Новости регулятор мощности 220в

Регулятор мощности на тиристоре ку202н схема из журнала радио. Цифровые регуляторы мощности серии ET-7 с током нагрузки до 60А.

Схема включения регулировки напряжения bt136 600e: плюсы и минусы

Возможно понадобится изменить номиналы потенциометра и резистора, который стоит с ним последовательно. Можешь выложить схему с МОС3023 vovanxp, 23 Сент. Зачем здесь опторазвязка? Я поясню что имел ввиду. Тебе нужно определить два уровня мощности для ректификации - один недостаточный, другой избыточный. Желательно, чтобы между ними была двойная разница. Например, для колонны д. Теперь подключаешь все свои ТЭНы параллельно и подключаешь их через диммер.

Потенциометр можно ставить в пределах от 470 кОм до 1 мегаом МОм. Советую ставить потенциометр на 1 МОм так как у него больше диапазон регулировки, можно регулировать фактически до нуля. В начале я собрал схему с потенциометром на 500 кОм и в дальнейшем перепаивал на 1 мОм. Динистор DB3 у него нет полярности припаиваем как хотим. Резистор 10 кОм. Изготовление схемы Рисунок 3. Схема в моем исполнение. Для изготовления схемы нам понадобится в первую очередь паяльник, припой и канифоль и радио детали которые без труда можно приобрести в любом радио-магазине. Пожалуйста, уделяйте пристальное внимание, есть риск поражения электрическим током как и во всем электрическом. И так, для начала берем печатную плату и на ней располагаем компактно все детали после чего спаиваем все по схеме.

Для меня, как человека не сильно дружного с электроникой — так вообще, полностью однотипно выглядит То есть, платка, на ней — «крутилка» переменный резистор или что это , «трехногая фиговина» транзистор, тиристор, симистор — тут я хз, как внешне отличить и обвязка из каких-то кондеров-резисторов. Просто купить запчасть как бы для замены регулятора и встроить его отдельно в коробку. А если говорить о продвинутых моделях, со стабилизацией оборотов — там зачастую таходатчик присутствует, по показаниям которого микросхема поддерживает обороты зависимо от нагрузки. И просто внешним блоком такое к болгарке не подключить.

Результатом остался вполне доволен, и дальше расскажу о том, как своими руками сделать регулятор мощности. Источник ytimg. Сегодня подобные устройства можно встретить даже в отделах по продаже дистилляторов, ведь диммеры иногда используют для регулировки температуры нагрева материала в перегонных аппаратах. Также эти регуляторы мощности используются в электронагревателях водяных баков, инкубаторах, вулканизаторах для заклеивания автомобильных камер, в инструментах — паяльниках для плавной регулировки нагрева, в дрелях и болгарках для контролирования скорости вращения, в простых лампах накаливания для регулировки яркости и даже в самогонных аппаратах. Если вкратце, то способов применения у регуляторов мощности огромное количество, диммеры весьма полезны в хозяйственной и технической деятельностях и являются необходимыми устройствами для каждой мастерской. Источник electronoff. Первый нюанс — запас мощности симистора. Для примера можно взять стандартную ситуацию — вы заказываете симистор у продавца, он же в свою очередь будет утверждать, что его мощность достигает 4 кВт. При этом он будет использовать различные уловки, например, сфотографирует близко для обмана зрения и теплоотвод будет казаться больше, чем он есть на самом деле. Конечно, если включить такой диммер на полминуты, то он может и выдержит. Однако обычно к нему подключают лампы накаливания или ТЭН, которые работают часами при такой мощности. Такие регуляторы не выдержат, они даже на 3кВт будут максимально греться, а после просто перегорят. Вы должны понимать, что такое 40 кВт, а также то, что регулятору придётся пропускать через себя 18 ампер и то, какое сечение должно быть у проводов для того, чтобы пропускать такой ток. Второй нюанс был немного задет в прошлом абзаце, но всё же — сечение проводов и дороже печатной платы. Чем сечение проводов и дорожек шире и толще — тем лучше, при этом чем сами эти дорожки и провода короче — тем также лучше. При их пайке обязательно нужно их лудить оловом или паять вдоль дорожек медную жилку. Дополнительно, если вы работаете с устройством на 3 000 Вт или более, то лучше отказаться от различных клемм для зажима и всяких разъёмов.

