Эти 15 технологий искусственного интеллекта — лишь несколько примеров инноваций, формирующих наше будущее.
Как искусственный интеллект повлияет на нашу жизнь в будущем
Он автоматизирует процесс кодирования, предлагая оптимальные решения на основе анализа существующего кода. Watson применяется в различных отраслях, от здравоохранения до финансов, предоставляя интеллектуальный анализ больших объемов данных. Watson является мощным инструментом для анализа данных, особенно в сфере здравоохранения, где он помогает врачам в диагностике и лечении. Google AI играет центральную роль во многих продуктах Google, включая поиск, переводчик, и сервисы фотографии. Он обрабатывает огромное количество данных каждый день, обеспечивая непрерывное улучшение своих алгоритмов. Amazon Alexa Alexa, виртуальный ассистент от Amazon, постоянно обновляется и улучшается, включая улучшенные навыки для домашней автоматизации и управления музыкой. Она постоянно обновляется для улучшения взаимодействия с пользователем и интеграции с другими устройствами. Этот ИИ широко используется в автомобильной индустрии и игровом секторе. Он обучен распознавать и интерпретировать естественный язык, что позволяет ему взаимодействовать с пользователем почти как человек.
В этой сфере искусственный интеллект отвечает за то, чтобы помочь мозгу и приборам понять друг друга. Он преобразует входящие сигналы, передаёт информацию о положении конечностей в пространстве и состоянии внешней среды. Он «рассматривает» предмет перед собой и помогает крепче и удобнее его схватить.
Опасная и не только работа Роботы уже трудятся в местах повышенной опасности, например, обезвреживают бомбы. Правда, это не настоящие роботы, а беспилотные аппараты, которыми надо дистанционно управлять. Будущее искусственного интеллекта предполагает, что они станут принимать решения самостоятельно и действовали независимо от человека.
Но стоит понимать, что для заводов сейчас не критична частичная автономность, если роботы работают в штатных условиях и знают, как себя вести при их нарушении. Для инженеров, создающих подобные инновации — это техническая задача, а не футуристический вызов. Промышленные роботы с разной степенью самостоятельности работают в пищевой промышленности, автомобиле- и машиностроении, сфере обслуживания, логистике.
Например, компания Amazon представила новый способ доставки товара до покупателя за 30 минут «Amazon Prime Air», при помощи автоматизированных квадрокоптеров. Отдельным направлением развивается экстремальная робототехника. Это аппараты или комплексы, действующие там, где работа для человека опасна или невозможна: в разминировании, военной разведке, подводных исследованиях, космических операциях, горно-разведочной деятельности, спасательных операциях при природных катаклизмах.
Климат и окружающая среда Одна из технологий будущего, в которой применяется ИИ — моделирование климата. Человечество занимается прогнозированием погоды не первое десятилетие, но суперкомпьютеры, большие данные и нейронные сети только сейчас вышли на уровень глубокой работы с этим материалом. Учёные планируют совмещать с помощью ИИ разные математические модели, «скармливая» системе реальные данные.
Это повысит точность прогнозирования, и расширит возможности. Например, можно посмотреть картину изменения климата на европейском побережье Атлантического океана на несколько лет вперёд.
В ее речи говорилось об использовании инструментов на основе ИИ для систем раннего предупреждения, специально разработанных для различных географических точек.
Доктор Халид призвал исследователей увеличить размер своих ставок на детекторы загрязнения на основе искусственного интеллекта и системы предотвращения пандемий для защиты флоры и фауны на Земле. Чтобы уравнять шансы, эксперт по климату жаждет интеграции Больших данных с ИИ. Помимо сложного процесса внедрения, эксперты выделили множество проблем, препятствующих усилиям по защите окружающей среды на основе ИИ.
В настоящее время сложно идти в ногу с инновациями в программном обеспечении для ИИ, что может замедлить усилия по внедрению.
Средний уровень использования ИИ в стране вырос в полтора раза. Со следующего года такой подход будет протестирован на предприятиях с годовой выручкой от 800 млн рублей, которые работают в сельском хозяйстве, промышленности, здравоохранении и транспортной сфере. Для поддержки бизнеса с этого года запущен механизм налоговых льгот.
Предприниматели получили право при формировании первоначальной стоимости оборудования и ПО с ИИ применять повышающий коэффициент 1,5", - сообщил вице-премьер. В ходе выступления Чернышенко обозначил пять основных глобальных трендов в сфере ИИ. Первым таким трендом он назвал стремление государств к технологическому суверенитету в условиях взаимных ограничений, когда отдельные страны закрывают доступ к своим разработкам. Второй - ужесточение борьбы за кадры.
Поэтому правительство стремится обеспечить российским специалистам в области ИИ лучшие условия работы. Альянс в сфере ИИ совместно с Минобрнауки разработал рейтинг качества подготовки специалистов по искусственному интеллекту, который показывает, насколько образовательные программы различных вузов отвечают запросам рынка. По словам Дмитрия Чернышенко, топ-10 российских университетов в этом рейтинге уже серьёзно конкурируют за звание лучших и готовят высококвалифицированных специалистов. Третий тренд - развитие безопасного искусственного интеллекта.
Содержание
- Искусственный интеллект в современном мире
- Как искусственный интеллект изменит мир к 2030 году
- Технологии искусственного интеллекта. Обзор TAdviser
- Фиксируем прибыль: самарцы чаще других россиян зарабатывают с помощью искусственного интеллекта
Лишённый чувств? Учёный — об искусственном интеллекте
На прошлой неделе OpenAI открыла свой первый офис в Токио. Она стала первой из трёх небольших ИИ-моделей, которые софтверный гигант планирует выпустить в свет. В декабре прошлого года Microsoft выпустила модель Phi-2, которая работала так же хорошо, как и более крупные модели, такие как Llama 2. По словам разработчиков, Phi-3 работает лучше предыдущей версии и может давать ответы, близкие к тем, что дают модели в 10 раз больше. По сравнению с более крупными аналогами, небольшие ИИ-модели обычно дешевле в эксплуатации и лучше работают на персональных устройствах, таких как смартфоны и ноутбуки. Наряду с Phi компания также создала модель Orca-Math, которая ориентирована на решение математических задач. Конкуренты Microsoft занимаются разработкой небольших ИИ-моделей, многие из которых нацелены на решение более простых задач, таких как обобщение документов или помощь в написании программного кода. По словам Бойда, разработчики обучали Phi-3 по «учебному плану». Они вдохновлялись тем, как дети учатся на сказках, читаемых перед сном. Это книги с более простыми словами и структурами предложений, но в то же время зачастую в них поднимаются важные темы. Поскольку существующей литературы для детей при тренировке Phi-3 не хватало, разработчики взяли список из более чем 3000 тем и попросили большие языковые модели написать дополнительные «детские книги» специально для обучения Phi-3.
