“[Гипотеза мира РНК] была сведена ритуальным злоупотреблением к чему-то вроде креационистской мантры”, и. Одной из главных теорий является гипотеза "РНК-мира", согласно которой первые формы жизни возникли благодаря РНК-репликазе, способной копировать себя и другие молекулы РНК. рибозимов - в 1982-1983. Гипотеза мира РНК — Структура рибозима — молекулы РНК, выполняющей функцию катализа Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации.
Появилась новая гипотеза возникновения ДНК и РНК
Гипотеза мира РНК | Новые доказательства гипотезы РНК-мира: ученые обнаружили способ самовоспроизведения молекул без участия белков. |
Найдено подтверждение гипотезы «РНК-мира» | Окончательная уверенность в том, что «мир РНК» действительно существовал, наступила после выявления деталей строения кристаллов рибосом методом рентгеноструктурного анализа. |
Ученые нашли новые доказательства РНК-мира - Коммерсант Россия | Согласно гипотезе «РНК-мира», когда первая такая молекула появилась на планете, она служила и материалом генетического хранения, и функциональным элементом для катализации химических реакций, а ДНК и белки развились намного позже. |
Ученые нашли новые доказательства РНК-мира - Москва NEWS | Суть гипотезы РНК-мира заключается в том, что первые формы жизни на Земле могли состоять из РНК-молекул, способных к самовоспроизведению без помощи белковых ферментов. |
Из Википедии — свободной энциклопедии
- Исследования по гипотезе РНК-мира: возникновение саморепликации –
- Ученые обнаружили новые доказательства гипотезы РНК-мира | 01.04.2024 | NVL
- 22-M. «Мир РНК» . ПРОСТЫЕ ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ ТВОРЦА
- РНК-мир: открыто происхождение жизни на Земле
- Газета «Суть времени»
Американские ученые выявили новое объяснение возникновения жизни на Земле
Репликация полимеров происходила благодаря циклическому изменению температуры, напоминающему естественные условия циклов день-ночь на ранней Земле. Это позволяет предположить, что древние РНК-полимеры могли использовать такие температурные циклы для своего размножения. Неорганические поверхности, например, камни, также могли играть важную роль в этом процессе, способствуя стабилизации и размножению РНК-молекул. Это открытие дает новые перспективы для понимания процессов, лежащих в основе зарождения жизни на нашей планете, и подчеркивает важность дальнейших исследований в области преобиотической химии и молекулярной биологии.
При сохранении его дублирования мощностей. Кроме того, группа тимина обозначенная в генетическом коде как T состоит из группы урацила U. Роль тРНК заключается в транспортировке аминокислоты к рибосоме, где будет происходить связывание с другой аминокислотой, с образованием полипептида таким образом давая белок. Существует несколько тРНК, каждая с тремя нуклеотидами: антикодон. Антикодон комплементарен кодону , переносимому мРНК, которая определяет порядок сборки аминокислот рибосомой. Особенность тРНК в том, что, несмотря на свой небольшой размер, она частично состоит из множества нуклеотидов , которые не встречаются в других местах. Таким образом, эти «экзотические» нуклеотиды имели пребиотическое происхождение, остатки мира РНК. Таким образом, эти компоненты присутствуют во всех трех сферах жизни. Для Мари-Кристин Морель «последние играют фундаментальную роль в жизни, и их старшинство не вызывает сомнений». Еще одна удивительная структура: в вирусе TYMV вирус желтой мозаики турнепса инициация трансляции вирусного генома в белок осуществляется через структуру типа тРНК, которая инициирует собственную трансляцию и фиксирует аминокислоту. Структура вируса PSTV. РНК и наследственность РНК играет роль в передаче активности генов: такой механизм называемый эпигенетикой не связан с ДНК и может служить доказательством способности РНК участвовать в « наследственности». В результате использование ДНК в качестве опоры для генетической информации позволило уменьшить количество ошибок при дублировании генов и, следовательно, увеличить их длину и, следовательно, сложность связанного с ними метаболизма. Однако не способность разрешать сложный метаболизм может составлять селективное преимущество для этого перехода, поскольку начальный переход требует установления метаболических путей, связанных с ДНК, что изначально влечет за собой затраты, которые не сразу компенсируются преимуществом, заключающимся в том, что может обеспечить более сложный метаболизм. Некоторые ученые например, вирусолог Патрик Фортерр из Института генетики и микробиологии в Орсе полагают, что именно вирусы являются «изобретателями» ДНК. Фактически известно, что некоторые современные вирусы изменяют свою ДНК, чтобы сделать ее устойчивой к нуклеазным ферментам своего хозяина путем метилирования, гидроксиметилирования и т. Можно представить, что форма маскировки для РНК-вируса заключалась в том, чтобы просто деоксигенировать рибозу, создавая предковую ДНК, образованную урацилом. На втором этапе эти вирусы заменили бы группу урацила на группу тимина, следуя тому же синтезу, что и для современной ДНК. При таком сценарии первоначально РНК-вирусы приобрели бы систему двойной трансляции: первую систему для восстановления РНК до ДНК типа рибонуклеотидредуктазы и систему обратной транскрипции. Передача микробам Также кажется, что существует небольшая гомология между ферментами, необходимыми для репликации, репарации и рекомбинации ДНК у эубактерий , архей и эукариот : их общий предок, следовательно, не имел определенного количества этих ферментов ненужных при отсутствии генома ДНК. Эти белки затем появились бы независимо в каждой основной линии возможно, в некоторых случаях из вирусных генов.
