Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе.
Что такое фрактал? Фракталы в природе
Таким образом, более крупные сборки являются реверсивными. Измеряли по одной пробе для каждой стадии концентрирования в течение десяти кадров. Представленные данные представляют собой выводимый Rg значения с использованием аппроксимации Гинье, а столбцы ошибок соответствуют s. Автор: Sendker, F.
Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024. Ученые, изучая структуру цитратсинтазы, были поражены изображениями, полученными с помощью электронного микроскопа.
Вместо ожидаемой регулярной решетки молекул они увидели завораживающий фрактальный узор. Секрет асимметрии Разгадка тайны фрактального белка кроется в его асимметрии. Обычно при самоорганизации белковых молекул каждая цепь занимает одинаковое положение относительно своих соседей.
Это приводит к формированию симметричных, упорядоченных структур. Но в случае с цитратсинтазой все иначе.
Нас заинтересовала такая геометрическая фигура, как дерево Пифагора, поскольку, она показалась наиболее удобной для реализации и наглядно показывающей свойство самоподобия. Второй этап - практический. В его основу был положен анализ способов построения фрактальных деревьев.
Метод «Систем Итерируемых Функций» появился в середине 80-х гг. Он представляет собой систему функций из некоторого фиксированного класса функций, отображающих одно многомерное множество на другое. Сначала мы выполнили построение одного отрезка в плоскости Оху, а затем проводили аффинные преобразования с изменением координат его концов, поворотом вокруг осей и изменением размера с определенным коэффициентом рис. Впоследствии количество уровней смогло увеличиться до 7.
Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024. Эксперименты по "обратной эволюции", восстанавливающие предковую форму белка, продемонстрировали, что фрактальный узор возник внезапно из-за нескольких мутаций, но впоследствии исчез у большинства видов цианобактерий. Уровни фрактальной сборки. Авторство: Sendker, F. Данный факт подчёркивает важность стохастических процессов в эволюции, демонстрируя, что сложные фенотипы могут возникать без явной адаптивной функции.
Это событие стало темой статьи, опубликованной в авторитетном журнале Nature. Фрактальная природа Находкой ученых стал микробный фермент, известный как цитратсинтаза цианобактерии. Особенностью этого фермента является его способность самопроизвольно собираться в структуру, напоминающую треугольник Серпинского. Этот фрактальный объект представляет собой треугольный узор, в котором каждый треугольник является уменьшенной копией целого.
Уникальная сборка
- Фракталы в природе (53 фото) - 53 фото
- Что такое фрактал? Фракталы в природе
- Фракталы в природе
- Физики нашли фракталы в лазерах
- Немного сухих фактов
Фракталы в природе и в дизайне: сакральная геометрия повсюду
Это послужило основой для формирования треугольника Серпинского с его большими внутренними пустотами, а не регулярной решетки молекул. Приносит ли эта странная сборка что-нибудь полезное? Многие фрактальные структуры, например, в облаках или дельтах рек вверху , создаются случайными процессами и не подчиняются точной математической формуле; русло меньшего размера не совсем соответствует строению большего русла, от которого оно ответвляется. С другой стороны, папоротники внизу слева и цветная капуста романеско являются примерами регулярных фракталов. Когда команда ученых генетически манипулировала бактерией, чтобы предотвратить сборку ее цитратсинтазы во фрактальные треугольники, клетки росли так же хорошо в различных условиях. Такие случаи могут произойти, когда рассматриваемую конструкцию не так уж сложно построить». Воспроизведение эволюции в лаборатории Чтобы проверить свою теорию, команда воссоздала в лаборатории эволюционное развитие фрактального устройства.
Измеряли по одной пробе для каждой стадии концентрирования в течение десяти кадров. Представленные данные представляют собой выводимый Rg значения с использованием аппроксимации Гинье, а столбцы ошибок соответствуют s. Автор: Sendker, F. Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024. Ученые, изучая структуру цитратсинтазы, были поражены изображениями, полученными с помощью электронного микроскопа.