Бойд добавил, что Phi-3 просто развивает дальше то, чему обучились предыдущие итерации ИИ-модели. Если Phi-1 была ориентирована на кодирование, а Phi-2 начала учиться рассуждать, то Phi-3 ещё лучше справляется с кодированием и рассуждениями. Расследование Reuters показывает, что санкционная продукция Nvidia продолжает поставляться в Китай. Источник изображения: Nvidia Агентство использовало для получения подобных выводов общедоступную конкурсную документацию, в которой отображались состоявшиеся закупки серверного оборудования, в составе которого содержались запрещённые к экспорту в Китай компоненты Nvidia. По словам представителей Reuters, уже после вступления новых ограничений в середине ноября прошлого года не менее 10 китайских учреждений смогли получить серверное оборудование, содержащее «запрещённые» ускорители Nvidia. В выборку попали конкурсные процедуры, которые проводились в период с 20 ноября прошлого года по 28 февраля текущего. Среди 11 поставщиков, выигравших конкурсные процедуры на поставку «запрещённой» вычислительной техники в Китай, все были малоизвестными торговыми компаниями из КНР, как поясняет Reuters. Поставляли ли они оборудование из запасов, сформированных до вступления в силу осенних изменений к правилам экспортного контроля, определить не удалось. Представители Nvidia заявили, что даже если указанные поставки и осуществлялись в обход санкций США, они составляют лишь малую часть оборота мирового рынка, и никак не дискредитируют ни саму компанию, ни её партнёров. Получателями оборудования по рассматриваемым конкурсам выступали государственные ВУЗы КНР и правительственные организации, а также пара исследовательских центров, работающих в аэрокосмической отрасли.
Представители Super Micro заверили, что собственные требования компании к соблюдению правил экспортного контроля с запасом превосходят по строгости государственные, а поставленное в Китай оборудование относилось к прошлому поколению, которое под санкции США ранее не попадало. Китайские поставщики, которые участвовали в конкурсе, клиентами Super Micro не являлись. Dell разбирается в ситуации, но на момент подготовки материала к печати заявила, что не располагает доказательствами поставки запрещённого к экспорту в Китай оборудования в адрес упоминаемых агентством Reuters китайских организаций и компаний. Gigabyte Technology просто заявила, что соблюдает международные правила торговли и законы Тайваня. Источник изображения: unsplash. Аналитики компании считают, что «поставки и внедрение ноутбуков с генеративным ИИ ускорятся в 2025—2026 годах вместе с появлением новых функций и вариантов использования генеративного ИИ, поддерживаемых новыми процессорными платформами производителей чипов». Источник изображения: Counterpoint Research Рейтинг пяти крупнейших брендов не изменился по сравнению с прошлым годом, при этом самыми успешными по росту поставок производителями остались Lenovo и Acer. Некоторые делают это публично, другие в закрытых презентациях, и последний из каналов позволяет нам узнать, что Microsoft к концу текущего года хочет утроить количество эксплуатируемых ускорителей до 1,8 млн штук. Источник изображения: Microsoft О наличии таких планов у Microsoft со ссылкой на служебную документацию корпорации сообщил на прошлой неделе ресурс Business Insider. В документе сообщается, что Microsoft рассчитывает увеличить закупки ускорителей вычислений на основе GPU в три раза по сравнению с прошлым годом, и к декабрю располагать примерно 1,8 млн соответствующих ускорителей, преимущественно поставленных компанией Nvidia.
К примеру, к процессам, в рамках которых ИИ решает определенные узконаправленные задачи, следует отнести следующие: 1. Искусственный интеллект осуществляет изучение статистики и выполняет прогностические функции, обрабатывая гигантские массивы информации в целях подбора наиболее оптимального распределения цен на конкретный вид продукции. Это позволяет в несколько раз повысить объемы выручки и доходов компании. Самообучающиеся нейронные сети анализируют поведение клиентов и вычисляют подозрительные операции, существенно снижая таким образом негативные последствия действий кибермошенников и киберпреступников, что приводит к значительному снижению финансовых потерь, повышенной защищенности системы и росту доверия пользователей [7] Dudin, Shkodinskiy, 2021. Маркетинговая сфера. Системы искусственного интеллекта на основе изучения предыдущих продаж и глубокого изучения рынков осуществляют прогнозирование сценариев развития событий. Алгоритмами изучаются контактные данные клиентов, суммы сделок и приобретенные ими товары или услуги [20] Shkor, Sevzyuk, 2020. Кроме того, ИИ анализирует поведение конкурентов в целях сопоставления эффективных и неудачных решений и действий.
Это позволяет компании разрабатывать и реализовывать грамотную маркетинговую стратегию, которая с высокой степенью вероятности завершится финансовым успехом. Скорость обработки данных. Big Data большие данные — это основной инструмент работы искусственного интеллекта. ИИ позволяет быстро и эффективно анализировать большие объемы информации, разрабатывать пути реакции, а также осуществлять построение стратегического планирования. В качестве примера можно привести применение систем искусственного интеллекта при реализации биржевых операций. Следует отметить, что традиционные программные алгоритмы не в состоянии самостоятельно адаптироваться к быстро меняющимся условиям и данным без предварительного обучения. Алгоритмы искусственного интеллекта предоставляют такую возможность и повышают продуктивность работы на бирже [4] Babich, Kirillova, 2019. Процессы автоматизации.
Существует большое количество факторов, вызывающих возможные ошибки в работе персонала. Искусственный интеллект, у которого отсутствуют эмоции и чувства, характерные для человека человеческий фактор , используя данные, функции и технологии, позволяет осуществлять безошибочную и точную работу [12] Lapaev, Morozova, 2020. Однако следует отметить, что уже сегодня ведется ряд исследований, которые позволяют ИИ выявлять сарказм и двойной смысл человеческих сообщений. В частности, американскими учеными из Университета Центральной Флориды на основе тренировок и обучения нейронных сетей создан искусственный эмоциональный интеллект Emotional AI. Это перспективная подсистема ИИ, которая способна распознавать и интерпретировать проявления человеческих эмоций. Благодаря этому достигается более естественное и непринужденное взаимодействие человека и ИИ [6]. Виртуальные помощники. К примеру, чат-бот Олег, применяемый в приложении интернет-банка Тинькофф, с помощью распознавания речи общается с клиентами банка посредством цифровых устройств и выполняет стандартные банковские операции, например, осуществляет денежные переводы.
