Как отмечалось выше, на Ту-22М3 предполагалось устанавливать двигатели типа НК-32, тем самым улучшая его характеристики и унифицируя с Ту-160. Завод производит и обслуживает ракетоносец Ту-160, бомбардировщик Ту-22М3, а также различные. бомбардировщик ту 22м3 характеристики Для защиты от вражеской атаки ракетоносец оснащен пушечной системой ГШ-23 со встроенным радиолокатором и вычислительным блоком.
ТУ 22м3: характеристики самолета (фото)
бомбардировщик ту 22м3 характеристики Для защиты от вражеской атаки ракетоносец оснащен пушечной системой ГШ-23 со встроенным радиолокатором и вычислительным блоком. При полетах Ту-22М3 с максимальной взлетной массой предусмотрено использование РДТТ-стартовых ускорителей. Столько переносит один ракетоносец Ту-22М3М — две ракеты под крыльями и одну под фюзеляжем. В целом, лётно-технические характеристики самолёта остались на уровне Ту-22М1.
Дальний сверхзвуковой ракетоносец-бомбардировщик Ту-22М
Данная концепция была реализована в серии сверхзвуковых бомбардировщиков-ракетоносцев Ту-22М. Специалисты ОКБ предложили не ограничиваться только заменой двигателей, а одновременно внести улучшения в конструкцию и аэродинамику самолёта. В июне 1975 г. В кормовой установке оставили только одну пушку и улучшили её аэродинамические формы. Облагородили съёмные узлы, уплотнили щели, заменили обтекатели и т. Бессонов, второй лётчик — А. Махалин, штурман-навигатор — А. Ерёменко, штурман-оператор — Б. До 1983 г. Всего на Казанском авиационно-производственном объединении КАПО построили около 270 машин этого типа. Суммарная боевая эффективность Ту-22М3 увеличилась по сравнению с Ту-22М2 в 2,2 раза.
С 1981 по 1984 г. Серийное производство Ту-22М3 было прекращено в первой половине 1990-х гг. ОКБ постоянно работало над расширением ударных возможностей самолета Ту-22М, в том числе и по оснащению комплекса новыми типами ракет. В 1976 году в рамках мероприятий по дальнейшему развитию комплекса принимается решение по оснащению Ту-22М2 аэробаллистическими ракетами в различных вариантах. В ходе работ по данной тематике был переоборудован один из серийных Ту-22М2 под опытный комплекс с аэробаллистическими ракетами. Новый комплекс успешно прошел испытания и был рекомендован к принятию на вооружение, однако в дальнейшем решено было этот ракетный комплекс внедрить на более совершенную модификацию самолета-носителя Ту-22М3, что было успешно выполнено в первой половине 80-х годов. Читайте также: Концепцию застройки старого саратовского аэропорта показали Хуснуллину. Но денег ждать не скоро, а суды по земле продолжаются Обеспечение заданных со стороны ВВС требований к Ту-22М довались ОКБ и предприятиям, занятым и программе создания и совершенствования самолета и комплекса, весьма нелегко — особенно достижение необходимых параметров по максимальной дальности и максимальной скорости, а также по дальнейшему повышению надежности работы элементов комплекса. Прежде всего необходимо было решать проблему с двигателем. Кузнецова в начале 70-х годов, после нескольких попыток улучшить НК-22 например работы по НК-23 , создало новый ТРДДФ НК-25 «Е» , выполненный по трехвальной схеме и оборудованный новейшими системами электронной автоматики, позволявшими максимально оптимизировать работу двигателя на различных режимах.
В последующие два года новый двигатель прошел большой объем испытаний и доводок в полетах на летающей лаборатории Ту-142ЛЛ. Этот двигатель в перспективе должен был стать унифицированным типом ТРДДФ для ударных дальних много режимных самолетов наших ВВС — как для стратегического Ту-160, так и для дальнего Ту-22М первоначально проект Ту-160 опирался на силовую установку на основе НК-25. Помимо внедрения новых двигателей, в ОКБ продолжали настойчиво работать над дальнейшим уменьшением массы пустого самолета за счет мероприятий конструктивного и технологического характера. Имелись также резервы по улучшению аэродинамики самолета. Эти и некоторые другие весьма перспективные направления работ по дальнейшему развитию самолета привели к созданию наиболее совершенной серийной модификации Ту-22М -самолета Ту-22М3. В январе 1974 года принимается решение по дальнейшей модификации Ту-22М2 под двигатели НК-25. В ходе проработки возможных путей модификации ОКБ, основываясь на своих наработках, предлагает не ограничиваться только заменой двигателей, а провести дополнительные улучшения в конструкции и аэродинамике самолета. В результате 26 июня 1974 года вышло постановление правительства, определявшее развитие Ту-22М с двигателями НК-25, с улучшенной аэродинамикой планера, со сниженной массой пустого самолета и с улучшенными тактическими и эксплуатационными характеристиками. Новая модификация Ту-22М получила официальное обозначение Ту-22М3 «45-03». Помимо применения НК-25, ОКБ провело следующие конструктивные мероприятия, значительно изменившие самолет: Заменили воздухозаборники с вертикальным клином на совковые воздухозаборники с горизонтальным клином.
Увеличили максимальный угол отклонения поворотной части крыла до 65 градусов. Ввели новую удлиненную носовую часть фюзеляжа с измененной штангой топливозаправки. Заменили спаренную двухпушечную кормовую установку на однопушечную с улучшенными аэродинамическими обводами. Облагородили съемные узлы, уплотнили щели, заменили обтекатели и т. Провели мероприятия по снижению массы пустого самолета: облегчили основные стойки шасси перешли на другой тип колес, отказались от раздвижной системы средней пары колес , ввели облегченный стабилизатор и укороченный руль направления, конструкцию средней части крыла сделали неразъемной, перешли на титан в конструкции противопожарных перегородок и хвостовых стекателей, изменили тип теплоизоляции и герметиков, нипельные стыки труб заменили на паяные, заменили гидронасосы и внедрили генераторы стабильной частоты в системе электроснабжения переменным током, перешли на бесконтактные генераторы в системе постоянного тока, сняв с борта тяжелые громоздкие электромашинные преобразователи, перешли на более теплостойкие электропровода, облегчили агрегаты СКВ, элементы, изготовлявшиеся штамповкой и литьем, стали делать с минусовыми допусками. Все мероприятия по уменьшению массы, даже с учетом увеличившейся массы новых двигателей, должны были обеспечить общее снижение массы пустого самолета на 2300-2700 кг. Провели изменения в элементах навигационного комплекса. В результате всех проведенных улучшений в конструкции самолета его летные характеристики наконец должны были достичь значений, соответствующих требованиям постановления 1967 года. Новый проект модернизации вызвал большой интерес со стороны заказчика — появилась реальная возможность значительно улучшить летно-тактические характеристики самолета и расширить возможности и эффективность всего авиационного ударного комплекса. Учитывая предполагаемый качественный скачок в развитии Ту-22М, заказчик на начальном этапе существования Ту-22М3 дал новому самолету новое обозначение Ту-32.
В дальнейшем из-за затяжка в развитии многих перспективных модернизационных направлений по комплексу оставили привычное обозначение Ту-22М3.
Самолет соединение самолетов в кратчайшие сроки может быть подготовлен для проведения перебазирования на оперативный аэродром, находящийся на удалениях от аэродрома основного базирования в 5000-7000 км. Средства поражения для проведения первого боевого вылета обычно транспортируются на борту самопета. Наличие ВСУ позволяет проводить подготовку к боевым действиям сразу же после посадки на оперативный аэродром.
Отработанная система эксплуатации комплекса позволяет проводить подготовку самолета на базовом аэродроме с применением стационарных средств наземного обслуживания, а на оперативных аэродромах с помощью имеющихся в наличии мобильных средств обслуживания и технических аптечек, используемых ИТС при перебазировании. Все это позволяет эффективно использовать комплекс на любом театре военных действий, в различных широтах и климатических поясах как на базовых, так и на оперативных аэродромах. Как отмечалось выше, самолет должен получить высокоточное вооружение, обновленный состав БРЭО. В ОКБ также ведутся постоянные работы по увеличению ресурсных показателей комплекса и его составляющих частей.
Модернизационные программы по Ту-22М3 должны значительно увеличить ударный потенциал самолета и комплекса, обеспечив его эффективную эксплуатацию еще как минимум в течение 20-25 лет. Таким образом Ту-22М3 с модернизированным бортовым оборудованием, дооснащенный высокоточным вооружением, еще долгие годы будет составлять значительную часть боевого состава ударных сил российской Дальней авиации и авиации ВМФ. Краткое техническое описание самолета Ту-22М3. По своей компоновочно-конструктивной схеме Ту-22М3 представляет двухдвигательный цельнометаллический низкоплан с двумя ТРДДФ, установленными в задней части фюзеляжа, с крылом изменяемой в полете стреловидности и стреловидным хвостовым оперением, с трехопорным шасси с передней опорой В конструкции планера и его агрегатов используются в основ ном алюминиевые и титановые сплавы, высокопрочные и жаропрочные стали, неметаллические конструкционные материалы.
Крыло состоит из неподвижного центроплана - средней части крыла СЧК и двух поворотных частей ПЧК - консолей, имеющих следующие фиксированные положения по углу стреловидности 20, 30 и 65 градусов. Угол поперечного "V" крыла - 0 градусов. Поворотная консоль имеет геометрическую крутку, угол крутки - 4 градуса. Стреловидность СЧК по передней кромке - 56 градусов.