Соединенные вместе они образуют последовательности генов, которые клетки переводят в белки. Удивительно, что из четырех молекулярных оснований два были в форме, обнаруженной в ДНК, а два другие — в виде, существующем в РНК. Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно. Стоит отметить, что ученые, не участвовавшие в исследовании, ставят под сомнение достоверность условий, созданных для исследования.
Результаты эксперимента, в процессе которого отдельные РНК создали эволюционирующую систему, опубликованы в журнале Nature Communications. Читайте «Хайтек» в Исследователи из Токийского университета впервые создали молекулу РНК, которая реплицируется, диверсифицируется и усложняется в соответствии с дарвиновской эволюцией. В результате эксперимента ученые показали, как отдельные виды РНК превратились в сложную систему: сеть репликаторов, состоящую из пяти типов РНК с разнообразными взаимодействиями. Это первое эмпирическое свидетельство того, что простые биологические молекулы могут привести к возникновению сложных систем, похожих на живые. Происхождение жизни согласно дарвиновской теории эволюции основано на переходе от самовоспроизводящихся молекул, таких как РНК, к сложным живым системам. Тем не менее, современная наука не дает четкого ответа на вопрос, каким образом произошел переход от отдельных химических молекул к сложным формам жизни.
Гипотеза мира РНК
Скорее всего, такое ограничение защищает от деградации собственную клеточную мРНК с короткими внутримолекулярными самокомплементарными структурами. Предполагают, что расщепление дцРНК у млекопитающих осуществляется последовательно с одного конца молекулы. В результате работы Dicerобразуются двухцепочечные siРНК длиной 20-25 п. Именно такая структура необходима для участия в последующих этапах процесса, приводящего к сайленсингу РНК. Следующие стадии интерференции - распознавание и фрагментация РНК-мишени. Очевидно, именно домен PIWI обусловливает эндонуклеазную активность всего комплекса. У растений и червей может происходить амплификация siРНК. У этих организмов интерференции РНК имеет системный эффект, как следствие передачи сигнала из клетки в клетку или его доставки во все ткани организма. Такое явление называется системной супрессией.
Передача дцРНК или siРНК у растений может происходить по цитоплазматическим мостикам из клетки в клетку или по системе сосудов. Эта реакция протекает с использованием энергии АТР. Такой модифицированный комплекс функционально активен. У растений и нематод существует механизм амплификации siРНК. Механизм интерференции РНК I. В стрессовые гранулы при стрессе включается не вся клеточная мРНК: часть ее продолжает сохранять диффузное распределение в цитоплазме. По-видимому, для инкорпорации мРНК в стрессовые гранулы не нужны какие-либо специфические сигнальные последовательности, поскольку репортерная мРНК, не несущая известных сигнальных последовательностей, включается в состав стрессовых гранул. Скорее всего, специфические сигнальные последовательности нужны для исключения РНК из стрессовых гранул.
Возможно, что из стрессовых гранул выводятся как раз те РНК, трансляция которых необходима при стрессе. В составе стрессовых гранул выявлены различные РНК-связывающие белки, связывающие как большинство цитоплазматических мРНК, так и специфические последовательности в определенных мРНК. Белок Staufen, входящий в состав транспортирующихся мРНП, входит и в состав стрессовых гранул в олигодендроцитах, вероятно, как «неспецифический» РНК-связывающий белок. Структурная основа стрессовых гранул не изучена, но весьма вероятно, что она состоит из прионоподобного конгломерата РНК-связывающего белка ТIА-1, обычно локализованного в ядре. Одной из первых адаптивных реакций при стрессовых воздействиях на эукариотическую клетку является изменение в системе трансляции. С одной стороны, происходит общее падение уровня синтеза белка в клетке, а с другой — активация трансляции некоторых видов мРНК. Образование стрессовых гранул происходит одновременно с общим снижением синтеза белка. В настоящий момент принято считать, что именно ингибирование синтеза белка на стадии инициации трансляции вызывает появление стрессовых гранул в цитоплазме.
В случае окислительного стресса, вызванного арсенатом, образование стрессовых гранул зависит от ингибирования инициации трансляции за счет фосфорилирования фактора еIF2. В такой ситуации формируются неканонические инициаторные комплексы, которые не могут перейти к элонгации трансляции. Каков бы ни был механизм, запускающий образование стрессовых гранул, при стрессорном воздействии первоначально диффузное распределение мРНП сменяется на локализацию в отдельных точках цитоплазмы — стрессовых гранулах. Для подобного изменения локализации необходимы значительные перемещения индивидуальных мРНП. При этом необходимо отметить, что размер мРНП достаточно велик и свободная диффузия частиц подобного размера в цитоплазме ограничена. Преодоление ограничения диффузии в клетке происходит за счет активного транспорта по цитоскелету — микротрубочкам или актиновым филаментам. Разрушение актиновых филаментов не ингибирует образование стрессовых гранул, в отличие от нарушения системы микротрубочек. Вызванная действием фармакологических агентов деполимеризация микротрубочек в клетке подавляет образование стрессовых гранул.