Мощный регулятор мощности до 25 кВт

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В. Регулятор мощности предназначен для произведения плавной регулировки рабочей мощности приборов в процессе работы от 0 до 100%. Симисторный регулятор мощности 2000вт 220в схема. Заявленная мощность данного регулятора 2000 ватт, сразу видно что радиатор для этого явно слабоват, Да и симистор будет на грани. Но лучше купить регулятор мощности к болгарке похожей мощности и поставить во внешнюю коробку, она будет пытаться поддерживать мощность, то есть не так терять обороты при нагрузке, как при использовании симисторного регулятора. Точно также как и тиристорный регулятор симисторный регулятор мощности осуществляет регулировку за счет изменения угла открывания.

Описание схем для регуляторов мощности на 220 вольт

Сегодня подобные устройства можно встретить даже в отделах по продаже дистилляторов, ведь диммеры иногда используют для регулировки температуры нагрева материала в перегонных аппаратах. Также эти регуляторы мощности используются в электронагревателях водяных баков, инкубаторах, вулканизаторах для заклеивания автомобильных камер, в инструментах — паяльниках для плавной регулировки нагрева, в дрелях и болгарках для контролирования скорости вращения, в простых лампах накаливания для регулировки яркости и даже в самогонных аппаратах. Если вкратце, то способов применения у регуляторов мощности огромное количество, диммеры весьма полезны в хозяйственной и технической деятельностях и являются необходимыми устройствами для каждой мастерской. Источник electronoff. Первый нюанс — запас мощности симистора. Для примера можно взять стандартную ситуацию — вы заказываете симистор у продавца, он же в свою очередь будет утверждать, что его мощность достигает 4 кВт. При этом он будет использовать различные уловки, например, сфотографирует близко для обмана зрения и теплоотвод будет казаться больше, чем он есть на самом деле. Конечно, если включить такой диммер на полминуты, то он может и выдержит.

Однако обычно к нему подключают лампы накаливания или ТЭН, которые работают часами при такой мощности. Такие регуляторы не выдержат, они даже на 3кВт будут максимально греться, а после просто перегорят. Вы должны понимать, что такое 40 кВт, а также то, что регулятору придётся пропускать через себя 18 ампер и то, какое сечение должно быть у проводов для того, чтобы пропускать такой ток. Второй нюанс был немного задет в прошлом абзаце, но всё же — сечение проводов и дороже печатной платы. Чем сечение проводов и дорожек шире и толще — тем лучше, при этом чем сами эти дорожки и провода короче — тем также лучше. При их пайке обязательно нужно их лудить оловом или паять вдоль дорожек медную жилку. Дополнительно, если вы работаете с устройством на 3 000 Вт или более, то лучше отказаться от различных клемм для зажима и всяких разъёмов.

Ведь эти места становятся уязвимыми зонами — если контакт немного ослабнет, то происходит их нагревание, а после обгорание проводов, что, естественно, нежелательно. Источник stroykadoma.

С помощью компенсирующей цепочки R8C2 к напряжению стабилитрона VD3 добавляется величина, пропорциональная питающему напряжению. Эта сумма и является межбазовым напряжением транзистора VT1. Тогда уменьшение питающего напряжения снижает напряжение питания транзистора VT1 и вызывает уменьшение временной задержки, а выходное напряжение не изменится.