Центроплан двухлонжеронный с задней стенкой и несущими панелями обшивки. Поворотные консоли крепятся к центроплану с помощью шарнирных узлов поворота. Механизация крыла состоит из трехсекционных предкрылков и двухщелееых закрылков на консолях и поворотного закрылка на центроплане. Предусмотрено блокировка выпуска закрылков и предкрылков при углах стреловидности более 20 градусов.
Консоли оснащены трехсекционными интерцепторами для управления по крену элероны на самолете отсутствуют Поворот консолей крыла осуществляется с помощью электрогидровлической системы гидроприводами с шариковинтовыми преобразователями, связанными между собой синхронизирующим валом. Фюзеляж полумонококовой конструкции, усилен мощными продольными балками бимсами в районе грузоотсека В носовой части фюзеляжа размещены РЛС, кабина экипажа, рассчитанная на четырех человек командир корабля, помощник командира корабля, штурман-навигатор и штурман-оператор , отсеки оборудования, ниша передней стойки шасси. Рабочие места экипажа оснащены катапультируемыми креслами КТ-1М. В средней части фюзеляжа размещаются топливные боки, ниши основных стоек шасси, грузоотсек, каналы воздухозаборников.
В задней части фюзеляжа -двигатели и отсек тормозного парашюта Вертикальное оперение состоит из форкиля и технологически отъемного киля и руля направления Стреловидность киля 57 градусов Горизонтальное оперение состоит из двух цельно-поворотных консолей со стреловидностью 59 градусов Управление консолями гидравлическое с помощью рулевых приводов. Шасси трехопорное, носовая опора - двухколесная, убирается назад по полету. Основные опоры трехосные шестиколесные, убираются в крыло и частично в фюзеляж. Колеса основных опор оснащены гидравлическими дисковыми тормозами и устройствами антиюзовой автоматики Колеса основных опор имеют размер 1030x350, передней - 1000x280 Силовая установка включает в себя два двухконтурных турбовентиляторных двигателя с форсажными камерами НК-25; регулируемые многорежимные воздухозаборники с горизонтальным управляемым клином и створками подпитки и перепуска; бортовую вспомогательную установку; топливную и масляную системы; системы управления и контроля агрегатов силовой установки.
ТРДДФ имеет максимальную форсажную взлетную тягу 25000 кгс и максимальную взлетную бесфорсажную -14500 кгс. Вспомогательная силовая установка ТА-6А обеспечивает запуск двигателей на земле, питание бортовой сети переменного и постоянного тока на земле и в отказных случаях в полете, питание самолетных систем воздухом на земле и в некоторых оговоренных случаях в полете. Топливо размещается в фюзеляжных и крыльевых центроплан и консоли протектированных топливных боках, оснащенных системой заполнения нейтральным газом, а также баком в форкиле. Воздухозаборники совкового типа с горизонтальным клином оборудованы створками подпитки и перепуска, а также автоматической системой управления воздухозаборников.
Цифровой пилотажно-навигационный комплекс самолета с инерциальными навигационными системами обеспечивает: автоматическое решение навигационных задач; ручной, автоматический и полуавтоматический маршрутный полет в горизонтальной плоскости с обеспечением предпосадочного маневра и захода на посадку; выдачу необходимой информации для автоматического выхода самолета в заданный район в заданное время; выдачу необходимой информации экипажу самолета, а также в системы комплекса Самолет оборудован бортовыми средствами дальней и ближней радионавигации РСДН и РСБН , автоматическим радиокомпасом, прицельно-навигационной РЛС типа ПНА, сопрягаемой с системой управления ракет типа Х-22Н.
По своей компоновочно-конструктивной схеме Ту-22М3 представляет собой цельнометаллический низкоплан с двумя ТРДДФ, которые расположены в задней части фюзеляжа. Самолет отличает наличие крыла изменяемой в полете стреловидности и стреловидное хвостовое оперение.
И не только журналистов NI, но и адмиралов. Дальность ракеты возросла с 600 км до 1000 км, а максимальная скорость достигла 5 М. Это означает, что ракетоносцу теперь нет необходимости входить в зону ПВО авианосной ударной группировки АУГ , которая имеет радиус в 700 км.
После запуска ракета Х-32 совершает горизонтальный маневрирующий полет на высоте 40 км, что делает ее недосягаемой на этом этапе для корабельной системы ПРО «Иджис». Американская система ПРО использует и еще одну противоракету — Standard SM-3, которая способна перехватывать не только баллистические ракеты, но даже и спутники, находящиеся на высотах до 500 км. Но она поражает лишь те цели, траектория которых предсказуема — как у спутников и баллистических ракет предыдущих поколений. Но Х-32 постоянно маневрирует, что делает ее недоступной и для этой противоракеты. А затем атакует практически отвесно с высоты в 40 км. Разумеется, это относится к дуэли ракеты и противоракеты, то есть когда «один на один».
Но система «Иджис» способны выпустить в случае атаки несколько ракет, что увеличивает шансы перехвата. Однако и атака на АУГ будет осуществляться несколькими ракетоносцами. В одной из публикаций доктор военных наук, член-корреспондент Российской академии ракетных и артиллерийских наук капитан первого ранга Константин Сивков приводит расчетные данные для различных сюжетов отражения атак на АУГ. При наведении со спутника результат еще хуже. Получается, что для перехвата одной ракеты при самом благоприятном раскладе потребуется не менее 12 противоракет. Два крейсера УРО способны выпустить 40 противоракет.
То есть они смогут перехватить три ракеты Х-32. Столько переносит один ракетоносец Ту-22М3М — две ракеты под крыльями и одну под фюзеляжем. Однако понятно, что на столь ответственное задание как уничтожение АУГ посылаются несколько ракетоносцев. Вот их залп непременно достигнет цели, на которые они будут наведены.
Арсенал и защита
- «Расширение боевого потенциала»
- Конструкция
- Ракетное оружие самолета Ту-22М3 | Пикабу
- Стратегические бомбардировщики ВКС России КБ “Туполева”
НАЗНАЧЕНИЕ И РЕШАЕМЫЕ ЗАДАЧИ
- Туполев Ту-22М3. История, фото, видео, характеристики
- История возникновения серии
- Стали известны технические характеристики бомбардировщика Ту-22М3М | Видео | Известия | 16.08.2018
- Sohu: в Китае назвали российский бомбардировщик Ту-22М3М стратегическим убийцей
- Гражданская авиация
Ту 22м3 боевая нагрузка.
Ту-22М — Википедия с видео // WIKI 2 | Однако к 1967 году по ряду технических причин конструкция Ту-22М была полностью пересмотрена и прототип нового бомбардировщика потерял сходство с самолётом-предшественником. |
Самолет Ту-22 М3. Описание. Характеристики. Фото. Видео. | О том, сколько нужно современной России таких самолетов как Ту-22М3М, ответить ещё тяжелее, чем на вопрос о том, сколько их есть сейчас у России. |
Сверхзвуковой стратегический бомбардировщик Ту-22
На этом этапе в конструкции были убраны крыльевые гондолы шасси, размах крыла стал больше и внедрены различные усовершенствования. После множества доработок в серию пошёл образец Ту-22М2, в период с 1972 по 1983 год было выпущено 211 таких машин. В строевые части в начале 1983 года поступил Ту-22М3 с изменённой формой воздухозаборников, усиленной конструкцией крыла и силовой установкой НК-25. На вооружении кроме ракеты Х-22 появилась вращающаяся установка с ракетами Х-15П, самолёт был приспособлен для боевых действий на малой высоте и совместной работе с самолётами ДРЛО. Ту-22 Конструкция бомбардировщика Ту-22 Аэродинамическая схема Ту-22 представляет собой планер с низкорасположенным крылом изменяемой геометрии и мощным вертикальным хвостовым оперением с поворотным стабилизатором. Крыло с высокой степенью механизации оснащено трёхсекционными предкрылками, закрылки размещены на центроплане и консолях, интерцепторы с тремя секциями работают как элероны, управляя машиной по крену. Ту-22 Гидравлическая система с ЭДУ поворачивает крыло на фиксированные положения от 200 до 600 через каждые 10 градусов и на крайний угол поворота в 650.
Отрицательное влияние воздухозаборников с воздушными тоннелями и центроплана на аэродинамику вертикального оперения при больших углах атаки удачно компенсировали установкой форкиля больших размеров.
Крыло состоит из неподвижной части и поворотных консолей. Механизация крыла включает предкрылки, трёхсекционные двухщелевые закрылки, трёхсекционные интерцепторы на Ту-22М-2 и ранних сериях Ту-22М3 применялись внутренние интерцепторы на СЧК в качестве посадочных воздушных тормозов , элероны отсутствуют. Интерцепторы работают дифференциально по крену и синхронно — как тормозные щитки, с сохранением функции поперечного управления. При отказе интерцепторов стабилизатор может работать дифференциально по крену , с сохранением функции управления по тангажу.