Эти же функции осуществляются первым в мире семейством виртуальных ассистентов «Салют» экосистемы «Сбер» [7]. Использование виртуальных помощников — это один из ИИ-инструментов, который со временем будет более широко внедряться в бизнес-процессы и повседневную жизнь современного человека. По статистике Facebook, более 10 тысяч компаний занимаются разработкой чат-ботов [8]. К примеру, Juniper Research отмечается высокая популярность применения виртуальных помощников. Использование чат-ботов в финансовом секторе и медицине способно сэкономить до 20 млн долл. США в год, к 2022 г.
Казалось бы, какая связь — патологии в легких и ранения конечностей. Оказывается, какие-то закономерности есть, при этом книга была выпущена сразу после войны, и не было времени понять почему. Там были собраны наблюдения и статистика, и она была просто огромная, тысячи случаев.
Из этого понятно, что, просто анализируя события и наблюдая за происходящим, можно найти закономерности, которые на первый взгляд неочевидны. Дело в том, что медицина — это консервативная область, которая жёстко регулируется по вполне понятным причинам — слишком высока цена ошибки, любое внедрение требует множества экспериментов. Второй важный момент — данные, которые собирает медицина, очень чувствительны и приватны, никто из нас не хочет, чтобы его история болезни стала публичной. Поэтому законодательная база устроена таким образом, что любые медицинские данные крайне строго охраняются. Эту ситуацию нужно как-то аккуратно менять, потому что медицина — сфера, где максимально высок потенциал применения технологий: и скорость постановки диагноза, и постановка каких-то упреждающих диагнозов, и прогноз ситуации. Все врачи говорят одно и то же: приходите и проверяйтесь, чем раньше что-то диагностировано, тем лучше. Никто из нас, конечно, не ходит, потому что кажется, что меня это не коснётся, я молодой, у меня нет времени или ещё что-нибудь. Но если система будет давать индивидуальные рекомендации: конкретно тебе нужно прийти конкретно к этому врачу, потому что именно в твоём случае высок риск появления такого-то заболевания, которое нужно диагностировать на раннем этапе, — это было бы невероятно полезно. Надеюсь, что такие системы появятся.
О том, почему банки заинтересованы в развитии технологий ИИ Есть то, что называется скоринг — принятие решения, выдавать или не выдавать кредит. Для банков это важно, вообще-то, банки зарабатывают на том, что они выдают кредиты, проценты по кредиту — одна из главных доходных частей банка. Но при этом, если по кредиту деньги не возвращаются, банк проигрывает. Я сейчас говорю не только о частных кредитах, не о бытовом кредитовании граждан, а о кредитах, которые выдаются большим компаниям. Это большие деньги. Если банк плохо принимает решение о выдаче этих кредитов, то начинает действовать консервативно. Долгое согласование, куча бумаг и высокая ставка по кредиту, потому что она должна покрывать риски в тех ситуациях, когда кредит не возвращается. И значит, хорошая компания, хороший растущий бизнес получают дополнительное обременение. Теперь посмотрим со стороны нас всех, как нас эта история касается.
А так и касается: чем лучше, быстрее принимается решение о выдаче кредита, тем быстрее деньги приходят в хороший, качественный, работающий бизнес, а если процветает бизнес, процветает и страна, платятся налоги, появляются новые рабочие места, растёт производство, вот это всё. И поэтому ключевое место — внедрение системы искусственного интеллекта в скоринг, в оценку рисков в системе выдачи кредитов, в кредитование — это важнейшая область, которая влияет не только на банки, но на всю экономику страны, на нашу жизнь. Но здесь, по счастью, банки это прекрасно понимают, туда вкладываются огромные усилия, там есть постоянно двигающийся прогресс, и он будет развиваться. О том, как ИИ уже встроен в нашу повседневность и при чём тут бизнес Всё, что касается голосовых помощников, — это новый канал общения людей с бизнесом. Или, наоборот, бизнеса с людьми. Давайте посмотрим, что было некоторое время назад. Недавно, лет 20 назад, появились первые веб-сайты. Это были пустые странички, гипертекст с ссылками, которые позволяли учёным выкладывать статьи. Зачем бизнесу делать такую веб-страницу?
Это какая-то нелепая игрушка для учёных. Проходит время, и бизнес понимает: обязательно нужно иметь свой сайт, потому что это главное средство общения с людьми. Таких страниц становится всё больше — появляются поисковые системы. Думать о том, насколько хорошо ты ранжируешься в поиске — да вы что, поиском никто не пользуется! Затем становится понятно, что, конечно, ты должен быть в поиске, в этот момент появляется интернет-торговля. Все такие: интернет-торговля — это неинтересно, это для гиков, там можно купить электронику и больше ничего. Не подумаете же вы, что в интернете в самом деле можно одежду покупать, не примерив, не потрогав, этого не может быть! Дальше появляются соцсети и мессенджеры. И скептики опять: и что мессенджер — передать сообщение, бизнес-то здесь при чём?
Потом "Инстаграм". И каждый раз появляется что-то новое. Сейчас главный канал общения бизнеса и потребителя — голосовой, кто—то говорит, что и это пройдёт, но многие бизнесы уже начали с ним работать. Строятся большие экосистемы, и этот канал в них встраивается. В случае "Яндекса" сам голос — целая экосистема, потому что помимо самого базового ядра распознавания синтеза речи под этим есть уже большое количество готовых сервисов, к которым человек привык. Человек привык к навигатору — и он голосом прокладывает маршрут, человек привык к поиску — и он ищет голосом, человек привык к музыке — он голосом ставит музыку. Голос прорастает везде: в браузеры, в отдельные поисковые приложения. Автомагнитолы заменяются на встроенные голосовые сервисы, ориентированные именно на ситуацию человека за рулём. Голосовое общение для нас станет привычным, мы везде будем управлять голосом чем угодно, любой техникой.