Но это не для охлаждения, так как мощность, которую мы будем питать от регулятора, всего 80 Вт. Однако с радиатором симистор встал на свое место, как родной, и крепить его никак не пришлось. Следующим шагом идет пайка динистора.

Согласно схеме — он находится одним выводом на управляющем выводе симистора. В этом симисторе управляющим является крайний правый. При распайке обвязки симистора важно ничего не перепутать. Потому, если вы используете другие компоненты аналоги , уточняйте назначение выводов. Далее один из проводов с вилки напрямую вставляется в один из контактов розетки. Второй же мы будем «разрывать» нашей схемой. На фото выше показано, как красным проводом соединен регулируемый контакт розетки с одной из силовых ножек симистора. Таковых у него две.

И обе они равнозначные. Потому неважно, на какой из этих двух ножек будет «сидеть» наша схема. Теперь свободный вывод динистора соединяем конденсатором с тем выводом симистора, который мы красным проводом подвели к контакту розетки. Сюда же к динистору и конденсатору паяем провод, который пойдет на один из выводов переменного резистора. Кстати, две из трех ножек переменного резистора необходимо предварительно соединить. Как на схеме. Далее к проводу, который входит в регулируемый контакт розетки, паяется резистор в нашем случае на 68 кОм 1 Вт. Остается только соединить свободный вывод переменного резистора с постоянным, соединив их, таким образом, последовательно.

Регулятор готов. На фото, правда, есть еще маленький резистор. Он соединен параллельно с переменным резистором, как и было в оригинале на плате шлифовальной машинки. Однако после теста он был убран, так как из-за него напряжение удавалось понижать только до 120 В. Проверка регулятора мощности После сборки симисторного регулятора его необходимо протестировать. Это позволит: Убедиться в его работоспособности. Для проверки нужен мультиметр и нагрузка. Мультиметр необходимо подсоединить к контактам регулируемой розетки, предварительно включив на нем режим измерения переменного напряжения более 300 В в дешевых приборах, как на фото, это 750 В.

Нагрузку нужно подключать обязательно. Иначе ток через нашу схему не пойдет, и ее работы мы, соответственно, не увидим. Компоненты схемы и штатная начинка розетки находятся под опасным для жизни напряжением. Потому ни в коем случае нельзя прикасаться к радиодеталям, оголенным проводам и так далее. Браться руками можно только за пластиковый корпус розетки и ручку потенциометра. Чтобы не рисковать, проверить прибор можно и в собранном состоянии. Для этого в нашу регулируемую розетку включаем тройник или удлинитель с двумя розетками. В одну из них включаем нагрузку паяльник, например , а во второй измеряем щупами мультиметра напряжение.

Проверка на разобранном регуляторе выглядит следующим образом. Здесь потенциометр установлен на максимальное сопротивление. Напряжение на выходе регулятора из 230 В снизилось до 59 В. Справа от вольтметра другой мультиметр, включенный на измерение температуры. Его датчик термопара прикладывается к жалу паяльника. Этого вполне достаточно, чтобы паять при помощи припоя ПОС-60. Для пайки более тугоплавких привоев напряжение следует повысить, и жало разогреется до большей температуры. Минимальный порог напряжения на выходе можно снизить еще больше.

Для этого надо заменить резистор RV1, установив вместо 250-килоомного, например, на 500 кОм. В результате мы сможем еще больше ограничить ток через конденсатор, он будет заряжаться еще медленнее, динистор будет открываться еще позже, а симистор будет в открытом состоянии еще меньший промежуток времени.

Пожаловаться Сегодня мы расскажем про Тиристорный регулятор мощности.

Что это такое и зачем он нужен? Тиристорный регулятор — специальное устройство, которое позволяет осуществлять регулировку и контроль мощности электрической энергии. Применение этого прибора помогает поддерживать необходимое значение электрического тока, которое требуется для достижения заданного уровня мощности и напряжения в оборудовании.

Понравилась новость? Не забудь поделиться ссылкой с друзьями в соцсетях.