Самолёт имеет фюзеляж типа полумонокок и трёхопорное убирающееся шасси с носовой стойкой. В форкиле установлена ВСУ ТА-6 А, со стартер-генератором постоянного тока и генератором трёхфазного переменного тока, и оба генератора могут работать на самолётную сеть в отличие, к примеру, от Ту-154. Воздухозаборники с вертикальным клином на Ту-22М3 — с горизонтальным расположены по бокам фюзеляжа. Запас топлива «РТ» в количестве 53550 кг размещается в интегральных баках в передней баки 1,2 , средней 3,4,5 и хвостовой баки 6,7,8 частях фюзеляжа, в киле 9-й бак и крыльевых баках, включая поворотную часть крыла консоли. В хвостовой части имеются узлы подвески 2 4 стартовых твердотопливных ускорителей.
По настоянию заказчика Министерства обороны СССР на самолётах первых серий стояла так называемая раздвижка средней пары колёс шасси, якобы для возможной эксплуатации машины с грунта. Впоследствии от механизма раздвижки отказались как от совершенно бесполезного усложнения конструкции. Фюзеляж Фюзеляж — прямоугольного со скруглёнными углами сечения кроме носовой части и кабины. Средняя и хвостовая части фюзеляжа технологического разъема не имеют и представляют собой единый отсек. К хвостовой части фюзеляжа крепятся киль с рулем направления и стабилизатор.
Каркас и обшивка фюзеляжа выполнена в основном из алюминиевых сплавов Д16 и В95. Носовой обтекатель негерметичен и состоит из верхней и нижней частей. В верхней установлены блоки аппаратуры ПНА, в нижней — её параболическая антенна. Гермокабина Ф-2 — самостоятельный гермоотсек, в верхней части находятся рабочие места 4 членов экипажа, оборудование и аппаратура. Экипаж располагается в катапультных креслах КТ-1М.
Подход к рабочим местам — через четыре крышки входных люков, открываемые вверх. Под полом кабины находится технический отсек «подполье» с аппаратурой и агрегатами системы управления, доступ в который осуществляется через три гермолюка в нижней части самолёта. Негерметичный отсек Ф-3 по шпангоуты с 13 по 33. Отсек ниши передней ноги «горбатый отсек» — самый большой и насыщенный аппаратурой технический отсек самолёта. Грузоотсек усилен продольными балками бимсами из сплава В95-Т.
В связи с габаритами крылатой ракеты Х-22 большими, чем грузовой отсек самолёта, последняя подвешивается на фюзеляжный держатель в полуутопленном положении. В ракетном варианте передние и задние створки открываются, основные створки грузоотсека находятся в закрытом положении, а передние и задние подвижные створки грузоотсека убираются внутрь фюзеляжа, образуя нишу для ракеты. В минно-бомбовом варианте передние и задние створки закрыты, а все три створки с каждого борта грузоотсека механически соединяются друг с другом, образуя пару единых створок, открывающихся наружу. Боковые стенки и потолок грузоотсека используются для размещения различных агрегатов и аппаратуры. Нижние надстройки СЧК является продолжением нижнего обвода воздухозаборников подканальные отсеки и используются как технические отсеки для размещения блоков и агрегатов СКВ, ВВР, радиоблоков, а левый отсек — как «багажный», для перевозки самолётного имущества колодки, чехлы и т.
Хвостовая часть фюзеляжа выполнена по схеме полумонокок , имеющий продольный стрингерный набор с работающей обшивкой. Баки расположены между каналами воздухозаборников и двигателями. В подканальной части организованы технические отсеки с агрегатами СКВ и аппаратурой двигателей и самолётных систем. Форкиль обвязан с фюзеляжем через узлы на промежуточных шпангоутах и угольником на обшивке. Фюзеляж самолёта имеет большое количество панелей, люков и лючков, предназначенных для доступа к агрегатам и аппаратуре самолёта при техническом обслуживании.
Практически все люки и лючки выполнены легкосъёмными, на замках различных конструкций. Также самолёт характеризует широкое применение цветной маркировки, символов и надписей с наименованиями, и номеров схемных позиций всего установленного оборудования, что при высокой плотности размещения последнего существенно облегчает техническую эксплуатацию. Несущие силовые части центроплана, СЧК и ПЧК имеет кессонную конструкцию, образованную лонжеронами, монолитными прессованными панелями и герметическими нервюрами по торцам и являются топливными баками. Закрылки — двухщелевые трёхсекционные, с гидравлическим винтовым приводом от двухканального гидромотора , установленного на потолке грузоотсека. Предкрылки, установленные по передней кромке ПЧК и схемотехнически синхронизированные с закрылками, автоматически выпускаются электроприводными механизмами перед выпуском закрылков и убираются также автоматически сразу после полной уборки закрылков.
Этот узел воспринимает все нагрузки, действующие на ПЧК: изгиб, кручение, сдвиг. Кроме основного назначения, шарнирный узел служит переходным узлом для электропроводки, гидросистем, трансмиссии закрылков, топливных и дренажных трубопроводов. Для основного управления самолётом по крену применяется четырёхканальная система дистанционного управления интерцепторами ДУИ-2М. Интерцепторы установлены на каждой плоскости крыла, перемещаются блоками гидроцилиндров БГЦ-10, которые, в свою очередь, управляются четерёхканальными рулевыми агрегатами РА-57. Применение интерцепторов вместо элеронов уменьшает «закручиваемость» крыла при М более 1 и конструктивно освобождает заднюю кромку для установки высокоэффективных закрылков большой площади.
Состоит из двух половин, смонтированных слева и справа на опорах фюзеляжа. Обе половины конструктивно аналогичны. На самолёте для обеспечения путевой устойчивости на больших скоростях применяется развитый киль, конструктивно состоящий из верхней части, нижней части, форкиля, надстройки киля и руля направления. Форкиль, помимо повышения путевой устойчивости, служит для размещения различного оборудования, агрегатов и электронных блоков, в том числе ВСУ ТА-6А. Характерной конструктивной особенностью самолётов Ту-22М является смещённый влево на 2-3 градуса «ноль» руля направления.
Система управления самолётом Система управления сдвоенная, электрогидромеханическая, дифференциальная, на четыре канала управления: по курсу — руль направления, по крену — интерцепторы, по тангажу — стабилизатор и резервный канал дифстабилизатора дифференциальный стабилизатор по крену. Перемещения лётчиками колонки и педалей посредством механических трубчатых тяг передаются через дифференциальные качалки на силовые гидравлические рулевые привода бустеры , которые синхронно отклоняют половины стабилизатора и руль направления. Также к дифференциальным качалкам подсоединены рулевые агрегаты АБСУ, которые в зависимости от управляющих сигналов автоматики добавляют или уменьшают отклонения рулевых поверхностей, в зависимости от режимов полёта, либо берут на себя управление целиком. В канале тангажа имеется электромеханический автоматический ограничитель расхода колонки — торсион. В канале крена установлена электродистанционная четырёхканальная система управления ЭДСУ , без механической проводки, два рулевых привода которой управляют работой силовых гидроприводов интерцепторов.
Для её резервирования применяется канал крена на стабилизаторе со своим рулевым агрегатом, позволяющий управлять самолётом по крену дифференциальным отклонением половин стабилизатора. В проводке управления по курсу, крену и тангажу также установлены электромеханизмы триммирования триммерного эффекта, в канале тангажа — автотриммирования , и электромеханизм системы автоматической балансировки в канале тангажа. Передняя стойка имеет два колеса К2-100У с бескамерными шинами «модель 5А», автоматически затормаживаемые после взлёта для предотвращения раскачки носа самолёта « шимми ». Основные стойки имеют по 6 колёс КТ-156. Колея средних колёс на основных тележках несколько больше колеи первой и третьей пары — это наследие от первых серий Ту-22М, которые имели механизмы раздвижки колёс, якобы для возможной эксплуатации самолёта с грунтовых аэродромов.
Все стойки имеют двухкамерные газомаслянные амортизаторы. Передняя нога шасси убирается в отсек фюзеляжа назад, основные стойки — в отсеки фюзеляжа к продольной оси самолёта. Колёса передней стойки — управляемые от педалей и работают в одном из трёх режимов: руление большие углы , взлёт-посадка малые углы и самоорентирование при буксировке самолёта. Выпуск шасси производится от одной из гидросистем самолёта нормально — от первой и аварийно — от второй или третьей. База шасси 13,51 метра, колея — 7,3 метра, и, как показала практика, самолёт чрезвычайно устойчив при рулении.
Для сокращения расстояния пробега при посадке с большим весом или на ограниченную по длине ВПП применяется парашютно-тормозная система ПТК-45 из двух крестообразных парашютов. Контейнер с парашютами установлен в корме самолёта снизу между двигателями. Замки выпуска и сброса работают на сжатом воздухе от пневмосистемы самолета и управляются от кнопок на штурвалах лётчиков. Интересно, что основные стойки убираются в фюзеляж практически синхронно, а вот их огромные створки захлопываются поочерёдно, с секундной задержкой. Силовая установка Основная статья: Двигатель НК-25 Демонтированный двигатель НК-25 Двигатели НК-25, или изделие «Е» — трёхвальные, двухконтурные, турбовентиляторные, с форсажной камерой и регулируемым сопловым аппаратом, с электронно-гидравлическим управлением подачей топлива система ЭСУД-25.