А это другой интерфейс, он отличен от текста. Голосовое общение — это общение диалоговое, мы что-то сказали, услышали ответ и продолжили общение, и поэтому представление своих товаров и услуг нужно оформлять в виде диалога. Это обязательно нужно делать, и для этого сейчас существует большое количество платформ.
Забегая вперед — у него все хорошо и все еще блестящее будущее. Для начала стоит уточнить несколько смысловых нюансов. Почему вообще год назад стали активно говорить про искусственный интеллект, ведь само понятие используется с незапамятных времен? Некоторые даже Т9 в старых мобилках называли ИИ. Главное отличие в том, что сегодня мы говорим о генеративном искусственном интеллекте, но для удобства и сокращения убираем слово «генеративный».
Генеративный означает, что ИИ способен создавать совершенно новые идеи и контент, опираясь на огромные массивы информации, созданной ранее и создаваемой прямо сейчас человечеством. И конечно, генеративный ИИ не является чем-то единым и однородным. Есть модели, предназначенные для генерации изображений один из самых известных примеров — DALL-E , для имитации человеческого общения на основе известной лексики ChatGPT , для систематизации большого объема информации и выжимки основных идей, для перевода, кодинга и многого другого. Нужно также уточнить, что в данном случае термин «интеллект» никоим образом не тождественен термину «сознание». То есть ни о каких «скайнетах» и прочих восстаниях машин речь пока не идет. Взять тот же ChatGPT. Чат-бот, каким бы умным ни казался, не «понимает» суть вашей с ним «беседы». Система просто натренирована на стилистических и статистических свойствах языка, опираясь на которые умеет «угадывать» и составлять наиболее естественно и достоверно выглядящий порядок слов.
Для большинства пользователей интернета интерес представляют два вида генеративного ИИ, которые и получили наибольшее распространение. Это создание изображений и обработка запросов на естественном языке. Именно они отвечают за невиданный ранее всплеск внимания к ИИ. Но, кажется, всплеск прошел, многие позабыли о воодушевлении годичной давности, а некоторые вовсе плюнули на ИИ как на очередную бестолковую ерунду. На самом деле у ИИ все отлично. И да, он продолжит отбирать работу у людей. Среди всех подобных систем и сервисов драйвером остается ChatGPT, основной виновник хайпа годичной давности. Сегодня ChatGPT является самым быстрорастущим веб-сервисом.
Через несколько месяцев после запуска им пользовались 100 млн человек в месяц.
Искусственный интеллект и нейросети: технологическое будущее или красивый маркетинг
Существует большое количество факторов, вызывающих возможные ошибки в работе персонала. Искусственный интеллект, у которого отсутствуют эмоции и чувства, характерные для человека человеческий фактор , используя данные, функции и технологии, позволяет осуществлять безошибочную и точную работу [12] Lapaev, Morozova, 2020. Однако следует отметить, что уже сегодня ведется ряд исследований, которые позволяют ИИ выявлять сарказм и двойной смысл человеческих сообщений. В частности, американскими учеными из Университета Центральной Флориды на основе тренировок и обучения нейронных сетей создан искусственный эмоциональный интеллект Emotional AI. Это перспективная подсистема ИИ, которая способна распознавать и интерпретировать проявления человеческих эмоций. Благодаря этому достигается более естественное и непринужденное взаимодействие человека и ИИ [6].
Виртуальные помощники. К примеру, чат-бот Олег, применяемый в приложении интернет-банка Тинькофф, с помощью распознавания речи общается с клиентами банка посредством цифровых устройств и выполняет стандартные банковские операции, например, осуществляет денежные переводы. Эти же функции осуществляются первым в мире семейством виртуальных ассистентов «Салют» экосистемы «Сбер» [7]. Использование виртуальных помощников — это один из ИИ-инструментов, который со временем будет более широко внедряться в бизнес-процессы и повседневную жизнь современного человека. По статистике Facebook, более 10 тысяч компаний занимаются разработкой чат-ботов [8].
К примеру, Juniper Research отмечается высокая популярность применения виртуальных помощников. Использование чат-ботов в финансовом секторе и медицине способно сэкономить до 20 млн долл. США в год, к 2022 г. К текущему моменту времени на мощностях французской энергетической компании Engie успешно применяются дроны с программами распознавания изображений на основе машинного обучения, которые следят за оборудованием и изучают инфраструктуру в целях предотвращения технологических и иных нарушений. ИИ-системы контроля и мониторинга широко используются и в городской среде.
Наиболее простой пример — система распознавания автомобильных номеров с помощью камер видеослежения, применяемая муниципальными организациями. Кроме того, подобные алгоритмы применяются для систем распознавания лиц [17] Porokhovskiy, 2020. Автоматизация ручного труда также является важной и неоднозначной темой, поскольку использование алгоритмов искусственного интеллекта в промышленности способно вытеснить из этой сферы человеческий труд. Автоматизированные технологии выполняют сложные процессы быстрее и качественнее, чем человек, они способны работать 24 часа в сутки. Следует подчеркнуть, что основная цель внедрения высокоинтеллектуальных решений сегодня — это не полная замена человека в производственных и бизнес-процессах, но повышение эффективности человеческого труда.
Данная система анализирует данные медицинских полисов по операциям и процедурам в целях вычисления размеров страховых выплат. Еще одно направление применения алгоритмов искусственного интеллекта — это предиктивная аналитика. ИИ-алгоритмические технологии способны обрабатывать огромные массивы данных, выявлять закономерности и осуществлять прогностические функции. Система анализирует характеристики покупателей и товаров и на основании данного анализа автоматически составляет качественные рекомендации [18] Sergeev, 2020. Другой пример применения искусственного интеллекта в бизнесе — это Expedia, крупнейшая в мире онлайн-платформа по планированию путешествий.
В рамках этой платформы осуществляется целый ряд процедур от бронирования отелей до аренды транспорта. Компанией довольно эффективно используется сеть машинного обучения для персонализации процесса планирования поездки каждого клиента. В отличие от традиционных типов прогнозирования, предиктивная аналитика легко адаптируется к изменениям поведения, используя массивы вновь поступающих данных. В результате применения возможностей анализа неструктурированных данных с помощью ИИ-сервисов в процессе распространения мобильного контента, в частности сообщений в мессенджерах, электронных писем, фото и видео, осуществляется структурирование сгенерированных данных и сведений в целях получения возможностей их дальнейшей обработки.