В симисторных схемах этого недостатка нет, так как частота переключения симистора слишком высока, и увидеть мерцание лампы человеческому глазу не под силу. При работе на индуктивную нагрузку, например электродвигатель, можно услышать что-то вроде пение, это будет частота с которой симистор подключает нагрузку к цепи.

Подобный прибор можно сделать самостоятельно. Принцип работы простого регулятора напряжения На заре электротехники инженеры пытались регулировать мощность нагрузки, изменяя напряжение на ней и ток в цепи посредством реостата. Реостат и нагрузка включались последовательно, образуя делитель напряжения.

Чем больше сопротивление реостата, тем меньше напряжение на нагрузке, и наоборот. Принцип регулирования напряжения и тока с помощью реостата У такого принципа регулировки есть существенный недостаток. Через реостат идет полный ток нагрузки, на нем падает существенное напряжение, поэтому на нем бесполезно рассеивается значительная мощность. Мнение экспертаСтановой АлексейИнженер-электроник. Работаю в мастерской по ремонту бытовых приборов.

Увлекаюсь схемотехникой. Задать вопросДругой неявный минус подобного способа — полный ток нагрузки идет через подвижный контакт. При его перемещении он может подгорать, что снижает надежность установки в целом. По мере развития твердотельной электроники выяснилось, что регулирование с помощью мощных ключей более надежно и экономично. Ключ в его качестве может выступать мощный симистор, транзистор, тиристор и т.

В первом случае на нем не падает напряжение, во втором — через него не идет ток. В обеих ситуациях на ключевом элементе мощность не рассеивается. В реальном элементе потери мощности все же происходят, но они намного меньше, чем при реостатном способе. При регулировке с помощью ключа изменение среднего напряжения происходит за счет изменения среднего времени включенного состояния коммутирующего элемента. Сделать это можно двумя способами: фазовым; циклическим.

В первом случае ограничение времени происходит внутри каждого периода. Ключ открывается в определенный момент времени после прохождения напряжения через ноль. Участок синусоиды от нуля до момента включения «вырезается», ток через нагрузку идет большее или меньшее время. Читайте так же: Преимущества и недостатки бензинового электрогенератора Принцип фазового регулирования Этот способ относительно просто реализуется, он позволяет избежать мигания ламп накаливания при использовании регулятора в качестве диммера. Но у него есть существенный минус — ток потребления нагрузки становится резко несинусоидальным, отчего в питающей сети возникают помехи.

Циклический способ свободен от данного недостатка. Ключ включается и выключается в момент перехода сетевого напряжения через ноль, за счет чего в течение одного или нескольких полупериодов нагрузка оказывается обесточенной. Среднее значение напряжения и тока зависит от количества пропущенных полупериодов.

Устройство надо выбирать в зависимости от целей. Радиолюбителю, который на досуге включает паяльник, профессиональный прибор не нужен — это просто лишние расходы. Встраиваемый или комплектный? Чтобы пользоваться встраиваемым регулятором, необходим электромонтажный шкаф или просто металлическая коробка подходящих размеров.

Без этой «обвязки» с устройством неудобно работать. Если такого шкафа дома нет, то лучше покупать комплектную модель — она ставится на пол или вешается на стену, после чего можно пользоваться прибором без долгой настройки. Встраиваемый регулятор мощности Мощность Мощность устройства надо подбирать в соответствии с задачами: максимальной мощности в 10 000 W будет достаточно не только для бытовых целей, но и для использования на производстве; 4 000 W хватает практически всем бытовым приборам; менее 2 000 W — такие устройства подходят только для управления освещением лампы, светильники, приборная панель авто и т.

Этот резистор с конденсатором образуют времязадающую цепочку.