Вместо ожидаемой регулярной решетки молекул они увидели завораживающий фрактальный узор. Секрет асимметрии Разгадка тайны фрактального белка кроется в его асимметрии. Обычно при самоорганизации белковых молекул каждая цепь занимает одинаковое положение относительно своих соседей. Это приводит к формированию симметричных, упорядоченных структур. Но в случае с цитратсинтазой все иначе. Различные белковые цепи взаимодействуют друг с другом по-разному, создавая сложный и непредсказуемый узор, подобный треугольнику Серпинского.
Объекты, которые мы называем «красивыми» или «эстетическими», являются важной частью нашего человечества. Даже самые старые известные образцы наскального и наскального искусства выполняли эстетические, а не утилитарные роли. Хотя эстетику часто считают плохо определенным неопределенным качеством, исследовательские группы, такие как моя, используют сложные методы для ее количественной оценки - и ее влияние на наблюдателя. Мы находим, что эстетические изображения могут вызывать ошеломляющие изменения в теле, включая радикальное снижение уровня стресса у наблюдателя.
По оценкам, только стресс на работе обходится американским предприятиям в миллиарды долларов в год, поэтому изучение эстетики несет огромную потенциальную пользу обществу. Исследователи распутывают то, что делает конкретные произведения искусства или природные сцены визуально привлекательными и снимающими стресс, и одним из важнейших факторов является наличие повторяющихся паттернов, называемых фракталами. Являются ли фракталы ключом к тому, почему работа Поллока очаровывает? В конце концов, они визуальные эксперты.
Моя исследовательская группа воспользовалась этим подходом вместе с Джексоном Поллоком, который достиг пика современного искусства в конце 1940-х годов, выливая краску прямо из банки на горизонтальные полотна, которые лежали на полу его студии. Хотя среди ученых Поллока разгорелись битвы за значение его разбрызганных узоров, многие согласились с тем, что у них органическое, естественное чувство. Мое научное любопытство всколыхнулось, когда я узнал, что многие природные объекты являются фрактальными, с рисунками, которые повторяются при все более мелких увеличениях. Например, подумайте о дереве.
Сначала вы видите большие ветви, растущие из ствола. Затем вы видите меньшие версии, растущие из каждой большой ветви. Когда вы продолжаете увеличивать изображение, появляются все более и более тонкие ветви, вплоть до самых маленьких веточек. Другие примеры природных фракталов включают облака, реки, береговые линии и горы.
В 1999 году моя группа использовала методы компьютерного анализа рисунков, чтобы показать, что картины Поллока столь же фрактальны, как и рисунки в естественных пейзажах.
Папоротник является хорошим примером фрактала среди флоры. Каждое соцветие копируется точно таким же только меньше. Фото сделано снизу, чтобы разглядеть это во всей красе. Брокколи - хоть брокколи не так лихо геометрична, как романессу, но тоже фрактальна. Павлины - всем известны своим красочным оперением, в котором спрятаны сплошные фракталы. Ананас - необычный плод это есть, фактически, фрактал. Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии. Облака - Посмотрите в окно.
Впервые в природе обнаружена микроскопическая фрактальная структура
Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский правда, выросший во Франции математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами от латинского fractus — изломанный. С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы».
Джонатан Свифт Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно в масштабе человеческой эволюции мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь. Одно из таких «незаметных» открытий — фракталы.
Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине? В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей.
Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее, даже в хаосе можно найти связь между событиями. И эта связь — фрактал. Сегодня вряд ли можно найти человека, занимающегося или интересующегося наукой, который не слышал бы о фракталах. Глядя на них трудно поверить, что это не творения природы и за ними скрываются математические формулы.
Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас. Словом они "как настоящие". Скорее всего, именно поэтому, однажды увидев, человек уже не может их забыть. Любопытную мысль приводит в своей книге "Фрактальная геометрия природы" американский математик Бенуа Мандельброт: "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря.
Облака — это не сферы, линии берега — это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные — задачи исследования морфологии аморфного.
Но эта береговая линия оказывается изрезанной. На ваших снимках появляются небольшие бухты, заливы, выступающие в море фрагменты суши. Все это соответствует действительности, но не могло быть увиденным со спутника. Структура береговой линии усложняется. Допустим, прилетев домой, вы на основании своих снимков сделали подробную карту береговой линии. И решили измерить ее длину с помощью той самой нитки, выложив ее строго по полученным вами новым данным.