XX века. Авторство термина «искусственный интеллект» приписывают Авторство термина «искусственный интеллект» приписывают Джону Маккарти — основоположнику программирования, изобретателю языка Лисп. Что подразумевают под искусственным интеллектом? Искусственный интеллект - это способ сделать компьютер, контролируемый робота или программу, способную также разумно мыслить как человек. В 2000-е годы вновь появился интерес к робототехнике В 2000-е годы вновь появился интерес к робототехнике. ИИ активно внедряется в космическую отрасль, а также осваивается в бытовой сфере. Появляются системы умного дома, «продвинутые» бытовые устройства. Роботы Кисмет и Номад исследуют районы Антарктиды. Значение термина «искусственный интеллект» Значение термина «искусственный интеллект» Искусственный интеллект является наукой о создании интеллектуальных машин и компьютерных программ. Направления развития искусственного интеллекта Решение задач, позволяющих приблизить возможности ИИ к человеческим и найти способы их интеграции в повседневность.
Контент доступен только автору оплаченного проекта Проблемы и вызовы в развитии Strong AI Анализ проблем и вызовов, с которыми сталкивается развитие Strong AI. Обсуждение технических, этических и социальных аспектов данной проблематики. Контент доступен только автору оплаченного проекта Примеры применения Strong AI Исследование конкретных примеров применения Strong AI в различных областях. Упоминание успешных кейсов и результатов использования Strong AI. Контент доступен только автору оплаченного проекта Анализ использования Strong AI в современном мире Обзор существующих случаев использования Strong AI в современном мире. Оценка эффективности и потенциала данной технологии. Контент доступен только автору оплаченного проекта Применение искусственного интеллекта в других сферах Исследование применения искусственного интеллекта в различных областях, кроме медицины, образования и финансов. Упоминание новаторских подходов и технологий. Контент доступен только автору оплаченного проекта Оценка перспектив развития искусственного интеллекта Анализ перспектив развития искусственного интеллекта в будущем. Прогнозирование направлений развития AI и его влияния на общество.
А нынешняя весна еще добавила активности киберпреступникам, организующим мощные DDoS-атаки и целевые APT-атаки против российских веб-ресурсов и значимых предприятий. Российские компании учатся в реальном масштабе времени искусству борьбы с угрозами в новых условиях. ИИ в аналитике: что за пределами BI? На какой стадии достижения этих целей находится наш рынок сегодня, и какие тренды определяют его дальнейшее развитие в ближайшем будущем? Однако путь, который предстоит пройти предприятиям, для достижения этого идеального состояния, весьма долог и непрост.
Как искусственный интеллект повлияет на нашу жизнь в будущем
В каких отраслях, тесно связанных с искусственным интеллектом, Россия не только конкурирует, но и опережает Европу и США, в подробном обзоре от ФедералПресс. Влияние ML и искусственного интеллекта на различные отрасли промышленности −. Актуальность проекта заключается в важности развития технологий искусственного интеллекта для таких прогрессивных отраслей науки, как кибернетика, робототехника, для более быстрого, удобного доступа к мировым информационным. Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем.
Его превосходительство ИИ: в каких направлениях искусственного интеллекта РФ опережает Запад
Акции прочих производителей чипов на азиатских фондовых рынках тоже устремились вниз после открытия торгов утром в четверг. Источник изображения: SoftBank Благодаря столь крупным инвестициям SoftBank будет обладать самыми высокопроизводительными вычислительными мощностями в стране, отметил Nikkei Asia. Как утверждают источники ресурса, для их работы будут использоваться ускорители Nvidia. В 2024 финансовом году SoftBank планирует завершить создание своей первой большой языковой модели LLM с 390 млрд параметров. Затем, по данным Nikkei Asia, компания начнёт в 2025 году разработку LLM с 1 трлн параметров и поддержкой японского языка. Как отметил ранее Nikkei Asia, в Японии наблюдается нехватка частных компаний с высокопроизводительными суперкомпьютерами, необходимыми для создания LLM, несмотря на возросший интерес к ИИ. Благодаря инвестициям SoftBank превратится в сильного игрока в сфере генеративного ИИ в то время, когда международные компании пытаются выйти на рынок Японии. На прошлой неделе OpenAI открыла свой первый офис в Токио. Она стала первой из трёх небольших ИИ-моделей, которые софтверный гигант планирует выпустить в свет. В декабре прошлого года Microsoft выпустила модель Phi-2, которая работала так же хорошо, как и более крупные модели, такие как Llama 2.
По словам разработчиков, Phi-3 работает лучше предыдущей версии и может давать ответы, близкие к тем, что дают модели в 10 раз больше. По сравнению с более крупными аналогами, небольшие ИИ-модели обычно дешевле в эксплуатации и лучше работают на персональных устройствах, таких как смартфоны и ноутбуки. Наряду с Phi компания также создала модель Orca-Math, которая ориентирована на решение математических задач. Конкуренты Microsoft занимаются разработкой небольших ИИ-моделей, многие из которых нацелены на решение более простых задач, таких как обобщение документов или помощь в написании программного кода. По словам Бойда, разработчики обучали Phi-3 по «учебному плану». Они вдохновлялись тем, как дети учатся на сказках, читаемых перед сном. Это книги с более простыми словами и структурами предложений, но в то же время зачастую в них поднимаются важные темы. Поскольку существующей литературы для детей при тренировке Phi-3 не хватало, разработчики взяли список из более чем 3000 тем и попросили большие языковые модели написать дополнительные «детские книги» специально для обучения Phi-3. Бойд добавил, что Phi-3 просто развивает дальше то, чему обучились предыдущие итерации ИИ-модели.