Когда на выводах конденсатора С1 напряжение достигнет значения примерно 32 вольта напряжение переключения симметричного динистора DB3 , динистор отпирается и конденсатор разряжается по цепи управляющего электрода симистора VS1. Разряд конденсатора происходит мгновенно, вызывая быстрое запирание симметричного динистора. Напряжение на выводах конденсатора С1 скоро вновь становится достаточным для возврата динистора в проводящее состояние и для того, чтобы вызвать появление нового импульса, отпирающего симистор. При малом сопротивлении цепи R2-R3-R4 порог в 32 вольта достигается быстрее и симистор отпирается раньше, а более высокое сопротивление вызывает большую задержку момента отпирания симистора и, следовательно, уменьшение мощности в нагрузке.

Подстроечный резистор R3 позволяет установить границы регулировки мощности. Для защиты симистора необходима цепочка R1-C2. Кроме того, разряд конденсатора С2 через симистор способствует его отпиранию, которое могло бы быть нарушено запаздыванием тока в индуктивной нагрузке. Применение и некоторые замечания Регуляторы можно использовать для широкого круга задач.

Регулятор напряжения и мощности диммер переменного тока

Главная › Форумы › Конструкторское бюро › Автоматизация › Регулятор мощности 5 кВт – проблема. Благодаря алюминиевому радиатору симисторный регулятор мощности может выдерживать большие нагрузки до 4 кВт. Принципиальная схема китайского регулятора мощности на симисторе. 5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками. Народ, подскажите, нужен регулятор мощности до 10 кВт, 220В, пременного тока. Регулировать мощность нужно для тенов в печах. Граждане самогонщики, поделитесь, где купить Тэн на 2.5 — 3.0 Квт, и регулятор мощности с индикатором напряжения.

Простой корпус для регулятора мощности 220В 2000Вт

Простейший регулятор мощности на симисторе легко можно собрать своими руками, даже если вы не радиолюбитель. Универсальный привод с Системой Импульсно-Фазового Управления я вспомнил о регуляторе мощности, давно изготовленного мною и незаслуженно забытого. Схема простого регулятора мощности на симисторе с питанием 220 В. Регулятор мощности для электрооборудования 3000 Вт, 220 В. С ШИМ-регуляторами мощности также могут возникать 2 основные проблемы: перегрев и нестабильность напряжения. Как собрать регулятор напряжения 220 В на тиристоре или симисторе своими руками, какие существуют варианты схем и как они работают.

Регулятор мощности для индуктивной нагрузки на симисторе

Потом уже сделав ее по чертежам я понял что это самое то. В чем ее основное отличие -один раз настроил и куришь до тех пор пока хвосты не подойдут Ответить.

Нечаев регулятор температуры паяльника 36 В. В статье А. Дроссель L1 — ферритовый цилиндр длиной 24 мм, надетый на шнур питания, дроссель L2 — 16 витков провода диаметром 0,62 мм, намотанных на кольцевом магнитопроводе 12,5х7,5х5 мм. Налаживание заключается в подборе конденсатора С2 таким образом, чтобы при максимальном сопротивлении R5 эффективное напряжение на розетке XS2 составляло 80.. Симисторные регуляторы мощности диммеры — подборка схем Регулятор мощности [1] работает одинаково на обоих полупериодах сетевого напряжения. Однако требуется подобрать комплементарность транзисторов. Вместо диодов Д9В подойдут любые германиевые с обратным напряжением не менее 30 В. Конденсатор С1 неполярный К73-17 или другой, допускающий работу на переменном токе с номинальным напряжением не менее 30 В. В [4] приведена следующая схема симисторного регулятора мощности работающего с соблюдением четности полупериодов сетевого напряжения, отдаваемого в нагрузку:!