Новое значение длины береговой линии превысит старое. И существенно. Интуитивно это понятно. Ведь теперь ваша нитка должна огибать берега всех заливов и бухт, а не просто проходить по побережью. Мы уменьшили масштаб, и все стало намного сложнее и запутаннее. Как у фракталов. А теперь еще одна итерация. Вы идете по тому же побережью пешком. И фиксируете рельеф береговой линии. Выясняется, что берега заливов и бухт, которые вы снимали с самолета, вовсе не такие гладкие и простые, как вам казалось на ваших снимках.
Они имеют сложную структуру. И, таким образом, если вы нанесете на карту вот эту «пешеходную» береговую линию, длина ее вырастет еще больше. Да, бесконечностей в природе не бывает. Но совершенно понятно, что береговая линия — это типичный фрактал. Она остается себе подобной, но ее структура становится все более и более сложной при ближайшем рассмотрении вспомните про пример с микроскопом. Это воистину удивительное явление. Мы привыкли к тому, что любой ограниченный по размерам геометрический объект на плоскости квадрат, треугольник, окружность имеет фиксированную и конечную длину своих границ. А здесь все по-другому. Длина береговой линии в пределе оказывается бесконечной. Дерево А вот представим себе дерево.
Обычное дерево. Какую-нибудь развесистую липу. Посмотрим на ее ствол. Около корня. Он представляет собой такой слегка деформированный цилиндр. Поднимем глаза выше. От ствола начинают выходить ветви. Каждая ветвь, в своем начале, имеет такую же структуру, как ствол — цилиндрическую, с точки зрения геометрии. Но структура всего дерева изменилась. Она стала намного более сложной.
А теперь посмотрим на эти ветви. От них отходят более мелкие ветки. У своего основания они имеют ту же слегка деформированную цилиндрическую форму. Как тот же ствол. А потом и от них отходят куда более мелкие ветки. И так далее. Дерево воспроизводит само себя, на каждом уровне. При этом его структура постоянно усложняется, но остается себе подобной.
Это и есть принцип фрактальности на биржевых графиках — малое подобно большому, и наоборот. Для нас, трейдеров в этом есть неоспоримое преимущество. Ведь научившись торговать на одном таймфрейме, мы можем масштабировать нашу торговлю: Если хотим меньше тратить времени и реже торговать — тогда можно увеличивать таймфрейм. Если хотим больше торговать, и для этого у нас есть больше времени — тогда можно уменьшать таймфрейм. Хотя, конечно, у каждого таймфрейма есть свои особенности, но общий характер рыночных движений сохраняется благодаря фрактальности. Фракталом в трейдинге принято называть локальный экстремум, состоящий из нескольких баров. Стрелками на графике показаны фракталы, которые являются экстремумами — то есть, локальными минимумами или максимумами на текущем графике. Билл Уильямс определяет, что: для образования верхнего фрактала бар должен иметь самый высокий максимум по сравнению с 2-мя барами слева и 2-мя барами справа; для образования нижнего фрактала бар должен иметь самый низкий минимум по сравнению с 2-мя барами слева и 2-мя барами справа. Как следствие, фракталы не могут появиться на самом правом краю графика. Для его образования, нужно, как минимум, 5 баров. С целью построения стратегии торговли, основанной на фракталах, Билл Уильямс вводит также правила сигнального и стартового фракталов.
Фрактальные узоры в природе и искусстве эстетичны и снимают стресс
Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах. Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений.
Фракталы в природе презентация - 97 фото
Для ученых это, конечно, больше, чем просто красивая картинка, но сейчас не об этом. Фрактал — геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.
Мы приведем еще несколько примеров. В тканях пищеварительного тракта одна волокнистая поверхность встроена в другую. Фрактальные ответвления или складки значительно увеличивают площадь поверхности, необходимой для всасывания в тонком кишечнике.