Восстановление микротрубочек на фоне окислительного стресса вызывает возникновение в такой клетке стрессовых гранул. Скорее всего, роль микротрубочек в формировании стрессовых гранул заключается в активном транспорте мРНП. Стрессовые гранулы способны перемещаться по клетке, и их движение подавляется при разрушении микротрубочек. Компоненты стрессовых гранул обмениваются с цитоплазмой, и этот обмен также значительно замедляется после разборки микротрубочек. Таким образом, микротрубочки необходимы для пространственного перемещения компонентов стрессовых гранул поли А -связывающего белка, фактора eIF2, белка TIA-1. Функции стрессовых гранул пока остаются непонятными. Можно предположить, что роль стрессовых гранул состоит в подавлении трансляции большинства матриц при избирательном отсутствии подавления трансляции определенных мРНК. Так, активно транслирующаяся при стрессе мРНК шаперона Нsp70 не включается в стрессовые гранулы.
Синтез в клетках рекомбинантной укороченной формы белка ТIА-1, ингибирующей образование стрессовых гранул, одновременно усиливает трансляцию репортерной мРНК в клетках, подвергнутых стрессу. Стрессовые гранулы можно представить как «зал ожидания», в котором «пассажиры» - неполные инициаторные комплексы — терпеливо пережидают нелетную погоду. Ее уникальные свойства быть как носителем наследуемой информации, так и возможность образовывать сложные трехмерные структуры, обладающие каталитической активностью, определяют то, что первичной молекулой могла быть РНК. Таким образом, в одной молекуле заложены как генотип, так и фенотип. Спектр реакций, выполняемых ферментами РНК — рибозимами — очень широк, поэтому в последнее время ведутся очень активные поиски новых рибозимов, способных осуществлять другие типы реакций. Они служат катализаторами при расщеплении и сшивании других молекул РНК. У рибозимов есть интересная особенность: максимум их активности приходится на низкие температуры. То есть они фактически обеспечивают низкотемпературный катализ.
Первые рибозимы, обнаруженные Альтманом и Чеком в 1982-1983 гг, были не особенно эффективны: они лишь разрезали и соединяли отдельные фрагменты целых молекул РНК. Однако дальнейшие исследования продемонстрировали, что эти ферменты могут катализировать и другие реакции. Джек Шостак, экспериментируя с модифицированными рибозимами, сумел выделить катализатор, способный соединять друг с другом короткие цепочки нуклеотидов. При этом использовалась энергия трифосфатных химических групп — тех самых соединений, которые и сегодня обеспечивают энергией биохимические реакции. Это обстоятельство подтвердило идею, что рибозимы могут функционировать сходным образом с современными белковыми ферментами. У ряда видов примитивных эукариот Tetrahymena thermophila и др. Такие интроны встречаются также в генах рРНК митохондрий, хлоропластов, дрожжей и грибов, однако они не выявлены в генах позвоночных животных. Изучение процессинга 26S рРНК тетрахимены аналог 28S рРНК высших эукариот , выполненное Чеком и сотрудниками, привело к открытию особого вида сплайсинга, осуществляемого без участия каких-либо белков и получившего название аутосплайсинг сплайсинг типа I.
Таким образом была открыта аутокаталитическая функция РНК и положено начало изучению рибозимов. Таким образом в результате реакции трансэтерификации без дополнительных затрат энергии осуществляется лигирование двух экзонов с образованием зрелой 26S рРНК. Вырезанный интрон затем циклизуется. Из его состава путем двухэтапного ауторасщепления освобождается фрагмент, содержащий 19 нуклеотидов, в результате чего образуется РНК длиной 376 нуклеотидов L-19 IVS , которая и представляет собой истинный РНК-фермент рибозим , обладающий каталитическими свойствами. Этот рибозим обладает устойчивой структурой, имеет эндонуклеазную активность, расщепляя длинные одноцепочечные РНК. Схема аутосплайсинга у тетрахимены и процесс образования рибозима Оказалось также, что рибозим L-19 IVS помимо нуклеазной обладает invitro нуклеотидилтрансферазной полимеразной активностью и способен катализировать синтез олигонуклеотидов олиго-С. Это указывает на возможность аутокаталитической репликации РНК и является одним из важных свидетельств в пользу существования «мира РНК». В структуре интронов типа I выявлены характерные внутренние олигопуриновые последовательности у тетрахимены это последовательность GGАGGG , называемые адапторными последовательностями, которые участвуют в образовании активного центра РНК-ферментов и выполняют важнейшую роль в каталитическом расщеплении РНК.
Детальные исследования природных РНК-ферментов послужили мощным стимулом к моделированию и синтезу рибозимов заданного строения. Такие рибозимы стали называть минизимами. Вскоре после открытия рибозимов Т. Чеком в одной из своих работ Ф. Крик писал: «Эти эксперименты по каталитической РНК поддерживают гипотезу, что биохимия РНК предшествовала традиционной биохимии, основанной на нуклеиновых кислотах и белках».
Получается, что РНК — это курица и яйцо одновременно.
