волевых. Кривая Лоренца С целью оценки эффективности своего вмешательства государство должно иметь возможность объективно оценить степень неравенства в распределении доходов различных групп населения страны.

На сегодняшний день для этого используют модель американского экономиста Макса Лоренца. Кривая Лоренца иногда её называют «лук Лоренца» иллюстрирует, насколько велико расслоение доходов в обществе. Рассмотрим построение кривой Лоренца на условном примере. Разделим всё население страны на четыре условные группы по уровню доходов. К первой группе отнесём беднейшее население страны, а к четвёртой — богатых граждан. Промежуточное положение займут граждане из второй и третьей групп.

Give a name to your custom indicator and click on Add. To have "not available" values in the database treated as zero within your formula, use the NA function. Later if you wish to see or change the formula for an indicator you have created, from the right side current selection panel click the Edit.

Use the DEL key to delete the last entry and step backwards to edit the formula. Click the Clear button to erase the custom indicator formula. Note: Validation will verify a formula for proper syntax only. Derived indicators may yield inappropriate results and caution should be observed. These rules apply only to custom country groups you have created. They do not apply to official groups presented in your selected database. For each selected series, choose your Aggregation Rule and Weight Indicator if needed from the corresponding drop-down boxes.

Индекс Джини и неравенство доходов

РБК: Росстат зафиксировал рост концентрации доходов в 2023 году | 29.02.2024 | Крым.Ньюз Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной.
В России вырос показатель доходного неравенства Коэффициент концентрации Джини (G) используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89].

Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини

Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково. Что такое коэффициент Джини и кривая Лоренца: показатель концентрации доходов и по какой формуле он определяется, сколько составляет в России и в мире. Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.

Коэффициент джини в России

Есть ещё коэффициент/индекс Джини (Gini impurity), который используется в решающих деревьях при выборе расщепления. Степень неравенства доходов внутри групп населения (коэффициент Джини) выросла по итогам 2023 года до 0,403, тогда как в 2022 этот показатель составлял 0,395, констатировал Росстат. На примере коэффициента Джини показано, насколько сильно различается оценка неравенства в зависимости от используемых данных и способов расчета.

Похожие новости:

Оцените статью
Добавить комментарий