Желчные протоки в печени и мочеполовая система, иммунная система и вестибулярный аппарат, сетчатка глаза, а также почки — всё это является фрактальными структурами, которые прекрасно организованы и хорошо подготовлены к различного рода повреждениям. На сегодняшний день накоплено немало научных данных, свидетельствующих о фрактальности структур и функций головного мозга и нервной системы. Интересный факт: при визуальном поиске глаз человека вычерчивает фрактальную траекторию! Возьмём физическое тело человека целиком. Наблюдая за ростом и развитием его от рождения до смерти, мы сможем увидеть различные масштабные копии одного объекта.
Тело человека претерпевает изменения подобно нелинейному динамическому фракталу. Развитие человеческого тела. Процесс динамического фрактала Комплексный подход В прошлом веке появилась и закрепилась тенденция на разделение целостной когда-то науки на узкие направления. Научный язык усложнился, учёные всё меньше слышат друг друга, углубляясь в свои специализации. Однако сейчас уже мы понимаем, что весь мир живой и неживой природы подчиняется одним закономерностям: от развития колоний бактерий до распределения небесных тел в космическом пространстве.
Это понимание позволяет нам увидеть более целостную картину мира, открыть взаимосвязь разрозненных, казалось бы объектов, понять причинно-следственные связи. Несомненно комплексным должен быть подход и к здоровью человека. Узкая специализация врачей зачастую не позволяет лечить человека как единый организм. Но человек имеет более сложное строение: то, что видимо глазу — тело и энергетическую конструкцию, которая не видна обычным зрением. Зная об энергетической конструкции , о её взаимосвязи с телом, мы сможем найти целостный подход к профилактике и лечению, раскрыть неиспользуемый потенциал.
Простой пример: известный всем эффект «плацебо» основан на силе веры самого человека. Другими словами, просто переключив внимание с негатива на мысли о выздоровлении, человек изменяет настройки своего организма. Состояние духа больного, его доверие или недоверие врачу, глубина его веры и надежды на исцеление или, наоборот, психическая депрессия, вызванная неосторожными разговорами врачей в присутствии больного о серьезности его болезни, глубоко определяют исход болезни.
Автор, Demoscene Passivist, говорит, что для создания демо с процедурно генерируемыми фрактальными ландшафтами потребовалось около двух месяцев.
А вот один из лучших проектов с фрактальными эффектами в демосцене. К сожалению, качество демонстрационного видео крайне плохое из-за давности лет , но демо можно скачать и запустить на компьютере. Для создания подобных или других фрактальных миров особых ухищрений не требуется. Есть несколько отличных программ, с помощью которых вы сможете самостоятельно изучать особенности фрактальной вселенной.
XaoS Open Source Project. Бесплатный, открытый, кроссплатформенный инструмент для масштабирования и изучения множества Мандельброта и десятков других фракталов.
В 1999 году моя группа использовала методы компьютерного анализа рисунков, чтобы показать, что картины Поллока столь же фрактальны, как и рисунки в естественных пейзажах. С тех пор более 10 различных групп выполнили различные формы фрактального анализа на его картинах. Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы. Воздействие эстетики природы на удивление сильно. В 1980-х годах архитекторы обнаружили, что пациенты быстрее выздоравливали после операции, когда им давали больничные комнаты с окнами, выходящими на природу. Другие исследования, проведенные с тех пор, показали, что только просмотр изображений природных сцен может изменить то, как вегетативная нервная система человека реагирует на стресс.
Являются ли фракталы секретом некоторых успокаивающих природных сцен? Сотрудничая с психологами и нейробиологами, мы измерили реакцию людей на фракталы, найденные в природе используя фотографии природных сцен , искусство картины Поллока и математику компьютерные изображения , и обнаружили универсальный эффект, который мы назвали «беглость фрактала». Благодаря воздействию природных фрактальных пейзажей, зрительные системы людей легко адаптировались к эффективной обработке фракталов. Мы обнаружили, что эта адаптация происходит на многих этапах зрительной системы, от того, как движутся наши глаза, до того, какие области мозга активируются. Эта беглость помещает нас в зону комфорта, и поэтому нам нравится смотреть на фракталы. Важно отметить, что мы использовали ЭЭГ для записи электрической активности мозга и методов проводимости кожи, чтобы показать, что этот эстетический опыт сопровождается снижением напряжения на 60 процентов - удивительно большой эффект для немедикаментозного лечения. Это физиологическое изменение даже ускоряет восстановление после операции. Художники интуитивно понимают привлекательность фракталов Поэтому неудивительно, что художники-визуалисты на протяжении веков и во многих культурах встраивали фрактальные узоры в свои работы.