Дополнительным аргументом в пользу гипотезы существования древнего мира РНК стало обнаружение в 2019 году рибозы — сахара, входящего в состав РНК — в метеорите. Изотопный анализ показал внеземное происхождение этой рибозы.
Образуется замкнутый круг, который навел ученых на мысль, что первые организмы хранили генетическую информацию не в виде ДНК, а в виде РНК. РНК содержится в клетке и выполняет в ней разнообразные функции. В то же время было обнаружено, что некоторые РНК, которые получили название "рибозимы", могут выступать в роли белков и ускорять химические реакции.
РНК явно потеснили белки на пьедестале главных молекул, обеспечивающих жизнедеятельность клеток [16, 25]. Все рассмотренные аргументы подчёркивают важную, если не исключительную, роль РНК в происхождении жизни на земле. Исследования продолжаются. Современная жизнь - это РНК, передавшая часть свих генетических функций рождённому ею же полимеру - ДНК и синтезирующая белки для всеобъемлющего эффективного функционирования содержащих её компонентов - клеток и многоклеточных организмов [27-29]. Необычные древние особенности РНК нашли в последнее время эффективные практические приложения. Так как практически каждая наноколония происходит из одной матричной молекулы, с помощью наноколоний можно обнаружить и идентифировать одиночные молекулы ДНК и РНК, в том числе - с диагностическими целями. В настоящее время наноколонии применяются в нашей стране и за рубежом для различных научных и прикладных задач. Важнейшим направлением исследований является разработка ранней диагностики онколологических заболеваний. В России от разных видов рака умирает около 300 000 человек в год, что представляет большую демографическую, экономическую социальную проблему.
Лечение осложняется тем, что у большинства больных болезнь диагностируется уже на поздних стадиях. С развитием экономики проблема может только усугубляться, так как частота онкологических заболеваний растёт по мере ухудшения экологической обстановки и увеличения продолжительности жизни населения. Эффективность лечения рака зависит от своевременности диагностики. Однако до сих пор проблема ранней диагностики рака не решена. Наноколонии РНК позволяют создать технологию молекулярной диагностики рака на стадии, когда его ещё невозможно обнаружить существующими методами. Диагностировать болезнь предполагается путём обнаружения в клинических образцах например, в крови, в моче или в мокроте молекул определённых индикаторных "маркёрных" РНК, которые присутствуют во всех раковых клетках независимо от вида рака. Примером такого универсального маркёра является мРНК белковой субъединицы теломеразы - фермента, отвечающего за синтез концевых участков хромосом теломер. Эта мРНК присутствует и в нормальных стволовых клетках, которые, подобно раковым клеткам, способны к неограниченному делению. Однако, в отличие от раковых клеток, стволовые клетки находятся в своих нишах и не распространяются по организму.
Поэтому присутствие теломеразной мРНК там, где стволовых клеток быть не должно например, в плазме или в клетках крови , может служить указанием на наличие злокачественного процесса. Существуют также РНК, которые могут служить групповыми маркёрами всех видов рака кишечника, или всех видов рака молочной железы, или всех видов рака печени. Попытки использовать РНК-маркёры для молекулярной диагностики рака были и раньше, но из-за ограниченной чувствительности и недостаточной специфичности стандартной ПЦР полимеразной цепной реакции они закончились неудачей. Следует отметить исключительно высокий потенциал наноколоний для диагностики любых заболеваний, для которых существуют РНК- или ДНК-маркёры, в т. Например, молекула белка в том числе белка-маркёра рака может быть обнаружена путём размножения суррогатной ДНК-мишени, образованной лигированием фрагментов ДНК, способных одновременно связываться с данной молекулой белка посредством специфических лигандов например, антител. Подобным же образом с помощью наноколоний можно обнаружить одиночные молекулы любого вещества например, наркотика или допинга , достаточно сложные для формирования на своей поверхности, по крайней мере, двух участков специфического связывания лигандов [16]. В помощь антибиотикам Важнейшей проблемой современности является быстрая эволюция бактерий в направлении приобретения устойчивости к антибиотикам, приводящая к возрождению многих заболеваний человека. Профессор Йельского университета США Сидни Альтман, продолжая исследования в области каталитической способности РНК, стал разрабатывать способы борьбы с инфекционными заболеваниями антибактериальная и антималярийная терапия , используя каталитические способности конкретного РНК-фермента - рибонуклеазы Р. Конечная цель - создать препарат, который мог бы быть альтернативой в случае устойчивости инфекции к антибиотикам.
На конкретных объектах исследований разрабатываются фундаментальные основы подходов, которые могли бы быть общими для лечения многих инфекционных заболеваний. В перспективе синтезировать определённые соединения, которые могут быть легко модифицированы для борьбы, как с бактериями, так и с малярией. Это направление исследований представляет перспективную альтернативу применению в медицине антибиотиков, возможности которых стремительно тают. Сидни Альтман разрабатывает это важнейшее направление, в частности, совместно с Институтом химической биологии и фундаментальной медицины СО РАН г. Новосибирск [6]. Как зарождались знания, составляющие основу практического применения теорий и методов молекулярной биологии РНК Лауреат Нобелевской премии за открытие рибозимных свойств РНК Сидни Альтман Олтмен, 1939 г. Заняться молекулярной биологией начинающему учёному Альтману посоветовал русский физик Георгий Гамов. Он понял, что структуры белков, состоящих из 20 основных природных аминокислот - должна быть зашифрована в последовательности из четырёх возможных нуклеотидов, входящих в состав молекулы ДНК. Исходя из простых арифметических соображений, Гамов показал, что при сочетании 4-ёх нуклеотидов тройками получается 64 различные комбинации, чего вполне достаточно для записи наследственной информации.