В [3] автором представлена следующая схема регулятора мощности: В [6] приведена схема регулятора мощности способного работать с индуктивной нагрузкой: Дроссель L1 для нагрузки до 1 кВт намотан на кольце из порошкового железа с магнитной проницаемостью 75 размером 26,5х14,5х7,5 мм. Обмотка содержит 58 витков провода ПЭВ-2 1 мм. Конденсаторы С2 и С3 серии Х1 или Х2. В [7] описана схема симисторного диммера с фазоимпульсным регулированием: Данная схема предназначена регулировки освещения и, при установке симистора на теплоотвод, позволяет управлять нагрузкой до 1 кВт. Резистор R4, при использовании диммера в прямом назначении, желательно применить совмещенный с выключателем. Налаживания диммер не требует, однако возможно придется подобрать R3 по максимальной яркости ламп. Источник: В. Карапетьянц Усовершенствование регулятора мощности. Дзанаев Симисторный регулятор мощности паяльника, не создающий помех.

Существуют, конечно, запираемые тиристоры, но их назначение несколько иное, чем банальные регуляторы мощности или простые выключатели. Обычный тиристор можно выключить лишь только прервав ток через участок анод — катод. Сделать это можно, как минимум, тремя способами. Во-первых, тупо отключить всю схему от батарейки. Вспоминаем рисунок 2. Естественно, что светодиод погаснет. Но при повторном подключении он сам по себе не включится, поскольку тиристор остался в закрытом состоянии. Это состояние также является устойчивым. И вывести его из этого состояния, Зажечь свет, поможет только нажатие кнопки SB1. Второй способ прервать ток через тиристор это просто взять и замкнуть выводы катода и анода проволочной перемычкой. При этом весь ток нагрузки, в нашем случае это всего - лишь светодиод, потечет через перемычку, а ток через тиристор будет равен нулю. После того, как перемычка будет убрана, тиристор закроется, и светодиод погаснет. При опытах с подобными схемами в качестве перемычки чаще всего используется пинцет. Предположим, что вместо светодиода в этой схеме будет достаточно мощная нагревательная спираль с большой тепловой инерцией. Тогда получается практически готовый регулятор мощности. Если коммутировать тиристор таким образом, что на 5 секунд спираль включена и столько же времени выключена, то в спирали выделяется 50-ти процентная мощность. Примерно с такими временными циклами, измеряемыми в секундах, работает регулировка мощности в микроволновой печи. Просто с помощью реле включается и выключается ВЧ излучение. Тиристорные регуляторы работают на частоте питающей сети, где время измеряется уже миллисекундами. Третий способ выключения тиристора Состоит в том, чтобы до нуля уменьшить напряжение питания нагрузки, а то и вовсе изменить полярность питающего напряжения на противоположную. Именно такая ситуация получается при питании тиристорных схем переменным синусоидальным током. При переходе синусоиды через нуль, она меняет знак на противоположный, поэтому ток через тиристор становится меньше тока удержания, а затем и вовсе равным нулю. Таким образом, проблема выключения тиристора решается как бы сама собой. Тиристорные регуляторы мощности. Фазовое регулирование Итак, дело осталось за малым. Чтобы получилось фазовое регулирование, надо просто в определенное время подать управляющий импульс. Другими словами импульс должен иметь определенную фазу: чем ближе он будет расположен к концу полупериода переменного напряжения, тем меньшая амплитуда напряжения окажется на нагрузке. Фазовый способ регулирования показан на рисунке 3. Рисунок 3. Фазовое регулирование В верхнем фрагменте картинки управляющий импульс подается почти в самом начале полупериода синусоиды, фаза управляющего сигнала близка к нулю. На рисунке это время t1, поэтому тиристор открывается почти в начале полупериода, а в нагрузке выделяется мощность близкая к максимальной если бы в цепи не было тиристоров, мощность была бы максимальной. Сами управляющие сигналы на этом рисунке не показаны. В идеальном варианте они представляют собой короткие положительные относительно катода импульсы, поданные в определенной фазе на управляющий электрод. В простейших схемах это может быть линейно нарастающее напряжение, получаемое при заряде конденсатора. Об этом будет рассказано несколько ниже. На нижнем графике открывающие импульсы подаются очень близко к окончанию полупериода, тиристор открывается почти перед тем, как ему предстоит закрыться, по графику это время обозначено как t3, соответственно мощность в нагрузке выделяется незначительная. Схемы включения тиристоров После краткого рассмотрения принципа работы тиристоров, наверное, можно привести несколько схем регуляторов мощности. Нового здесь ничего не изобретено, все можно найти в сети Интернет или в старых радиотехнических журналах. Просто в статье приводится краткий обзор и описание работы схем тиристорных регуляторов. При описании работы схем будет обращаться внимание на то, каким образом используются тиристоры, какие существуют схемы включения тиристоров. Как было сказано в самом начале статьи, тиристор выпрямляет переменное напряжение как обычный диод.