Фракталы можно найти, например, в римских, египетских, ацтекских, инкских и майяских работах. Мои любимые примеры фрактального искусства из более поздних времен включают Турбулентность да Винчи 1500 , Великую волну Хокусая 1830 , серию кругов М. Эшера 1950-е и, конечно же, разлитые картины Поллока.
Физики нашли фракталы в лазерах
Геометрия природы» пользователя Мария Иванова в Pinterest. Посмотрите больше идей на темы «фракталы, фрактальное искусство, природа». Посмотрите потрясающие примеры фракталов в природе. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. Фото: Фракталы в природе молния.
Что такое фрактал? Фракталы в природе
Если посмотреть на фрактал с близкого или дальнего расстояния, можно увидеть, как повторяются одни и те же узоры. Геометрия природы» пользователя Мария Иванова в Pinterest. Посмотрите больше идей на темы «фракталы, фрактальное искусство, природа». Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах. Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений.
Прибыльная торговля с помощью фрактальности существует?
Но давайте посмотрим на нее поближе. И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики звездные скопления , где-то — пустота. Почему распределение материи подчиняется иррегулярным иерархическим законам. А что происходит внутри галактик еще одно уменьшение масштаба. Где-то звезд больше, где-то меньше. Где-то существуют планетные системы, как в нашей Солнечной, а где-то — нет. Не проявляется ли здесь фрактальная сущность мира? Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой. Но кто знает? Возможно, это все когда-то будет приведено к «общему знаменателю», и мы посмотрим на окружающий нас космос совсем другими глазами.
К практическим делам Подобных примеров можно приводить много. Но давайте вернемся к более прозаическим вещам. Вот, например, экономика. Казалось бы, причем здесь фракталы. Оказывается, очень даже причем. Пример тому — фондовые рынки. Практика показывает, что экономические процессы носят зачастую хаотичный, непредсказуемый характер. Существовавшие до сегодняшнего дня математические модели, которые пытались эти процессы описывать, не учитывали одного очень важного фактора — способность рынка к самоорганизации. Вот тут на помощь и приходит теория фракталов, которые имеют свойства «самоорганизации», воспроизводя себя на уровне разных масштабов. Конечно, фрактал является чисто математическим объектом.
И в природе, да и в экономике, их не существует. Но есть понятие фрактальных явлений. Они являются фракталами только в статистическом смысле. Тем не менее симбиоз фрактальной математики и статистики позволяет получить достаточно точные и адекватные прогнозы. Особенно эффективным этот подход оказывается при анализе фондовых рынков. И это не «придумки» математиков. Экспертные данные показывают, что многие участники фондовых рынков тратят немалые деньги на оплату специалистов в области фрактальной математики. Что же дает теория фракталов? Она постулирует общую, глобальную зависимость ценообразования от того, что было в прошлом. Конечно, локально процесс ценообразования случаен.
Но случайные скачки и падения цен, которые могут происходить сиюминутно, имеют особенность собираться в кластеры. Которые воспроизводятся на больших масштабах времени. Поэтому, анализируя то, что было когда-то, мы можем прогнозировать, как долго продлиться та или иная тенденция развития рынка рост или падение. Таким образом, в глобальном масштабе тот или иной рынок «воспроизводит» сам себя. Допуская случайные флуктуации, вызванные массой внешних факторов, в каждый конкретный момент времени. Но глобальные тенденции сохраняются. Вот вам и фракталы! Чем мы дальше уменьшаем масштаб, тем структура фрактала становится все более сложной. Но они воспроизводят себя, так же как это делает фондовый рынок. Заключение Почему мир устроен по фрактальному принципу?