Таким образом, он был первым, кто предложил кодирование аминокислотных остатков триплетами нуклеотидов [17]. Практически генетический код позволил расшифровать метод бесклеточной системы синтеза белка in vitro. Первые результаты в этом направлении были получены в 1961 году, когда М. Ниренберг и Х. Матеи синтезировали упрощённую форму мРНК, состоящую из одинаковых нуклеотидов и обнаружили, что в её присутствии происходит образование длинной цепи белковоподобной молекулы, состоящей из аминокислот одного-единственного вида. Искусственная мРНК представляла собой полинуклеотид поли-У, в котором все нуклеотиды содержали только одно основание - урацил. Когда поли-У добавляли к экстракту из клеток бактерии E. Так было обнаружено, что кодон УУУ соответствует фенилаланину. Этот первый успех указал путь, следуя которому в скором времени удалось установить кодоны и для ряда других аминокислот; требовалось только перепробовать различные формы синтетических мРНК.
Тогда возник вопрос, каким образом некоторые синтетические мРНК, например поли-У, которые, конечно, не содержат таких кодонов, ухитряются как-то заставлять рибосомы синтезировать полипептиды? Вероятно, это происходит по ошибке - из-за того, что рибосомы ведут себя «не по инструкции». Следовательно - ирония судьбы! Каковы же те обстоятельства, которые приводят к тому, что эти системы совершают «нужные» ошибки? Один из факторов был вскоре найден. Им оказалась высокая концентрация магния в бесклеточных системах. Каким образом магний инициирует синтез? На этот вопрос нет однозначного ответа [25]. О различии молекулярных механизмов формирования морозоутойчивости озимой мягкой пшеницы и озимого ячменя Итак, концентрация магния.
Установлено, чем больше содержится магния в рРНК, тем активнее синтезируют белок полифенилаланин рибосомы зародышей пшеницы в бесклеточной системе синтеза белка in vitro на искусственной матрице поли-У [42]. Вполне возможно, что концентрация катионов магния в клетке определяет интенсивность синтеза «ошибочных» полипептидов, предположительно расширяющих адаптационные свойства организмов [19, 20, 21, 25]. Вероятно, этим можно объяснить факт сортоспецифического усиления in vitro трансляционной активности полисом из проростков пшеницы и ячменя под влиянием закаливающей температуры [16, 25], тогда как в этих условиях длина поли-А-хвоста мРНК энхансера трансляции у пшеницы увеличивалась, а у ячменя сокращалась [2, 16]. Но ячмень содержит гораздо больше катионов магния по сравнению с пшеницей [12], что, возможно, и определяло увеличение трансляционной активности рибосом ячменя. Следовательно, увеличение трансляционной активности полирибосом может происходить как за счёт увеличения длины поли-А-хвоста мРНК как энхансера трансляции пшеница , так и за счёт увеличения содержания катионов магния в рРНК ячмень. Можно полагать, что озимый ячмень формирует морозоустойчивость на основе более древнего молекулярного механизма - адаптационного усиление трансляционной активности за счет вариации в содержании магния в рРНК [11, 13, 22]. Но озимая мягкая пшеница реагирует на закаливающие температуры сортоспецифическим усилением полиаденилирования мРНК [2, 16, 23]. Этот молекулярный механизм, вероятно, более поздний и является более прогрессивным по сравнению с вариациями содержания магния в рРНК. Отсюда, возможно, и более высокая морозоустойчивость озимой мягкой пшеницы по сравнению с озимым ячменём.
Таким образом, есть основания полагать, что повышение морозостойкости сорта озимой мягкой пшеницы сопровождается стабилизацией мРНК и дестабилизацией рРНК. Предполагается, что стабилизация рРНК определяется укреплением молекулы за счёт катионов магния, в тоже время весьма вероятно, что катионы магния стимулируют укорочение терминальной поли-А-последовательности, определяющей стабильность и трансляционную активность мРНК, через усиление прочности определённых структур мРНК, определяющих скорость её деаденилирования. Эта принципиально важная гипотеза требует детальной экспериментальной проверки. Об особенностях молекулярной биологии озимой мягкой пшеницы сорта Безостая 1 «Генотип должен превалировать над средой». Вавилов Одним из часто встречающихся, довольно досадным моментом при работе с РНК является их деградация в процессе хранения или манипулирования, даже в случае хорошо очищенных препаратов.