Воздухозаборники программно-регулируемые, от системы СУЗ-10А. Используется подвижная панель клина для прикрытия «горла» воздухозаборника и створка перепуска. Для дополнительной подачи воздуха в двигатель на малых скоростях на земле или режиме взлёта в каждом воздухозаборнике имеется 9 створок подпитки. Между каждым воздухозаборником и фюзеляжем имеется щель для отсоса пограничного слоя. Для повышения тяговооруженности на самолёт могут подвешиваться два или четыре стартовых пороховых ускорителя типа 736АТ.
При взлёте с неполной заправкой полёты «по кругу» после отрыва форсажный режим одного двигателя выключается для экономии топлива. В качестве рабочей жидкости используется гидравлическое авиационное масло АМГ-10. Для первой и второй систем имеется общий бак с перегородкой, емкостью 66 литров, бак третьей системы 36 литров, при суммарном количестве жидкости в трёх системах — около 260 литров. Все три гидросистемы работают одновременно и параллельно, обеспечивая работу системы управления, механизации крыла, шасси, тормозов колёс, панелей в канале воздухозаборников, створок грузоотсека, фюзеляжного балочного держателя. Гидронасосы НП-89 на двигателях создают в полёте давление в 1-ой гидросистеме, НП-103-2 во 2-ой и 3-ей гидросистемах.
Рулевые приводы рулей, закрылков и ПЧК и рулевые агрегаты автоматической системы управления работают от двух гидросистем одновременно, панели воздухозаборника работают от первой системы, но автоматически переключаться на вторую при падении давления в первой. Уборка шасси производится только от первой гидросистемы, а выпуск выполняется от первой, а при её отказе — аварийно от второй или третьей. Для наземной отработки системы управления или гонки шасси к бортовой гидропанели подключается наземная гидроустановка типа УПГ-300. Полёт при отсутствии давления во всех трёх гидросистемах невозможен.
На самолётах ранних выпусков применялись дополнительно ЛС-1 дублирующая система с линейными датчиками, отключена в связи с низкой надёжностью и сложностью в эксплуатации и ССП-11 пожаротушения внутри двигателей отключена, а впоследствии демонтирована , шесть баллонов УБЦ-8-1 с огнегасящим составом «фреон 114В2», система трубопроводов и электрокранов.
При возникновении пожара соответствующий блок БИ-2АЮ выдаёт сигнал на реле управления, которое включает: мигающую сигнализацию «ПРОВЕРЬ ПОЖАР» у лётчиков блок кранов тушения пожара соответствующую кнопку-лампу на щитке пожарной системы на среднем пульте лётчиков схему выдачи сигнала в блок речевой информации РИ-65 схему выдачи разовой команды «ПОЖАР» на аварийный самописец МСРП-64 При пожаре в отсеке двигателя закрывается соответствующая заслонка продува генераторов постоянного тока. После срабатывания блока кранов в пожарный отсек из трёх баллонов поступает фреон первой очереди пожаротушения. Ввод в действие трёх баллонов второй очереди производится вручную нажатием кнопки на пульте ППС у лётчиков. Если первая очередь не сработала автоматически, то она включается вручную нажатием соответствующей кнопки-лампы, причём вторая очередь не включится, пока не сработает первая. При необходимости в трубопроводы противопожарной системы можно подать углекислоту из системы НГ, но при пожаре в грузоотсеке, отсеках шасси или двигателях подача нейтрального газа заблокирована схемотехнически.
Основное назначение системы НГ — заполнение топливных баков углекислотой при выполнении боевого вылета по мере выработки топлива, в соответствии с программой работы топливных насосов. При возникновении пожара в отсеках шасси, грузоотсеке и в отсеках двигателей в районе форсажных камер средства пожаротушения не применяются, а работает только сигнализация о пожаре. Панель управления противопожарной системой расположена на среднем пульте лётчиков, на земле она закрывается плексигласовой съёмной крышкой. Баллоны с фреоном и распределительные краны находятся в грузовом отсеке самолёта на потолке слева и передней стенке. В отсеке правого двигателя имеется контрольный пульт наземной проверки цепей ППС.
Система кондиционирования воздуха[ править править код ] Комплексная система кондиционирования КСКВ предназначена для поддержания нормальных условий жизнедеятельности экипажа и требуемых условий для работы аппаратуры и оборудования в кабине самолёта, в технических отсеках и грузоотсеке, а также аппаратуры ракет. Отбор воздуха на самолётные нужды производится от вспомогательной силовой установки на земле или от 12-х ступеней компрессоров работающих двигателей — в полёте. Возможно подключение наземного кондиционера типа АМК. В общих чертах работа КСКВ. Первоначально охлаждение воздуха производится в первичном воздухо-воздушном радиаторе 4487Т в корме машины район 77 шпангоута.
ВВР представляет собой теплообменник, который продувается холодным воздухом, отбираемым от вентиляторов двигателей и затем сбрасывается в атмосферу. Следующим контуром охлаждения воздуха служат основные ВВР типа 5645Т, правый и левый, расположенные в подканальной части воздухозаборников двигателей. В полёте продув радиаторов производится от скоростного напора, а на земле для этой цели служат эжекторы , работающие за счёт расхода части воздуха из магистрали наддува кабины. Эжекторы включаются автоматически при нахождении самолёта на земле, что определяется по обжатию концевого выключателя на правой стойке шасси. Эжектируемый горячий воздух выбрасывается вниз, под воздухозаборники мощный поток горячего воздуха позволяет зимой греться техсоставу, однако, это запрещено руководящими документами.
В основные ВВР поступает не весь воздух, а некоторая часть горячего воздуха поступает в магистраль в обход радиаторов т. Данный электромеханизм имеет в конструкции два электродвигателя постоянного тока — «быстрый» и «медленный». Электромеханизм используется для плавного регулирования количества подаваемого в кабину воздуха, при этом работает «медленный» реверсивный электромотор, а «быстрый» электромотор работает только на закрытие заслонки и необходим для срочного прекращения наддува кабины например, при пожаре двигателя и поступлении продуктов горения из воздуховодов СКВ. Управляется заслонка с рабочего места оператора трёхпозиционным с нейтралью нажимным переключателем. Последней ступенью охлаждения воздуха служит комплекс из турбохолодильника 5394 и двух кабинных ВВР «2806», установленные в техническом отсеке ниши передней ноги шасси.
После ТХ магистраль делится на две: обогрева кабины и вентиляции кабины. В трубопровод обогрева через заслонку к воздуху, прошедшему ТХ, подмешивается горячий воздух, взятый из магистрали до ТХ. Избыточный воздух наддува сбрасывается из гермокабины через автомат регулирования давления АРД-54. На высотах полёта от 0 до 2000 м избыточного давления в кабине нет, работает только вентиляция или обогрев. ТХ позволяет понизить температуру в кабине относительно наружной приблизительно на пять градусов.
Начиная с 2000 м и до 7100 м АРД поддерживает давление в кабине 569 мм рт. Аварийный сброс давления в кабине выполняется автоматически через электроклапан «438Д» при включении вентиляции от скоростного напора, разгерметизации крышек фонаря при покидании или вручную — выключателем. Система кондиционирования техотсека служит для охлаждения блоков различной электронной аппаратуры в передней части фюзеляжа. Технический отсек ниши передней ноги шасси не герметичен и закрывается съёмной на замках ДЗУС крышкой на жаргоне — «горбатый люк». Воздух после основных ВВР кабины поступает в ТХ и далее в систему трубопроводов техотсека ниши передней ноги шасси.
Температура подаваемого воздуха регулируется поочерёдно двумя электронными регуляторами с общим исполнительным механизмом. На высотах полёта до 7000 метров работает УРТ-0Т, эта система поддерживает температуру воздуха в трубопроводах в пределах 0 градусов, добавляя, при необходимости, к холодному воздуху из ТХ, горячий воздух из трубопровода до основных ВВР кабины. ВМСК-2М, высотный морской спасательный костюм — это штатная экипировка экипажа при полётах над морем. ВМСК представляет собой комбинацию высотно-компенсирующего снаряжения и спасательного комбинезона. ВМСК имеет ярко оранжевый цвет и технически подключается к самолётным системам через объединённый разъём коммуникаций ОРК-9А на боковине катапультного кресла.
Воздух в систему кондиционирования костюмов поступает с первичного ВВР и далее делится на холодную и горячую линии. Трубопроводы магистрали вентиляции и обогрева костюмов подведены к креслам членов экипажа. Так как костюмы ВМСК герметичны и нахождение в них человека без искусственного теплообмена весьма проблематично, при отказе системы кондиционирования костюмов ВМСК предусмотрено аварийное питание воздухом из системы кондиционирования кабины. Для обеспечения температурного режима блоков ракетной аппаратуры наведения ПМГ и ПСИ в носовом отсеке, и ядерной БЧ в среднем отсеке ракеты на самолёте установлена отдельная система кондиционирования изделий, раздельно для крыльевой правой, крыльевой левой и фюзеляжной средней ракеты. Для этой цели на самолёте установлены ещё два воздухо-воздушных радиатора с эжекторами, турбохолодильная установка, блоки автоматики 2714, датчики типа ИС-164, исполнительные электромеханизмы СКВ.