Если Phi-1 была ориентирована на кодирование, а Phi-2 начала учиться рассуждать, то Phi-3 ещё лучше справляется с кодированием и рассуждениями. Расследование Reuters показывает, что санкционная продукция Nvidia продолжает поставляться в Китай. Источник изображения: Nvidia Агентство использовало для получения подобных выводов общедоступную конкурсную документацию, в которой отображались состоявшиеся закупки серверного оборудования, в составе которого содержались запрещённые к экспорту в Китай компоненты Nvidia. По словам представителей Reuters, уже после вступления новых ограничений в середине ноября прошлого года не менее 10 китайских учреждений смогли получить серверное оборудование, содержащее «запрещённые» ускорители Nvidia. В выборку попали конкурсные процедуры, которые проводились в период с 20 ноября прошлого года по 28 февраля текущего. Среди 11 поставщиков, выигравших конкурсные процедуры на поставку «запрещённой» вычислительной техники в Китай, все были малоизвестными торговыми компаниями из КНР, как поясняет Reuters. Поставляли ли они оборудование из запасов, сформированных до вступления в силу осенних изменений к правилам экспортного контроля, определить не удалось. Представители Nvidia заявили, что даже если указанные поставки и осуществлялись в обход санкций США, они составляют лишь малую часть оборота мирового рынка, и никак не дискредитируют ни саму компанию, ни её партнёров. Получателями оборудования по рассматриваемым конкурсам выступали государственные ВУЗы КНР и правительственные организации, а также пара исследовательских центров, работающих в аэрокосмической отрасли.
Представители Super Micro заверили, что собственные требования компании к соблюдению правил экспортного контроля с запасом превосходят по строгости государственные, а поставленное в Китай оборудование относилось к прошлому поколению, которое под санкции США ранее не попадало. Китайские поставщики, которые участвовали в конкурсе, клиентами Super Micro не являлись. Dell разбирается в ситуации, но на момент подготовки материала к печати заявила, что не располагает доказательствами поставки запрещённого к экспорту в Китай оборудования в адрес упоминаемых агентством Reuters китайских организаций и компаний.
Искусственный интеллект в быту Типичным примером использования ИИ в быту станут системы умных домов, которые получают все большее распространение. Искусственный интеллект и перспективы его развития Искусственный интеллект и перспективы его развития Люди станут по-другому работать, отдыхать, развлекаться, изменятся представления о сознании, интеллекте и о самом будущем человечества. Легко понять, что появление интеллекта, превосходящего человеческий, может нанести серьёзный ущерб свободе, самоопределению и существованию людей. Все эти аспекты могут оказаться под угрозой. Поэтому исследования, касающиеся искусственного интеллекта, должны проводиться с осознанием их возможных последствий.
Анкетирование Анкетирование было проведено среди студентов техникума Анкетирование Анкетирование было проведено среди студентов техникума. Приняли участие 60 человек. Содержательными знаниями об ИИ обладают старшекурсники, большинство которых назвали и сферы применения искусственного интеллекта. Заключение В проекте по данной теме я выяснил, что Заключение В проекте по данной теме я выяснил, что ИИ не только тесно связан с развитием компьютерной техники, математики, статистики, кибернетикаки, но и дает стимул к дальнейшему техническому прогрессу, а также повышает производительность труда путём автоматизации производства, практически преображает все сферы человеческой жизни. Практическая значимость заключается в том, что данный материал можно использовать на внеклассных мероприятиях, а также может быть размещен на сайте в качестве помощи студентам в подготовке проектов.
Примеры решений для разных сфер бизнеса из реестра: Транспорт и логистика Система управления движением судов «Нави-Мастер». Видеопотоки типовых дефектов стальных канатов. Диалоговые приложения чат-боты и голосовые помощники TalkBank Platform. Версия 2. Медицина ПО для работы с цифровыми медицинскими изображениями Retina. Интеллектуальная настройка оборудования, контроль поставщиков, мониторинг информации о контрагентах, автоматическая оценка имущества, голосовые помощники и многое другое уже активно применяется в бизнесе.
Хотя и вполне убедительную на непрофессиональный взгляд. Кроме того, программа может обучаться на ходу. Возможно, в скором времени она отберет часть работы у копирайтеров, журналистов пишущих новостные заметки , учителей, врачей и людей самых разных профессий. Если, конечно, не лишит их всех работы, — резюмирует Bloomberg. Apple, Samsung или Xiaomi? Один из них возник в попытке ответить на вопрос: можно ли считать творчество нейросети настоящим? Кроме того, есть опасения практического характера. Как отмечает Science, эксперты полагают, что ИИ в процессе своего «творчества» может нарушать авторские права, распространять ложную информацию и сокращать рабочие места. Но все же ИИ, скорее, благо, чем опасность. Какие-то рутинные, простые задачи, для которых человек объективно не нужен, может спокойно выполнять искусственный разум. Также важно понимать, что искусственный интеллект никогда не сможет полностью заменить человека.
Что хотите найти?
Что нужно знать о перспективах развития искусственного интеллекта и нейросетей. Проблема: Проект решает проблему понимания актуальности и потенциала искусственного интеллекта в различных сферах жизни и определения вызовов перед Strong AI. Как искусственный интеллект помогает в диагностике заболеваний?
Что такое искусственный интеллект и зачем он нужен
— Учебная дисциплина об искусственном интеллекте существует давно, ещё до основания СФУ. Об актуальности искусственного интеллекта говорит и то, что сейчас им занимаются не только университеты или ИТ-компании, но и крупный бизнес. В истории появления искусственного интеллекта важную роль сыграли некоторые ключевые моменты. Энтузиасты искусственного интеллекта говорят о большом потенциале новых технологий, в то время как скептики напоминают о рисках и советуют не слишком спешить навстречу прогрессу.
Ученые рассказали о пользе, опасности и перспективах искусственного интеллекта
Сейчас уже можно наблюдать, как роботы вступают в нашу повседневную жизнь. Они помогают нам в домашних делах, доставляют посылки, выполняют операции в медицине и даже заменяют людей в определенных сферах работы. В будущем, представляется, что роботы станут еще более продвинутыми и способными, что позволит улучшить эффективность и качество нашей жизни. Одной из самых перспективных областей, связанных с робототехникой и автоматизацией, является производство. Уже сейчас роботы применяются в производственных линиях, где они выполняют монотонные и опасные работы.
В будущем, роботы возможно полностью заменят людей на таких рабочих местах, что создаст новые вызовы и возможности для образования и развития рабочей силы. Робототехника и автоматизация также приводят к изменениям в сфере транспорта. С развитием беспилотных автомобилей уже можно предвидеть, что в будущем водительские права станут необязательными. Это приведет к снижению аварий и сократит время путешествия.
Сфера медицины также не останется в стороне от прогресса робототехники и автоматизации. Уже сейчас роботы успешно выполняют сложные операции, но в будущем они смогут выйти на новый уровень. С развитием искусственного интеллекта, роботы станут способными анализировать большие объемы данных и предлагать индивидуальные планы лечения, что значительно повысит эффективность и точность медицинской помощи. Однако, с ростом робототехники и автоматизации возникают и новые проблемы и вызовы.