Учеными из США найдены новые доказательства РНК-мира
Долгое время оставался вопрос о том, каким образом это свойство сохранялось в процессе биохимической эволюции. Путем разработки моделей исследователи выяснили, что случайные разрывы в простых молекулах РНК приводили к образованию коротких цепочек, действующих как праймеры для синтеза более длинных полимеров РНК. Такой неферментативный механизм приводил к образованию множества копий разрушенного полимера, аналогично регенерации червей, разрезанных на сегменты. Вторая модель предполагала добавление рибозимов, способных к спонтанному образованию и катализированию расщепления, к пулу полимерных РНК-цепочек, которые разрезались при столкновении.
Ученые поражаются, насколько некоторые микроорганизмы могут быть живучи. Одни из них, открытые Пастером, способны жить в атмосфере, лишенной кислорода, другие — выдерживают действие самых ядовитых веществ, как-то: серной кислоты, сулемы и самых едких щелочей. Кто дал этим невидимым нами существам жизнь и снабдил эту жизнь такими исключительными свойствами? Если вы, читатель, не верите в чудеса на том основании, что все сверхъестественное противоречит законам природы или является нарушением этих законов; если вы вообще не верите во все то, «чего не видите, не понимаете, не можете объяснить», то объясните мне наличие в природе таких живучих микроорганизмов? Ученые отрицают чудеса, забывая о том, что весь мир видимый, Макрокосмос и Микрокосмос и все, что их наполняет — это сплошное чудо! Наука не признает возможности чуда, потому что сферой ее деятельности являются вещи исключительно материальные, видимые, осязаемые, объяснимые естественным путем. Но, если наука занимается только вещами, движущимися в пространстве, находящимися в природе, тогда такие отрасли науки, как психология или социология не имеют права называться науками, потому что их предмет не может быть проверен в лабораторных стеклянных пробирках.
С другой стороны, если психология и социология суть науки, то на каком основании не признаются науками этика и религия, оперирующие в области морали, нравственности, души и духа? Если наука признает чудом все, что выходит за рамки естественных объяснений и ответов, то подобных необъяснимых в природе явлений — бесконечное множество. Если наука отказывается признать все эти феномены, феноменами, а пытается выдать их за «чудеса природы», «рефлексы мозга», «наследственность», «чрезмерно развитые физические инстинкты» и прочее, то тем хуже для науки. Ибо этим своим действием она лишает себя права называться подлинной наукой, призванной объяснять научным путем феномены Макрокосмоса и Микрокосмоса. Каждый факт в природе может быть связан с тайнами, которые трудно раскрыть, но мы не имеем права отрицать того или иного факта на том лишь основании, что его загадочность, нами еще не объяснена.
В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера. Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты. Ранее ученые выяснили, что социальный статус влияет на активность генов и передается от матери к детям.
При «включении» гена происходит локальное расплетение спирали ДНК. Затем с гена, кодирующего белковую молекулу, синтезируется его РНК-копия. После ряда «превращений» она становится матричной РНК, т. Он синтезируется из активированных аминокислот, присоединенных к специальным транспортным РНК. В процесс трансляции вовлечено множество макромолекул и макромолекулярных комплексов. При трансляции происходит считывание генетической информации, заключенной в мРНК, рибосомами и ее передача полипептидным цепям белков, то есть биосинтез полипептидных цепей, последовательность аминокислот в которых определена последовательностью нуклеотидов в мРНК в соответствии с генетическим кодом. Свободные аминокислоты не узнаются рибосомами. Чтобы это произошло, аминокислоты должны поступать в рибосомы в виде конъюгатов с тРНК аминоацилированных тРНК , последовательности нуклеотидов которых распознаются аппаратом трансляции. Именно эта последовательность, называемая антикодоном, определяет положение аминокислоты в полипептидной цепи. В ходе каждого индивидуального акта трансляции рибосома распознает кодон мРНК и в соответствии с ним выбирает аминоацилированную тРНК, антикодон которой соответствует транслируемому кодону. После этого происходит соединение посредством пептидной связи очередной аминокислоты с С-концевой аминокислотой растущей цепи полипептида. Таким образом, во время трансляции рибосома после связывания мРНК начинает последовательно, кодон за кодоном, перемещаться вдоль матрицы, выбирая из окружающей среды молекулы аминоацилированных тРНК. При этом каждый индивидуальный акт трансляции завершается присоединением выбранной молекулы аминокислоты к С-концевой аминокислоте синтезируемой цепи белка посредством пептидной связи. Процесс биосинтеза белка рибосомами, как и биосинтез любой другой макромолекулы клетки, условно разделяют на три этапа: инициацию, элонгацию и терминацию. Во время инициации трансляции происходит сборка нативной 70S или 80S рибосомы на транслируемой мРНК и подготовка к образованию пептидной связи между первыми двумя N-концевыми аминокислотными остатками синтезируемого полипептида. При элонгации происходит последовательное удлинение растущей цепи полипептида аминокислотными остатками, а терминация трансляции сопровождается прекращением синтеза полипептида и его высвобождением из трансляционного комплекса. При