Кроме того, отбор тепла из носового отсека каждой ракеты производится путём прокачки охлаждённого этилового спирта насосом ЭЦН-105 по замкнутой системе трубопроводов самолёта и ракеты через теплообменник носового отсека. Автомат регулирования температуры в спиртовом контуре состоит из блока 2714С, датчика ИС-164Б и смесителя спирта 981800Т, который установлен за спиртовоздушным радиатором 2904АТ на самолёте три комплекта. Средства аварийного покидания и спасения[ править править код ] Каждый член экипажа снабжён катапультным креслом КТ-1М с трёхкаскадной парашютной системой ПС-Т, смонтированной в кресле. Катапультирование осуществляется вверх, лицом к потоку, защита лица осуществляется гермошлемом ГШ-6А, который является частью защитного костюма BMCК-2М, принятого в качестве штатной экипировки экипажа, или защитным шлемом ЗШ-3 в последнем случае экипаж одет в стандартное лётное обмундирование по сезону, дополнительно надевается спасательный пояс типа АСП-74. В кабине — инженер группы САПС Катапультирование осуществляется в следующей последовательности: оператор, штурман, правый лётчик, командир корабля.
Предусмотрено как индивидуальное, так и принудительное катапультирование. Принудительное катапультирование экипажа выполняется командиром, для чего достаточно поднять колпачок и включить тумблер «Принудительное покидание» на левом борту кабины лётчиков. При этом на каждом рабочем месте загорается красный транспарант «Принудительное покидание» и включается временное реле ЭМРВ-27Б-1 для кресел правого лётчика, штурмана-навигатора и штурмана-оператора, которые настроены на время, соответствующее 3,6 с, 1,8 с, 0,3 с. Через 0,3 с временные реле вызывают срабатывание электроклапана ЭК-69 пневмосистемы на кресле штурмана-оператора, при этом на кресле происходит срабатывание системы «Изготовка» и нажатие концевого выключателя сброса крышки фонаря. При срабатывании системы «Изготовка» на кресле включается временной автомат АЧ-1,2, который через 1 с выдёргивает чеку стреляющего механизма.
При выходе кресла из кабины на кресле срабатывает концевой выключатель, который включает на приборной доске командира соответствующие сигнальное табло «Самолёт покинул оператор». При этом происходит срабатывание системы, как и на кресле штурмана-оператора, а у правого лётчика дополнительно происходит отключение от проводки и отбрасывание вперёд штурвальной колонки. Командир катапультируется последним, срабатывая приводами катапультирования на кресле вручную. При выходе его кресла срабатывает концевой выключатель подрыва блоков системы государственного опознавания изд. Принудительное катапультирование является основным, индивидуальное покидание — резервным.
Для индивидуального покидания на каждом кресле имеются две боковые ручки «изготовка-покидание». Для срабатывания системы достаточно обжатия и нажимания любой из ручек.
Измерение количества топлива и порядок расхода обеспечивается электронной системой топливной автоматики СУИТ4-5 система измерения, управления и центровки , система измерения расхода топлива расходомер РТС-300Б-50, а также дублирующая система измерения топлива СИТ2-1.
Правый двигатель питается из кормовых расходных баков группы 6-9, в которые перекачивается топливо из ПЧК-СЧК правой плоскости, затем из 5 баков, и в конце выработки — из баков 3-4. При нормальной работе топливо баков 3-4 делится на оба двигателя поровну. Аварийный слив топлива в полете возможен через сливные горловины на плоскостях и одной — в корме, между соплами двигателей, и выполняется за время не более 20 мин.
На самолётах ранних выпусков применялись дополнительно ЛС-1 дублирующая система с линейными датчиками, отключена в связи с низкой надёжностью и сложностью в эксплуатации и ССП-11 пожаротушения внутри двигателей отключена, а впоследствии демонтирована , шесть баллонов УБЦ-8-1 с огнегасящим составом «фреон 114В2», система трубопроводов и электрокранов. При возникновении пожара соответствующий блок БИ-2АЮ выдаёт сигнал на реле управления, которое включает: мигающую сигнализацию «ПРОВЕРЬ ПОЖАР» у лётчиков блок кранов тушения пожара соответствующую кнопку-лампу на щитке пожарной системы на среднем пульте лётчиков схему выдачи сигнала в блок речевой информации РИ-65 схему выдачи разовой команды «ПОЖАР» на аварийный самописец МСРП-64 При пожаре в отсеке двигателя закрывается соответствующая заслонка продува генераторов постоянного тока. После срабатывания блока кранов в пожарный отсек из трёх баллонов поступает фреон первой очереди пожаротушения.
Ввод в действие трёх баллонов второй очереди производится вручную нажатием кнопки на пульте ППС у лётчиков. Если первая очередь не сработала автоматически, то она включается вручную нажатием соответствующей кнопки-лампы, причём вторая очередь не включится, пока не сработает первая. При необходимости, в трубопроводы противопожарной системы можно подать углекислоту из системы НГ, но при пожаре в грузоотсеке, отсеках шасси или двигателях подача нейтрального газа заблокирована схемотехнически.
Основное назначение системы НГ — заполнение топливных баков углекислотой при выполнении боевого вылета по мере выработки топлива, в соответствии с программой работы топливных насосов. При возникновении пожара в отсеках шасси, грузоотсеке и в отсеках двигателей в районе форсажных камер средства пожаротушения не применяются, а работает только сигнализация о пожаре. Для проведения контроля работоспособности противопожарной системы применяется установленный в отсеке электронной аппаратуры правого двигателя пульт наземной проверки ППО.
Система кондиционирования воздуха Самолёт Ту-22М отличает сложная система кондиционирования, принципиально состоящая из нескольких подсистем. Комплексная система кондиционирования КСКВ предназначена для поддержания нормальных условий жизнедеятельности экипажа и требуемых условий для работы аппаратуры и оборудования в кабине самолёта, в технических отсеках и грузоотсеке, а также аппаратуры ракет. Отбор воздуха на самолётные нужды производится от вспомогательной силовой установки на земле или от 12-х ступеней компрессоров работающих двигателей — в полёте.
Возможно подключение наземного кондиционера типа АМК. В общих чертах работа КСКВ. Первоначально охлаждение воздуха производится в первичном воздухо-воздушном радиаторе 4487Т в корме машины район 77 шпангоута.
ВВР представляет собой теплообменник, который продувается холодным воздухом, отбираемым от вентиляторов двигателей и затем сбрасывается в атмосферу. Следующим контуром охлаждения воздуха служат основные ВВР типа 5645Т, правый и левый, расположенные в подканальной части воздухозаборников двигателей. В полете продув радиаторов производится от скоростного напора, а на земле для этой цели служат эжекторы, работающие за счёт расхода части воздуха из магистрали наддува кабины.
Эжекторы включаются автоматически при нахождении самолёта на земле, что определяется по обжатию концевого выключателя на правой стойке шасси. Эжектируемый горячий воздух выбрасывается вниз, под воздухозаборники. В основные ВВР поступает не весь воздух, а некоторая часть горячего воздуха поступает в магистраль в обход радиаторов горячая линия.
Данный электромеханизм имеет в конструкции два электродвигателя постоянного тока — «быстрый» и «медленный». Электромеханизм используется для плавного регулирования количества подаваемого в кабину воздуха, при этом работает «медленный» реверсивный электромотор, а «быстрый» электромотор работает только на закрытие заслонки и необходим для срочного прекращения наддува кабины. Управляется заслонка с рабочего места оператора трёхпозиционным с нейтралью.
Последней ступенью охлаждения воздуха служит комплекс из турбохолодильника 5394 и двух кабинных ВВР 2806, установленные в техническом отсеке ниши передней ноги. После ТХ магистраль делится на две: обогрева кабины и вентиляции кабины. В трубопровод обогрева через заслонку 1919Т к воздуху, прошедшему ТХ, подмешивается горячий воздух, взятый из магистрали до ТХ.
Избыточный воздух наддува сбрасывается из гермокабины через автомат регулирования давления АРД-54. На высотах полёта от 0 до 2000 м избыточного давления в кабине нет. Начиная с 2000 м и до 7100 м АРД поддерживает давление в кабине 569 мм рт.
Аварийный сброс давления в кабине выполняется автоматически через электроклапан 438Д при включении вентиляции от скоростного напора, разгерметизации крышек фонаря или вручную — выключателем. Система кондиционирования техотсека служит для охлаждения блоков аппаратуры. Воздух после основных ВВР кабины поступает в ТХ и далее в систему трубопроводов техотсека ниши передней ноги шасси.
Температура подаваемого воздуха регулируется поочерёдно двумя регуляторами с общим исполнительным механизмом. На высотах полёта до 7000 метров работает УРТ-0Т, эта система поддерживает температуру в пределах 0 градусов, добавляя, при необходимости, к холодному воздуху из ТХ, горячий воздух из трубопровода до основных ВВР кабины. Трубопроводы магистрали вентиляции и обогрева костюмов подведены к креслам членов экипажа.
Для обеспечения температурного режима блоков ракетной аппаратуры наведения ПМГ и ПСИ в носовом отсеке, и ядерной БЧ в среднем отсеке ракеты на самолёте установлена система кондиционирования изделий, раздельно для крыльевой правой, крыльевой левой и фюзеляжной средней ракеты. Для этой цели на самолёте установлены ещё два воздухо-воздушных радиатора с эжекторами, турбохолодильная установка, блоки автоматики 2714, датчики типа ИС-164, исполнительные электромеханизмы СКВ. Кроме того, отбор тепла из носового отсека каждой ракеты производится путём прокачки охлаждённого этилового спирта насосом ЭЦН-105 по замкнутой системе трубопроводов самолёта и ракеты через теплообменник носового отсека.