Контроль работы тиристоров. Безударный, мягкий запуск оборудования. При помощи регулятора можно менять мощность обогревателя в большую или меньшую сторону в зависимости от ваших задач. В случае, если у вас слабая проводка или на дом выделено определённое количество кВт, регулятор мощности сможет помочь плавно запустить оборудование и отрегулировать мощность вашего обогревателя или автоматической системы отопления.

Регулятор напряжения для тена от 1 до 6 кВт

Тебе нужно определить два уровня мощности для ректификации - один недостаточный, другой избыточный. Желательно, чтобы между ними была двойная разница. Например, для колонны д. Теперь подключаешь все свои ТЭНы параллельно и подключаешь их через диммер. Крутишь потенциометр пока мощность не составит 1 кВт.

Отключаешь 220, замеряешь сопротивление потенциометра. Допустим, 110 кОм. Теперь снова подключаешь сеть, крутишь потенциометр пока мощность не станет 2 кВт.

Никаких скачков напряжения, провалов и прочих неприятностей. В конце статьи будет видео ролик, в котором сможете убедиться своими глазами, что это действительно так. Регулятор мощности до трёх киловатт. Такое очень простое, и в то же время очень полезное устройство, можно применить для управления оборотами электродвигателей с фазным ротором. Например, электродрель старого производства, у которой нет встроенного регулятора оборотов, и ещё большого количества подобных инструментов и механизмов, которым не помешает регулировка оборотов, для расширения возможностей данного устройства. Так же, такой регулятор отлично и бесступенчато регулирует мощность электрических нагревателей любого типа.

Например, конфорки электроплиты, калориферы и тому подобное. Для начала монтажа устройства соберём детали. Симистор можно взять Советского производства из серии КУ208. Или BT138-800, BT139-600 или им подобные, эти симисторы в Китае около 10 рублей за штуку, так же как и макетные платы, на которой мы и будем собирать данное устройство. Макетная плата здорово облегчает и убыстряет монтаж электронных приспособлений. Не нужно заморачиваться с изготовлением и сверлением печатных плат. Просто вставляешь радиодетали в готовые отверстия, припаиваешь, соединяешь по схеме перемычками и готово. Все конденсаторы и динистор можно выпаять из старых энергосберегающих ламп. Конденсаторы с нужными номиналами и динисторы есть не во всех лампах, так что нужно поискать.

Динисторы в разных корпусах внизу второй фотографии чтобы вы имели представление об их внешнем виде , а на корпусах у них написано DB3 с лупой можно прочитать. Потенциометр я взял от старого, ещё Советского телевизора, но подойдёт и любой другой с указанными номиналами. Радиатор от компьютерного блока, но его нужно подбирать, в зависимости от планируемой нагрузки, которой вы собираетесь управлять. До 300 ватт — радиатор совсем не нужен, а чем выше нагрузка, тем массивнее радиатор. Размеры радиатора зависят и от характера нагрузки, так что подбор дело индивидуальное, но чем больше радиатор, тем лучше режим работы симистора и он будет работать дольше без аварий. Так что не скупитесь и поставьте побольше. Резисторы везде есть, в любой аппаратуре, так что подобрать не составит большой проблемы. В Китае, тоже можно купить. Клеммы для подключения питания и нагрузки можно взять любые, какие найдёте, но можно и вовсе обойтись без них, вопрос в удобстве использования данного устройства в эксплуатации.