этом наблюдается разделение рибосомы и мРНК, после чего они вступают в новый цикл трансляции. В ходе трансляции рибосома последовательно перемещается вдоль транслируемой молекулы мРНК, считывая заключенную в ней генетическую информацию в виде триплетного генетического кода. При этом биосинтез полипептида начинается с его N-концевой аминокислоты [3]. В процессе транскрипции биосинтезе РНК на матрице ДНК большое значение имеет способность РНК образовывать разнообразные элементы вторичной структуры шпильки , которые влияют как на инициацию, так и на терминацию синтеза РНК. РНК активно участвует в процессе своего собственного созревания — процессинге первичных транскриптов про-РНК. У примитивных одноклеточных организмов выявлена способность РНК к аутостайсингу — вырезанию некодирующих участков интронов и сшиванию кодирующих фрагментов экзонов без участия белков-ферментов. У организмов, утративших способность к аутосплайсингу, в сплайсировании РНК тем не менее принимают участие особые молекулы — малые ядерные РНК мяРНК , необходимые для безошибочного вычленения интронов из молекул РНК-предшественников. Посттрансляционные модификации синтезированных в ходе трансляции полипептидов, в результате которых образуются функционально активные молекулы, также нередко сопряжены с присоединением к ним значительных по размерам молекул РНК. Информосомы, частицы, присутствующие в животных клетках и состоящие из высокомолекулярной нерибосомной рибонуклеиновой кислоты РНК и особого белка. Информосомы обнаружены впервые советским биохимиком А. Спириным с сотрудниками в 1964 в цитоплазме зародышей рыб, где они представлены смесью частиц разных размеров Отношение массы РНК к массе белка в информосомах постоянно около 1:4 и одинаково у всех частиц, независимо от их размера. Аналогичные частицы найдены в клетках млекопитающих, в том числе зараженных вирусами, а также у иглокожих и насекомых. Белок информосом служит, вероятно, для переноса иРНК из ядра в цитоплазму, а также для защиты иРНК от разрушения и регуляции скорости белкового синтеза. Малые ядерные РНК присутствуют в ядрах в комплексах с белками, получившими название малые рибонуклеопротеиновые частицы мяРНП. Стабильным компонентом мяРНП является белок фибрилларин — очень консервативный по структуре белок с молекулярной массой 34 кДа, локализованный в ядрышках. Комплекс, состоящий из множества мяРНП, который катализирует сплайсинг ядерных про-мРНК, носит название сплайсингосомы. Сплайсингосома собирается на интроне перед его выщеплением и содержит несколько различных мяРНП. Малые ядерные РНП собираются в сплайсингосомы в определенной последовательности. И наконец, нельзя обойти вниманием тот факт, что многие катализаторы белковой природы ферменты , катализирующие различные биохимические превращения в клетке, функционируют благодаря содержанию в них коферментов рибонуклеотидной природы NAD, FAD, АТР и др. Хотя тмРНК была открыта более 20 лет назад в пост-рибосомном супернатанте, полученном из клеток Escherichiacoliее функция была установлена тольков 1996 году. В современной модели вторичной структуры тмРНК Е. Второй район представляет собой одноцепочечный участок, кодирующий tag-пептид, а третий соединяет тРНК - и мРНК-подобные части молекулы. Этот район сильно структурирован и содержит четыре псевдоузла рк1, рк2, рк3 и рК4. Матричная часть тмРНК кодирует пептид, являющейся сигналом узнавания специфическими протеазами tag-пептид. В аминоацилированном состоянии тмРНК взаимодействует с рибосомой, запрограммированной мРНК, в которой в результате случайной деградации отсутствует стоп-кодон. В результате tag-пептид присоединяется к недосинтезированному пептиду, который содержится в рибосоме до ее взаимодействия с тмРНК. При этом происходит терминация трансляции на стоп-кодоне матричной части тмРНК, а пептид, освободившийся из рибосомы, содержит участок, узнаваемый специфическими протеазами, что способствует его быстрой деградации. Схема транс-трансляции Цитировано по Зверевой М. В 1996 г. Кейлер предложил в качестве механизма функционирования тмРНК модель транс-трансляции биосинтез полипептидной цепи белка с использованием различных матричных последовательностей. Она предлагает механизм синтеза дополнительного пептида, основанный на наблюдении, что добавление нового пептида происходит в случае трансляции мРНК, в которой отсутствует стоп-кодон. Остановившаяся пептидная цепь переносится на аланил-тмРНК реакция транспептидирования , и рибосома продолжает синтез по матричной части тмРНК. Синтез продолжается до поступления в А-центр стоп-кодона тмРНК, после чего вступает в действие фактор терминации и трансляция завершается. В результате гибридный белок, состоящий из пептидов, соединенных аланином из тмРНК, уходит из рибосомы, а освободившаяся рибосома может участвовать в синтезе другого белка. Особенность такой транс-трансляционной системы состоит в том, что одна пептидная цепь синтезируется с двух различных молекул мРНК. Необходимо отметить, что способ установления рамки считывания ОРС матричной части тмРНК отличен от всех известных способов установления рамки считывания. Первая включаемая аминокислота не определена обычным кодон-антикодоновым взаимодействием, а аденозиновый остаток, отстоящий на 3 н. Это предположение требует дальнейшего экспериментального подтверждения. С помощью тмРНК клетка решает две задачи: с одной стороны, освобождаются остановившиеся рибосомы, а