Ответ, возможно, состоит в том, что фракталы, как математическая модель, обладают свойством самоорганизации и самоподобия. При этом каждая их форма см. Не так ли и наш мир устроен?
Примерами фракталов являются поверхность облаков и гор, разветвленные системы рек, траектории броуновских частиц, турбулентные вихри в атмосфере и в воде, контуры электрических разрядов и многие другие объекты и явления. Наше ощущение прекрасного возникает под влиянием гармонии порядка и хаоса в объектах природы - тучах, деревьях, горных грядах и кристалликах снега. Их очертания - динамические процессы, застывшие в физических формах, и определенное чередование порядка и беспорядка характерно для них. В 1992 году вышла книга М.
Маковского "Лингвистическая генетика". В ней автор доказывает, что человеческие языки развиваются по законам Менделя. У многочисленных "братьев" и "сестер" родительские признаки расщепляются по закону Менделя в соотношении 3:1. Дурная наследственность порождает мутации - появляются слова уродцы. Иногда часть слова перепрыгивает с места на место - происходит транспозиция. Лингвист Геннадий Гриневич писал, что языки мира подобны ветвям дерева, то есть имеют общий корень. Математик-лингвист Ноам Хомский доказал, что грамматики всех языков универсальны имеют общие стратегические черты.
Эти и другие факты позволили лингвистам создать универсальную математическую модель человеческих языков, которая оказалась похожей на дерево. Существует математическая модель генетических текстов кодов. Все они имеют общее происхождение и общие черты, которые можно изобразить в виде дерева. Интересно, что сравнение обнаруживает полное сходство деревьев языков и генетических текстов. Возможно, человек подобен памятной книге, в которой пишут отзывы все желающие, в том числе и он сам. Эти тексты не только формируют его личность, но и впечатываются в ДНК. Говоря о микроэволюции часто пользуются широко принятой аналогией между филетической группой и деревом.
Филетическое видообразование можно сравнить с ростом ветвей. Время от времени побеги дерева постригаются, лишая их дальнейшего роста, по некоторым правилам: убираются ветви расположенные на максимальной высоте, нередко отсекаются побеги одной крупной ветви, включающей в себя множество мелких ветвей и веточек. Дерево научного знания в аксиоматической теории М. Эйдельмана - эквивалент библейского дерева познания добра и зла. Корни - первичные понятия и определения, аксиомы и постулаты, ветви - теоремы вторичных законов и их следствия, плоды - непротиворечивое описание языком природы множества объектов и явлений, включая техногенные. Как одно из наиболее древних, интуитивно найденных средств восстановления внешней фрактальности, может рассматриваться искусство. В частности, обнаружено, что вариации силы и высоты звучания классической и народной музыки демонстрируют отчетливо самоподобие.
Можно убедиться, что этим свойством обладает и масштабная структура классических архитектурных сооружений. Прослушивание музыкальных произведений, начиная со средних веков, успешно используется в качестве особого метода терапии, получившего название "музыкопея". Как отмечено автором первого исследования фрактальных свойств музыки, причина ее красоты и гармоничности может состоять в том, что музыка "имитирует характерный способ изменения окружающего нас мира во времени". В развитие этой мысли можно добавить, что критерии эстетичности в искусстве, по-видимому, обусловлены и "фракталами внутри нас", создающими потребность в адекватном режиме взаимодействия живой системы с внешней средой. Фрактальная геометрия природы выражается в том, что принцип самоподобия в приближенном виде выполняется во многих проявлениях. Она имеет место в линиях берегов морей и рек, в очертаниях облаков и деревьев, в турбулентном потоке жидкости и иерархической организации живых систем хотя нет ни одной реальной структуры, которую можно было бы последовательно увеличивать бесконечное число раз и которая выглядела бы при этом неизменной.
На рисунке эти формы застыли.
На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает. Your browser does not support the video tag.
Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде. Посмотрите потрясающие примеры фракталов в природе. Морские раковины.
Фракталы в природе (102 фото)
Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности. Смотрите 66 фотографии онлайн по теме фракталы в природе. О природе ков Виталий7 (Высоцкий В С.). Фракталы в природе.