Схема устройства выглядит так. Цепочка R4 — C3 является защитой от радиопомех и её можете убрать, но соседи за это могут побить, если поймают. Принципиальная схема регулятора мощности. Теперь приступаем к сборке. Детали размещаем на макетной плате, так быстрее, на мой взгляд, удобнее и выглядит хорошо. Пайку выполнять нужно как можно более качественно и желательно не спеша. Олово из Китая качественное не встречал, так что воспользуйтесь любым другим. Намазываем симистор теплопроводной пастой, но не густо. Симистор к радиатору прикрутить с теплопроводной пастой.

Паста должна слегка выступить с краёв, когда вы прикрутите симистор к радиатору. Припаивать детали лучше по очереди, по одной, по мере установки. Перемычки на схеме обозначенные красным цветом выполняем медным проводом повышенного сечения, в зависимости от мощности нагрузки. На 3 киловатта — 2,5 квадратных миллиметра будет, с запасом, в самый раз. Я планирую управлять оборотами дрели на 800 ватт, и провод взял 1,5 мм, конечно тоже с запасом, но как говорится запас…. И лучше будет работать. Нужно постоянно сверяться со схемой, при установке деталей. Схема простая, но внимательность будет не лишней. Силовая часть требует очень тщательной пайки.

На макетной плате, между контактами клеммных колодок, нужно удалить медные контакты во избежание короткого замыкания. На фотографии видно как это сделать. Нужно острым предметом «например канцелярским ножом» срезать фольгу. Подключаем лампочку в качестве наглядной нагрузки и кусок провода с вилкой для подключения к сети. Когда устройство подключаете к питанию, действуйте предельно осторожно! Все элементы схемы находятся под полным напряжением сети 220 вольт! Опасно для жизни! Работает штатно. Вращением потенциометра регулируем свечение лампы и убеждаемся, что свет плавно, без провалов и рывков изменяет свою интенсивность.

Смотрите видео и убеждайтесь, что всё работает, как и планировалось. Удачи вам в ваших делах. Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности. Внимание, нижеприведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током! Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры.

Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже. Читайте также: Чем лучше вязать арматуру стеклопластиковую Классическая тиристорная схема регулятора Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему. Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. После того, как тиристор открылся сопротивление между анодом и катодом станет равно 0 , закрыть его через управляющий электрод не возможно.

Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом на схеме обозначены a и k не станет близким к нулевому значению. Вот так все просто. Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку лампочку накаливания или обмотку паяльника , на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону диаграмма 1. При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток верхняя диаграмма. При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше.

Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания. Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток по паспорту 100 мА, реальный около 20 мА , то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Описывать работу схемы нет необходимости все предельно ясно с рисунка.

Дополнение о параметрах трансформатора, от 24-01-2009г. Если возникнут проблемы с приобретением однопереходного транзистора КТ117 можно собрать схему на эквиваленте. Симистор можно применить более надежный из серии ТС112. Борьбу с помехами проигнорировал так как радиодиапазон СВ практически умер. Одним из достоинств является компактность конструкции, все легко монтируется в стандартной наружной розетки.

Я изготовил регулятор в виде переноски, такое исполнении расширяет область применения регулятора.

Предназначен для работы в бытовой сети переменного тока 220 В. Мощность подключаемой нагрузки не выше 2000 Вт, свыше 1000 Вт требуется дополнительное охлаждение. Прост в подключении: имеет 2 клеммы под 220В и 2 клеммы под нагрузку.

Похожие новости:

Оцените статью
Добавить комментарий