Возникает вопрос о потере рабочих мест, что требует поиска решений и создания новых предложений для обеспечения жизни людей. Также существуют этические вопросы, связанные с искусственным интеллектом и роботами, которые нуждаются в ответах и регулировании. В целом, будущее робототехники и автоматизации представляет собой огромные возможности для прогресса и развития. Но также необходимо учесть и все нюансы и проблемы, чтобы обеспечить устойчивое и гармоничное влияние этих технологий на общество и нашу жизнь.
Искусственный интеллект в медицине и здравоохранении Искусственный интеллект находит все большее применение в медицине и здравоохранении, привнося в эту сферу множество инноваций и улучшений. Одной из главных областей применения искусственного интеллекта в медицине является диагностика заболеваний. Компьютерные алгоритмы и анализ больших объемов данных позволяют выявить патологические изменения на ранних стадиях, что способствует более точному и своевременному назначению лечения. Искусственный интеллект также применяется в прогнозировании развития определенных заболеваний и состояний пациента.
Компьютерные модели, основанные на алгоритмах машинного обучения, способны предсказать не только вероятность возникновения болезни, но и течение ее развития, что позволяет принимать соответствующие меры предосторожности и своевременно корректировать лечение. Важной задачей искусственного интеллекта в медицине является персонализация лечения. Благодаря анализу генетических, клинических и окружающих данных пациента, компьютерные системы могут определить оптимальный способ лечения, учитывая индивидуальные особенности каждого пациента. Искусственный интеллект также применяется в создании новых лекарственных препаратов и исследовании их воздействия на организм.
Компьютерные модели и алгоритмы позволяют более эффективно отбирать потенциальные препараты и предсказывать их воздействие на организм до проведения реальных клинических испытаний. Кроме того, искусственный интеллект применяется в различных аспектах организации и управления здравоохранением. Автоматизация процессов позволяет повысить эффективность работы медицинских учреждений, сократить время оказания медицинской помощи и улучшить общее качество здравоохранения. Искусственный интеллект в медицине и здравоохранении — это новые возможности для точной диагностики, персонализированного лечения и улучшения организации здравоохранения.
Потенциальные угрозы и проблемы искусственного интеллекта Взглянем на потенциальные угрозы и проблемы, которые может представлять развитие и использование искусственного интеллекта. Безработица: Одним из основных вопросов, связанных с искусственным интеллектом, является его влияние на рынок труда. Автоматизация и замена человека машинами могут привести к массовому увольнению людей из-за высокой производительности и эффективности искусственного интеллекта. Это может создать социальные напряжения и увеличить неравенство в обществе.
Этические вопросы: С развитием искусственного интеллекта возникают сложные этические дилеммы, например, вопросы о приватности, дискриминации и решениях, принимаемых автоматизированными системами. Как определить ответственность за ошибки искусственного интеллекта, если они произойдут? Как быть уверенным в безопасности и конфиденциальности данных, обрабатываемых искусственными интеллектами? Эти и другие этические вопросы вызывают серьезную озабоченность.
Зависимость от технологии: Появление искусственного интеллекта может создать зависимость общества и отдельных людей от технологии. В случае сбоя или отказа искусственного интеллекта может произойти коллапс различных систем, например, транспортных или банковских. Растущая зависимость от искусственного интеллекта вызывает обеспокоенность о стабильности и надежности различных инфраструктурных систем. Угроза для безопасности: Искусственный интеллект может быть использован не только для благих целей, но и для враждебных действий.
Точность их работы будет низкой. Читайте также: Коварный Open Source: какие опасности кроются в открытом и свободном ПО Основные тренды в развитии опенсорсных моделей Компании работают над опенсорсными моделями, схожими с аналогичными в проприетарными проектами: снижение числа галлюцинаций, увеличение длины контекста, повышение скорости и точности ответов, добавление мультимодальных возможностей и так далее. Разработчики ведут поиск архитектур, способных преодолеть недостатки популярных нейросетей типа «трансформер».
На рынке существуют сотни открытых LLM, которые уже соревнуются между собой на виртуальных тестовых аренах, подобных Chatbot Arena Leaderboard от Hugging Face. Число опенсорсных проектов и их конкуренция продолжит расти. Стоимость внедрения и дообучения LLM снижается.
Так, доработка и запуск нейросети Alpaca обошлись в 600 долларов. Один из механизмов снижения стоимости — использование «синтетических» данных, созданных ИИ. Французский стартап Mistral AI в первый год своего существования привлёк 385 миллионов евро инвестиций.
Это может стать прецедентом финансирования опенсорсных моделей за счёт инвесторов. Чего ждать в 2024 году Главное — появления ещё большего числа дешёвых и эффективных моделей с открытым исходным кодом от небольших стартапов и крупных компаний. Отрасль ИИ станет меньше зависеть от IT-гигантов.
В новом году ждём от них самых навороченных нейронок. Опенсорсные модели займут нишу простых и доступных по стоимости решений. На их основе будут созданы персональные ИИ-ассистенты нового поколения, способные работать в смартфонах и других гаджетах.
Мы ждём, что рост конкуренции в опенсорс-сообществе приведёт к появлению прорывных технологий, а не только к количественному усложнению моделей. Например, могут появиться новые способы обучения или архитектуры нейросетей, лишённые недостатков предшественников. Не стоит забывать про опасности Open Source.
В отсутствие контроля хакеры и интернет-мошенники начнут использовать генеративный интеллект для противозаконных действий. Например, для создания вирусов, взлома паролей или кражи денег с помощью социальной инженерии, создавая «двойников» людей для телефонных или даже видеозвонков. В 2023 году основной прорыв в массовом использовании нейронок с открытым кодом внесла LLaMA, на базе которой появились десятки моделей: Mistral, Zephyr , Alpaca, Phi-2 , Qwen, Yi и другие.
В развити опенсорсных моделей просматриваются три тренда, которые усилятся в 2024 году: Желание пользователей устанавливать нейросети на свои устройства и использовать их без подключения к интернету и, соответственно, без оплаты услуг компаний. Раньше качества нейросетей, а также мощностей ноутбуков и смартфонов для этого не хватало, но теперь их достаточно. Поэтому происходит массовый отток пользователей от платных сервисов.