с другой, неправильные белки быстро расщепляются специфической протеазой, узнающей сигнальный пептид, кодируемый матричной частью тмРНК. Это связано с открытием процесса транс-трансляции, а именно с возможностью синтеза одного белка на основе двух различных мРНК. Кроме того, отсутствие тмРНК у высших организмов указывает на возможность ее использования в качестве хорошей мишени при создании новых антибактериальных средств. Функция тмРНК особенно важна для жизнедеятельности бактерий при повышенных температурах. Известно, что многие бактериальные инфекции сопровождаются повышением температуры, поэтому создание препарата, блокирующего функцию тмРНК, приведет к гибели бактерий и не повлияет на биосинтез белков человека. Регуляция экспрессии эукариотических генов может осуществляться на нескольких уровнях: во время транскрипции, на стадии процессинга РНК, при трансляции и на уровне созревания белка. В последнее время в связи с открытием явления интерференции РНК большое внимание ученых привлекает посттранскрипционный уровень регуляции. Интерференция РНК - высокоспецифичный механизм подавления экспрессии гена на посттранскрипционном уровне за счет деградации считанной с него мРНК. Малые РНК могут регулировать экспрессию генов не только посредством интерференции, но также подавляя трансляцию, транскрипцию или способствуя удалению гена-мишени из клеточного генома. Последнее наблюдается у некоторых простейших в процессе созревания макронуклеуса. Феномен интерференции РНК обнаружен у различных эукариотических организмов, в частности, у одноклеточных, низших грибов, растений, нематод, насекомых, а также у позвоночных, включая мышей и человека. Подобная высокая консервативность механизма интерференции РНК свидетельствует о его большой значимости. И хотя функции некоторых видов малых РНК до сих пор не установлены, предполагают, что основная их роль - защита генома клетки от внедрения мобильных генетических элементов вирусов, транспозонов , а также участие в регуляции дифференцировки многоклеточных организмов. Малые РНК представляют значительный интерес для фундаментальной молекулярной биологии и таких прикладных ее областей, как биомедицина и биотехнология. Одним из наиболее эффективных способов изучения функции гена является анализ фенотипа организмов, у которых этот ген не экспрессируется. Существует ряд методов, позволяющих подавлять экспрессию определенных генов, в том числе, использование антисмысловых олигонуклеотидов, рибозимов, химических блокаторов, а также разрушение нужного гена во всем организме путем внесения соответствующих мутаций в зиготу.
Моделирование происхождения жизни: Новые доказательства существования "мира РНК"
Гипотеза мира РНК | это... Что такое Гипотеза мира РНК? | Главная/Биология/Моделирование происхождения жизни: Новые доказательства существования "мира РНК". |
Обнаружены новые доказательства РНК-мира – Новости | Согласно этой гипотезе, первые репликаторы на Земле были представлены РНК-молекулами, способными к самовоспроизведению без участия белковых ферментов. |
Гипотеза РНК-мира для ЕГЭ по биологии - YouTube | ELife: обнаружено случайное возникновение самовоспроизводящихся молекул Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили об обнаружении новых доказательств гипотезы РНК-мира. |
Происхождение жизни, часть 2: РНК-мир
Главная/Биология/Моделирование происхождения жизни: Новые доказательства существования "мира РНК". Гипотеза не объясняла, как РНК начали соединяться с белками. Мир РНК — это красивая гипотеза о самозарождении жизни, и вчера ее доказательство стало на шаг ближе.
Американские ученые выявили новое объяснение возникновения жизни на Земле
РНК постепенно превратилась в постоянно совершенствующийся катализатор связывания аминокислот Эта связь между РНК и пептидами или белками сохранилась и по сей день Таким образом, мир РНК-пептидов решает проблему курицы и яйца». Это новое исследование ставит под сомнение гипотезу мира РНК, которая предполагает, что самовоспроизводящиеся молекулы РНК были предшественниками всех современных форм жизни на Земле. Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году, позже развита Лесли Орджелом и окончательно сформулирована Уолтером Гильбертом в 1986 году.
THE CONCEPT OF THE «RNA WORLD»: THEORY AND PRACTICE
- Моделирование происхождения жизни: Новые доказательства существования "мира РНК"
- Ученые обнаружили новые доказательства гипотезы РНК-мира | 01.04.2024 | Крым.Ньюз
- Ученые обнаружили новые доказательства теории РНК-мира
- Обнаружены новые доказательства РНК-мира – Новости
- Найдено подтверждение гипотезы «РНК-мира» Эволюция, по определению Дарвина… | Хайтек+ | Дзен
Происхождение жизни, часть 2: РНК-мир
Ученые из Брукхейвенской национальной лаборатории раскрывают новые доказательства гипотезы РНК-мира, согласно которой первые репликаторы на Земле были РНК-молекулами. Проблемы «Мира РНК» Несмотря на огромную популярность гипотезы «Мира РНК», накапливается все больше данных, указы-вающих на существование препятствий, которые делают эту гипотезу чрезвычайно маловероятной. (Различные аспекты гипотезы мира РНК и подтверждающие ее данные основательно рассмотрены в одноименной книге, вышедшей в 2010 г. в 4-м издании: Atkins et al., 2010.). Последние новости по теме рнк. Согласно гипотезе РНК-мира, молекула РНК играла ключевую роль в молекулярных процессах и биохимических реакциях, которые привели к появлению жизни на Земле.