Автомат регулирования температуры в спиртовом контуре состоит из блока 2714С, датчика ИС-164Б и смесителя спирта 981800Т, который установлен за спиртовоздушным радиатором 2904АТ на самолёте три комплекта. Средства аварийного покидания и спасения Каждый член экипажа снабжен катапультным креслом КТ-1М с трехкаскадной парашютной системой ПС-Т, смонтированной в кресле. Катапультирование осуществляется вверх, лицом к потоку, защита лица осуществляется гермошлемом ГШ-6А, который является частью защитного костюма BMCК-2М, принятого в качестве штатной экипировки экипажу, или защитным шлемом ЗШ-3.
Катапультирование осуществляется в следующей последовательности: оператор, штурман, правый летчик, командир корабля. Предусмотрено как индивидуальное, так и принудительное катапультирование. Принудительное катапультирование экипажа выполняется командиром, для чего достаточно поднять колпачок и включить тумблер «Принудительное покидание» на левом борту кабины лётчиков.
При этом на каждом рабочем месте загорается красный транспарант «Принудительное покидание» и включается временное реле ЭМРВ-27Б-1 для кресел правого летчика, штурмана-навигатора и штурмана-оператора, которые настроены на время, соответствующее 3,6 с, 1,8 с, 0,3 с. Через 0,3 с временные реле вызывают срабатывание электроклапана ЭК-69 пневмосистемы на кресле штурмана-оператора, при этом на кресле происходит срабатывание системы «Изготовка» и нажатие концевого выключателя сброса крышки фонаря. При срабатывании системы «Изготовка» на кресле включается временной автомат АЧ-1,2, который через 1 с выдёргивает чеку стреляющего механизма.
При выходе кресла из кабины, на кресле срабатывает концевой выключатель, который включает на приборной доске командира соответствующие сигнальное табло «Самолет покинул…». При этом происходит срабатывание системы, как и на кресле штурмана-оператора, а у правого летчика дополнительно происходит отключение и отбрасывание штурвальной колонки. Командир катапультируется последним, срабатывая приводами катапультирования на кресле вручную.
При выходе его кресла срабатывает концевой выключатель подрыва блоков системы государственного опознавания изд. Принудительное катапультирование является основным, индивидуальное покидание — резервным. В случае покидания обесточенного самолёта возможно только индивидуальное катапультирование с предварительным ручным сбросом крышек входных люков пока не «уйдет» люк, остаётся заблокированным стреляющий механизм кресла.
Кресла установлены в направляющих рельсах. На задней стороне каркаса спинки устанавливается комбинированный стреляющий механизм КСМ-Т-45, представляющий собой двухступенчатый твердотопливный ракетный двигатель. Первая ступень — это стреляющий разгонный механизм после выстрела он остаётся в самолёте , вторая ступень обеспечивает заданную траекторию полёта кресла на высоту 150 метров.
Также на каркасе кресла установлены: чашка кресла с НАЗ -7М и кислородным прибором КП-27М, отделяемая спинка с подвесной системой и заголовником, механизмы и системы автоматики кресла, пневмосистема кресла. Вес катапультного кресла КТ-1М составляет 155 кг. В случае покидания машины над морем у каждого члена экипажа имеется одноместная надувная лодка МЛАС-1 и носимый аварийный запас НАЗ-7М с запасом продуктов и медикаментов.
В случае вынужденной посадки на воду в контейнере за кабиной имеется пятиместная надувная лодка ЛАС-5М с запасом продуктов, медикаментов и аварийной радиостанцией. При посадке на необорудованном аэродроме или в аварийных случаях экипаж покидает кабину по четырём спасательным фалам, уложенным в контейнерах на межфонарной балке. Система электроснабжения Бортовая электросистема состоит из двух резервированных сетей постоянного тока 29 вольт, двух — переменного трёхфазного тока 208 вольт 400 герц и вторичных сетей трёхфазного тока 36 вольт.
Система делится на сети правого и левого бортов с многоуровневой системой автоматического резервирования. Все генераторы имеют электронное управление и высокие параметры качества электроэнергии, без каких либо эксплуатационных ограничений в полёте. В отсеке правого двигателя устанавливаются две никель-кадмиевые аккумуляторные батареи 20НКБН-25 , которых хватает для аварийного питания потребителей первой категории в течение 12-15 минут полёта.
Полёт при полностью обесточенной электросети самолёта невозможен критический уровень напряжения в сети постоянного тока — 20 вольт. Возможно только автономное катапультирование с ручным сбросом крышек фонарей. Приборное оборудование Самолёт Ту-22М отличает очень высокая насыщенность кабины — приборы, тумблеры и сигнальные табло установлены на приборных досках, боковых панелях, верхних щитках, потолочных панелях межфонарные балки , задних панелях АЗР и средних пультах между креслами.
Приборное оборудование кабины — традиционными стрелочными приборами. Основные пилотажно-навигационные приборы — это командно-пилотажные ПКП-72 на приборных досках лётчиков и навигационные плановые ПНП-72 у лётчиков и штурмана навигатора, из комплекта системы траекторного управления «Борт-45». Указатели топлива, подвижных частей системы управления и механизации и работы двигателей — из комплектов соответствующих систем.
Навигационный комплекс НК-45 совместно с автоматической бортовой системой управления АБСУ-145 позволяет выполнять автоматический запрограммированный полёт по одному из двух заложенных «прошитых» в памяти БЦВМ на земле маршрутов, начиная с высоты 400 м. Имеет электрические связи почти со всем оборудованием самолёта. АБСУ значительно упрощает пилотирование, корректируя расход колонки и балансировочное положение в зависимости от режима полёта, а также автоматически парируя все несанкционированные эволюции самолёта, вызванные нестабильностью воздушных масс.
При выполнении координированных разворотов автоматически компенсируется потеря высоты, при выпуске закрылков автоматически компенсируется пикирующий момент, при изменениях продольной перегрузки плавно ограничивается расход колонки и передаточные числа на рули, автоматически компенсируется обратная реакция от руля направления, эффективно гасится раскачка. Также возможно управление самолётом не только перемещением колонки, штурвала и педалей, но и от строевой ручки на пульте управления ПУ-35, которая весь полёт синхронно перемещается по пульту, отслеживая угловые положения самолёта в пространстве что необходимо для безударного перехода управления «со штурвала» на «автомат» и обратно при эволюциях самолёта. В автоматических режимах возможен полёт с автоматической стабилизацией угловых положений, скорости, высоты, курса, курсового угла; программное управление на маршруте, автоматический выход на цель или в точку пуска ракет; автоматическое возвращение на аэродром, автоматический или директорный заход и снижение по глиссаде до высоты 40 метров; автоматический полёт на сближение до визуального контакта с любым самолётом, оборудованным радионавигационными ответчиками; при потере лётчиком ориентировки в пространстве автоматическое выведение самолёта в установившийся горизонтальный полёт с последующей стабилизацией барометрической высоты — из любого углового и пространственного положения, с превышением эксплуатационных перегрузок до 5g, если сохранена управляемость машиной.
На Ту-22М2 и ранних сериях Ту-22М3 устанавливались блоки автоматического низковысотного полёта, позволявшие выполнять такого рода полёты над морем или равнинной местностью.
История создания и характеристики бомбардировщика Ту-22М3
А вот чтобы улучшить имевшиеся тактико-технические характеристики (ТТХ) на Ту-22М2, Дмитрий Марков решил установить не 22-тонные двигатели, а 25-тонные и довести стреловидность до 65 градусов – таким стал Ту-22М3 в июне 1977-го. Испытания первых Ту-22МЗ показали, что по своим летно-тактическим характеристикам самолеты новой модификации значительно превосходят Ту-22М2: максимальная скорость увеличилась до 2000-2300 км/ч, тактические радиусы действия — на. О том, сколько нужно современной России таких самолетов как Ту-22М3М, ответить ещё тяжелее, чем на вопрос о том, сколько их есть сейчас у России. В итоге на переговорах решили, что СССР ограничит максимальную дальность полета Ту-22М, лишив его межконтинентальных характеристик, — демонтирует оборудование дозаправки в воздухе.
Экипаж Ту-22М3 убили гнилые провода и некомпетентность авиаинженеров?
Ту-22МЗ имеет следующие летные и тактико-технические характеристики: экипаж 3 человека, длину в 42,46 метра, максимальную взлетную массу в 126 тонн и скорость в 2300 км/ч с практическим потолком высоты в 13 300 метров. Испытания первых Ту-22М3 показали, что по своим лётно-тактическим характеристикам самолёты новой модификации значительно превосходят Ту-22М2: максимальная скорость возросла с 1700 до 2000-2300 км/ч, тактические радиусы действия – на. Тут можно посмотреть фото и характеристики самолета Ту-22 М3.
Ту 22м3 технические характеристики
В эту ночь поседели должностные лица не только в гарнизоне, но и в Москве! По счастливой случайности Ту-22, выработав топливо, упал на окраине города возле фермы. Следующей модификацией стал «Ту-22М», приведший в будущем к созданию Ту-22М3. В начале, ему довелось работать под началом опытных конструкторов Дмитрия Маркова, Сергея Егера, в группе сына А. Однажды Алексей Туполев принёс от отца важное задание и предложил А. Пухову взглянуть на компоновку будущего Ту-22М, который шёл под индексом «45». Компоновка была нарисована на маленьком клочке бумаги жирным шрифтом, как любил А. Необходимо было прорисовать более подробно будущий самолёт. К вечеру общий вид новой машины Ту-22М был прорисован! При создании Ту-22М, предшественника Ту-22М3, главный конструктор Дмитрий Марков максимально учитывал требования военных.