Замена людей в процессе получения обратной связи при обучении ИИ-моделей. Это обучение с подкреплением от ИИ, а не от человека. Создание специализированных небольших моделей для медицины, науки, графовых моделей, а также нейросеток с архитектурой MoE.
Появление изначально закрытых моделей GPT-3, ChatGPT создало новый рынок, а открытые модели позволили бизнесу использовать их практически без ограничений. Так, например, открытые решения позволяют компаниям контролировать весь процесс работы с данными своих пользователей, адаптировать их под свои нужды и в целом снизить риски, используя собственную инфраструктуру. Кроме того, появление открытых моделей стало причиной роста компетенций академического сообщества в работе с LLM.
Сейчас уже никого не удивишь чат-ботом, сравнимым с ChatGPT, который запущен на ноутбуке каким-то энтузиастом, хотя ещё два года назад это казалось фантастикой. Такой уровень доступности технологий позволил учёным опубликовать уже сотни, если не тысячи интересных и полезных научных статей. Роман Душкин генеральный директор ООО «А-Я эксперт» , компании — разработчика систем искусственного интеллекта — Опенсорсные LLM должны быть открытыми не только с точки зрения исходного кода самих моделей, но и с точки зрения данных, на которых они обучаются.
Например, ему недоступно осознание таких вещей, как: Физические объекты существуют в трехмерной реальности и сохраняются, даже если вы их не видите. Объекты обладают многочисленными свойствами и подчиняются физическим законам, таким как гравитация. Время идет и накладывает определенный порядок на действия в окружающей среде. Объекты в движении следуют обычно предсказуемым траекториям, таким как падение, перекатывание и так далее. Причины могут предсказуемо привести к следствиям.
Действия, предпринимаемые человеком или слабым искусственным интеллектом , могут повлиять на будущее, которое может повлиять на человека. Например, человек находится за рулем автомобиля и видит, что рядом с проезжей частью находится детская площадка, на которой ребенок играет с мячом. Водитель сразу же принимает во внимание тот факт, что ребенок с мячом где-то рядом, а значит, либо мяч может укатиться на проезжую часть, либо на нее выбежит ребенок. А может быть, ребенок выбежит за мячиком. Существование ребенка с мячом на детской площадке не означает, что вышеприведенные события обязательно произойдут.
Но водитель держит это в уме, даже где-то на подсознательном уровне, готовясь в случае необходимости реагировать на ситуацию. Другое дело ИИ. Представим, что по этой же дороге едет, например, «Тесла». Для ИИ автомобиля ребенка с мячиком не существует, пока он не попадет в объектив камеры. А как только он пропадет, ИИ забудет о нем сразу же.
Конечно, ИИ способен моментально среагировать, если ребенок окажется на проезжей части. Конечно, ПО современных машин может даже предсказать траекторию полета мяча, скорость движения объекта и ребенка. Но это возможно лишь в том случае, если объект и ребенок находятся в поле его видимости. В остальных случаях ничего за пределами камеры для ИИ не существует. Зачем нужен искусственный интеллект Для чего нужен ИИ?
Чтобы улучшить человеческую жизнь. Упростить ее там, где это возможно. Это может касаться таких вопросов, как экономия времени ИИ быстрее просчитывает информацию , работа в опасных условиях. Рассмотрим основные цели существования ИИ и его развития. ИИ может снизить количество человеческих ошибок.
ИИ не заменит человеческую интуицию и знания, но, в отличие от людей, ИИ не утомляется или не подвергается стрессу. ИИ может трудиться на опасных работах, например на заводах, где человек может получить травму или значительный вред здоровью. ИИ можно использовать на рутинной работе, например по сортировке мусора. Сейчас одно из самых активных направлений исследования ИИ — это чат-боты. ИИ работает быстрее человека, может быстро диагностировать неисправности, используя комбинацию классических методов искусственного интеллекта и алгоритмов машинного обучения, чтобы находить связи, недоступные людям.
Мы предлагаем практическое применение искусственного интеллекта в роли чат-бота в телеграмме, который внедрен в обслуживающие программы компании для психологической помощи и поддержки сотрудников, которые сталкиваются с проблемами и трудностями при выполнении работы. Как пример, приведем первоначальную реализацию чат-бота на Python. Если их не инициализировать, то код не будет работать. Message : await message. Если этого не сделать, то мы не получим ответы бота. Реализовать получение новых сообщений можно с помощью поллинга. Если они есть, то они приходят в Telegram.
Для включения поллинга необходимо добавить две строчки: Преимущество данного чат-бота состоит в том, что при общении с ним нейронная сеть активно собирает данные о проблемах пользователей для дальнейшего развития, улучшения, прогнозирования вариантов проблемных зон, а также для предоставления более лучшего ответа пользователю. Однако, нейронные сети также имеют некоторые ограничения. Для эффективного обучения им требуются большие объемы данных, а их процесс принятия решений может быть трудно интерпретировать, что затрудняет понимание того, почему они делают определенные прогнозы. Заключение В заключении следует отметить, что искусственный интеллект и нейронные сети произвели революцию в том, как мы взаимодействуем с машинами и выполняем сложные задачи, а также подняли важные вопросы об этичности и подотчетности систем ИИ. Поскольку технологии продолжают развиваться, важно обеспечить этичное и ответственное использование ИИ и нейронных сетей на благо общества. На основании выше изложенных фактов предлагается внедрение ИИ в каждую отрасль современного мира, поскольку важность ИИ заключается в его способности повышать эффективность, производительность и инновации в самых разных отраслях, что ведет к ускорению экономического роста и улучшению качества жизни людей во всем мире. Список литературы Рассел С.
Редько В. Слэйгл Дж. Тей А. Хайкин С. Интересная статья?
Что хотите найти?
— Какие изменения нас ждут в области искусственного интеллекта через 30–50 лет? В истории появления искусственного интеллекта важную роль сыграли некоторые ключевые моменты. Технологии искусственного интеллекта (далее — ИИ), которые еще вчера казались фантастикой, все более уверенно внедряются в различные сферы общественной жизни. AI навигатор Искусственный интеллект Российской Федерации. – Искусственный интеллект обращает внимание на то, каким словарным запасом владеют ученики, что им нравится, какой контент для них является сложным. Руководитель лаборатории искусственного интеллекта "Яндекса" Александр Крайнов рассказал, как развивается искусственный интеллект и в каких сферах используется.