Дело в том, что в это время в США появились новые первые ракетные подводные лодки типа «Джорж Вашингтон», способные нести на борту по 16 баллистических ракет «Поларис» Полярный с дальностью полёта 2 000 км. Эти ракеты могли накрыть большинство европейских и дальневосточных городов СССР. Соответственно потребовалось, чтобы Ту-22М мог уничтожать не только авианосцы, но и первые американские ракетные субмарины «Джорж Вашингтон». Во первых Туполев довооружил Ту-22М крылатой ракетой. Во вторых необходимо было проработать вопрос увеличения дальности полёта. Ту-22М3 с положением крыльев со стреловидностью в среднем положении В результате появился новый ударный авиационный комплекс Ту-22М с некоторыми изменениями. Впоследствии эти изменения сохранились и на Ту-22М3. Двигатели переместили с хвоста в фюзеляж. На Ту-22 экипаж из трёх человек размещался в кабине друг за другом.
На новой машине в передней кабине разместились оба пилота, в задней кабине штурман и оператор вооружения самолёта. Ту-22М3 Положение крыльев с минимальной стреловидностью На тот момент у США уже был истребитель с изменяемой стреловидностью крыла, F-111, но он пёс в два раза меньшую бомбовую нагрузку, чем Ту-22М. Через пять лет американцы создали стратегический бомбардировщик превосходящий Ту-22М. Им стал В-1. Осенью 1969-го года американцы узнали о появлении в СССР бомбардировщика с изменяемой геометрией крыла. Но сфотографировать Ту-22М, предшественника Ту-22М3, смогли только через год со спутника. Именно тогда американцы прозвали Ту-22М, «Backfire» обратный огонь потому, что на нём в хвосте для самообороны установлена спаренная скорострельная пушка «ГШ-23» калибром 23 мм. А также при взлёте на форсаже из сопел Ту-22М вырывается газовая струя длиной 12 метров, с температурой газа 930 градусов Цельсия. В это же время в США началось создание противоракетной обороны «Safeguard» защита.
Но его технические характеристики не устроили ожидания военных. Однако и у этого предшественника Ту-22М3, лётные характеристики оказались неудовлетворительными. Тогда в ЦК отделом промышленности руководил грубоватый начальник Серпин. Он начал отчитывать Решетникова говоря о том, что вот, мол рабочий класс не щадя своих сил и времени строит для Вас самолёты, а Вы их не берёте. В конце беседы Серпин очень строго предупредил Решетникова о последствиях для него, если он не будет принимать на вооружение Ту-22М1. Однако этот предшественник Ту-22М3 так и не был принят на вооружение. Туполев, отвечая на пожелания командования дальней авиации, создал улучшенную версию самолёта, Ту-22М2, который обладал дальностью полёта 5 000 км. Первый полёт на этой машине совершил лётчик-испытатель Борис Иванович Веремей. Для того, чтобы самолёт гарантированно уничтожил авианосец и вернулся на свой аэродром, предшественник Ту-22М3 был оснащён системой дозаправки в воздухе.
Ту-22М3 Кабина оператора вооружения В июне 1974-го года новый бомбардировщик Ту-22М2 поступил на войсковые испытания в Полтавский полк тяжёлых бомбардировщиков. Там представилась возможность показать правительству СССР новую машину в действии. На показательном выступлении присутствовал сам Л. Один бомбардировщик, пилотируемый майором Подчинёновым, сбросил на условный танковый полк, идущий колонной, пол вагона пятисот килограммовых бомб — 21 тонну. Танковые мишени разнесло в клочья! В правительственном павильоне выбило стёкла! Эффективные действия и мощь Ту-22М2 произвели на Брежнева неизгладимое впечатление! Брежнев лично пожал руку Подчинёнову и лётчик был награждён Орденом Красной Звезды. Новый самолёт получил наилучшие отзывы от экипажей!
Скоростной самолёт устойчиво держался в воздухе, обладал хорошей скороподъёмностью и лёгкой управляемостью. Лётчики отметили хороший обзор из кабины, 20 бортовых цифровых вычислительных систем, современный прицельно-навигационный комплекс и мощное вооружение. По сравнению с Ту-22, бомбовая нагрузка Ту-22М2 возросла почти в два раза, с 12 до 21-й тонны! В бомболюки помещалось 33 пятисот килограммовых бомбы. Ту-22М3 производит бомбардировку с малой высоты полёта В 1976-м году в Женеве состоялись очередные советско-американские переговоры по ограничению стратегических вооружений «ОСВ-2». В это же время в ночь на 14-е мая по приказу министра авиационной промышленности Петра Васильевича Дементьева состоялся первый полёт предшественника Ту-22М3, которым стал уже серийный Ту-22М2, для того, чтобы определить максимальную дальность полёта.
В основные ВВР поступает не весь воздух, а некоторая часть горячего воздуха поступает в магистраль в обход радиаторов горячая линия. Данный электромеханизм имеет в конструкции два электродвигателя постоянного тока — «быстрый» и «медленный».
Электромеханизм используется для плавного регулирования количества подаваемого в кабину воздуха, при этом работает «медленный» реверсивный электромотор, а «быстрый» электромотор работает только на закрытие заслонки и необходим для срочного прекращения наддува кабины. Управляется заслонка с рабочего места оператора трёхпозиционным с нейтралью нажимным переключателем. Последней ступенью охлаждения воздуха служит комплекс из турбохолодильника 5394 и двух кабинных ВВР 2806, установленные в техническом отсеке ниши передней ноги. После ТХ магистраль делится на две: обогрева кабины и вентиляции кабины. В трубопровод обогрева через заслонку к воздуху, прошедшему ТХ, подмешивается горячий воздух, взятый из магистрали до ТХ. Избыточный воздух наддува сбрасывается из гермокабины через автомат регулирования давления АРД-54. На высотах полёта от 0 до 2000 м избыточного давления в кабине нет. Начиная с 2000 м и до 7100 м АРД поддерживает давление в кабине 569 мм рт.
Аварийный сброс давления в кабине выполняется автоматически через электроклапан 438Д при включении вентиляции от скоростного напора, разгерметизации крышек фонаря или вручную — выключателем. Система кондиционирования техотсека служит для охлаждения блоков аппаратуры. Воздух после основных ВВР кабины поступает в ТХ и далее в систему трубопроводов техотсека ниши передней ноги шасси. Температура подаваемого воздуха регулируется поочерёдно двумя регуляторами с общим исполнительным механизмом. На высотах полёта до 7000 метров работает УРТ-0Т, эта система поддерживает температуру в пределах 0 градусов, добавляя, при необходимости, к холодному воздуху из ТХ, горячий воздух из трубопровода до основных ВВР кабины. Трубопроводы магистрали вентиляции и обогрева костюмов подведены к креслам членов экипажа. Для обеспечения температурного режима блоков ракетной аппаратуры наведения ПМГ и ПСИ в носовом отсеке, и ядерной БЧ в среднем отсеке ракеты на самолёте установлена система кондиционирования изделий, раздельно для крыльевой правой, крыльевой левой и фюзеляжной средней ракеты. Для этой цели на самолёте установлены ещё два воздухо-воздушных радиатора с эжекторами, турбохолодильная установка, блоки автоматики 2714, датчики типа ИС-164, исполнительные электромеханизмы СКВ.
Кроме того, отбор тепла из носового отсека каждой ракеты производится путём прокачки охлаждённого этилового спирта насосом ЭЦН-105 по замкнутой системе трубопроводов самолёта и ракеты через теплообменник носового отсека. Автомат регулирования температуры в спиртовом контуре состоит из блока 2714С, датчика ИС-164Б и смесителя спирта 981800Т, который установлен за спиртовоздушным радиатором 2904АТ на самолёте три комплекта. Средства аварийного покидания и спасения Каждый член экипажа снабжён катапультным креслом КТ-1М с трёхкаскадной парашютной системой ПС-Т, смонтированной в кресле. Катапультирование осуществляется вверх, лицом к потоку, защита лица осуществляется гермошлемом ГШ-6А, который является частью защитного костюма BMCК-2М, принятого в качестве штатной экипировки экипажа, или защитным шлемом ЗШ-3 в последнем случае экипаж одет в стандартное лётное обмундирование по сезону, дополнительно надевается спасательный пояс типа АСП-74. Ручка аварийного сброса крышки фонаря Протаскивание кресла КТ-1М. В кабине — инженер группы САПС Катапультирование осуществляется в следующей последовательности: оператор, штурман, правый лётчик, командир корабля. Предусмотрено как индивидуальное, так и принудительное катапультирование. Принудительное катапультирование экипажа выполняется командиром, для чего достаточно поднять колпачок и включить тумблер «Принудительное покидание» на левом борту кабины лётчиков.
При этом на каждом рабочем месте загорается красный транспарант «Принудительное покидание» и включается временное реле ЭМРВ-27Б-1 для кресел правого лётчика, штурмана-навигатора и штурмана-оператора, которые настроены на время, соответствующее 3,6 с, 1,8 с, 0,3 с. Через 0,3 с временные реле вызывают срабатывание электроклапана ЭК-69 пневмосистемы на кресле штурмана-оператора, при этом на кресле происходит срабатывание системы «Изготовка» и нажатие концевого выключателя сброса крышки фонаря. При срабатывании системы «Изготовка» на кресле включается временной автомат АЧ-1,2, который через 1 с выдёргивает чеку стреляющего механизма. При выходе кресла из кабины на кресле срабатывает концевой выключатель, который включает на приборной доске командира соответствующие сигнальное табло «Самолёт покинул оператор». При этом происходит срабатывание системы, как и на кресле штурмана-оператора, а у правого лётчика дополнительно происходит отключение от проводки и отбрасывание вперёд штурвальной колонки. Командир катапультируется последним, срабатывая приводами катапультирования на кресле вручную. При выходе его кресла срабатывает концевой выключатель подрыва блоков системы государственного опознавания изд. Принудительное катапультирование является основным, индивидуальное покидание — резервным.
Для индивидуального покидания на каждом кресле имеются две боковые ручки «изготовка-покидание». Для срабатывания системы достаточно обжатия и нажимания любой из ручек. В случае покидания обесточенного самолёта возможно только индивидуальное катапультирование с предварительным ручным сбросом крышек входных люков пока не «уйдет» люк, остаётся заблокированным стреляющий механизм кресла. Кресла установлены в направляющих рельсах. На задней стороне каркаса спинки устанавливается комбинированный стреляющий механизм КСМ-Т-45, представляющий собой двухступенчатый твердотопливный ракетный двигатель. Первая ступень — это стреляющий разгонный механизм после выстрела он остаётся в самолёте , вторая ступень обеспечивает заданную траекторию полёта кресла на высоту 150 метров. Также на каркасе кресла установлены: чашка кресла с НАЗ-7М и кислородным прибором КП-27М, отделяемая спинка с подвесной системой и заголовником, механизмы и системы автоматики кресла, пневмосистема кресла. Вес катапультного кресла КТ-1М составляет 155 кг.
В случае покидания машины над морем у каждого члена экипажа имеется одноместная надувная лодка МЛАС-1 и носимый аварийный запас НАЗ-7М с запасом продуктов и медикаментов. В случае вынужденной посадки на воду в контейнере за кабиной имеется пятиместная надувная лодка ЛАС-5М с запасом продуктов, медикаментов и аварийной радиостанцией. При посадке на необорудованном аэродроме или в аварийных случаях экипаж покидает кабину по четырём спасательным фалам, уложенным в контейнерах на межфонарной балке. Система электроснабжения Все органы управления энергоснабжением сосредоточены на рабочем месте штурмана-оператора. Для сетей стабильной частоты в техническом отсеке ниши передней стойки шасси стояли три электромашинных преобразователя ПТ-3000 и три ПО-6000, причём рабочими были только по два, а третий был в «горячем» резерве. Бортовые аккумуляторные батареи — 12САМ-55. Авиационная бортовая никель-кадмиевая аккумуляторная батарея 20НКБН-25-У3 Бортовая электросистема Ту-22М3 состоит из двух резервированных сетей постоянного тока 28 вольт, двух — переменного трёхфазного тока 210 вольт 400 герц и вторичных сетей трёхфазного тока 36 вольт 400 герц. Система делится на сети правого и левого бортов с многоуровневой системой автоматического резервирования.
Все генераторы имеют электронное управление и высокие параметры качества электроэнергии, без каких-либо эксплуатационных ограничений в полёте. Постоянный ток вырабатывают четыре бесконтактных генератора ГСР-20БК на двигателях с общей мощностью 80 кВт, переменный ток вырабатывают два привод-генератора ГП-16 или ГП-23, с суммарной мощностью 120 кВА, дополнительно стоят два понижающих трансформатора с 208 на 36 вольт. В отсеке правого двигателя устанавливаются две никель-кадмиевые аккумуляторные батареи 20НКБН-25, которых хватает для аварийного питания потребителей первой категории в течение 12-15 минут полёта. Полёт при полностью обесточенной электросети самолёта невозможен критический уровень напряжения в сети постоянного тока — 20 вольт. Возможно только автономное катапультирование с ручным сбросом крышек фонарей. Приборное оборудование Рабочие места лётчиков Самолёт Ту-22М отличает очень высокая насыщенность кабины — приборы, тумблеры и сигнальные табло установлены на приборных досках, боковых панелях, верхних щитках, потолочных панелях межфонарные балки , задних панелях АЗР и средних пультах между креслами. Часть аппаратуры контроля и управления, которая не используется в полёте экипажем, вынесена в подполье кабины АЗС, АЗР и дополнительный экран ПНА , техотсеки и грузоотсек. Приборное оборудование кабины представлено традиционными стрелочными приборами.
Основные пилотажно-навигационные приборы — это командно-пилотажные ПКП-72 на приборных досках лётчиков и навигационные плановые ПНП-72 у лётчиков и штурмана навигатора, из комплекта системы траекторного управления «Борт-45». Указатели топлива, подвижных частей системы управления и механизации и работы двигателей — из комплектов соответствующих систем. Навигационный комплекс Пульты управления навигационным комплексом установлены на рабочем месте штурмана-навигатора. Выше РУДов находятся 10 выключателей принудительного отключения рулевых агрегатов. Имеет электрические связи почти со всем оборудованием самолёта. Чисто ручное управление на данном типе самолёта не предусмотрено, и выключать питание АБСУ в полёте категорически запрещено. АБСУ значительно упрощает пилотирование, корректируя расход колонки и балансировочное положение в зависимости от режима полёта, а также автоматически парируя все несанкционированные эволюции самолёта, вызванные нестабильностью воздушных масс. При выполнении координированных разворотов автоматически компенсируется потеря высоты, при выпуске закрылков автоматически компенсируется пикирующий момент, при изменениях продольной перегрузки плавно ограничивается расход колонки и передаточные числа на рули, автоматически компенсируется обратная реакция от руля направления, эффективно гасится раскачка.
Также возможно управление самолётом не только перемещением колонки, штурвала и педалей, но и от строевой ручки на пульте управления ПУ-35 типа «джойстика» на среднем пульте лётчиков , которая весь полёт синхронно перемещается по пульту, отслеживая угловые положения самолёта в пространстве что необходимо для безударного перехода управления «со штурвала» на «автомат» и обратно при эволюциях самолёта, и что в принципе невозможно на однотипной хотя и более поздней АБСУ пассажирского лайнера Ту-154 , ввиду отсутствия следящей системы для смены полётного режима самолёт каждый раз необходимо выставить в «горизонт». В автоматических режимах возможен полёт с автоматической стабилизацией угловых положений, скорости, высоты, курса, курсового угла; программное управление на маршруте, автоматический выход на цель или в точку пуска ракет; автоматическое возвращение на аэродром, автоматический или директорный заход и снижение по глиссаде до высоты 40 метров; автоматический полёт на сближение до визуального контакта с любым самолётом, оборудованным радионавигационными ответчиками; при потере лётчиком ориентировки в пространстве автоматическое выведение самолёта в установившийся горизонтальный полёт с последующей стабилизацией барометрической высоты — из любого углового и пространственного положения, с превышением эксплуатационных перегрузок до 5g, если сохранена управляемость машиной. На Ту-22М2 и ранних сериях Ту-22М3 устанавливались блоки автоматического низковысотного полёта НВП , позволявшие выполнять такого рода полёты над морем или равнинной местностью. Однако, в экспериментальных целях, в 1975 году группа самолётов Ту-22М2 совершила длительный низковысотный полёт, на участках которого высота уменьшалась до 40-60 м. Схемотехнически САУ-145 и ДУИ-2М — аналоговые решающие быстродействующее вычисление в текущем времени системы интегрально-дифференциальная логика. Они собраны на интегральных операционных усилителях серий 140 и 153 усилителях постоянного тока УПТ-9 и других микросборках и дискретных элементах пассивной диодной логики. Впервые применён двусторонний печатный монтаж микросборок. Возможна установка фотопулемёта на тубус экранов стрелковых прицелов.
Ряд доработанных в 21-м веке самолётов вместо ленточных получили твердотельные накопители полётной информации. Работа авиатехника в задней кабине ноги в подполье Ту-22М РЛС ПНА «Планета-носитель» является селективной станцией переднего обзора, с мощностью сигнала в импульсе до 130 кВт, с резервированием имеется второй передатчик, резервная аппаратура обработки информации и связи. РЛС также используется для радионавигации — коррекции пути и координат в НК-45. Радиовысотомер малых высот РВ-5, на самолёте установлено два комплекта. Радиовысотомер больших высот РВ-18. Доплеровский измеритель истинных параметров скорости и сноса ДИСС-7. Система госопознавания — изделие 62 «Пароль» Светотехническое оборудование Светотехническое оборудование состоит из четырёх выдвижных посадочно-рулёжных фар ПРФ-4М, две в носовой части фюзеляжа снизу, сразу за обтекателем антенны РЛС, и две — в подканальной части воздухозаборников. Аэронавигационные огни состоят из галогеновых светильников на консолях плоскостей — красного и зелёного, и белого огня на верхней задней части киля.
Проблесковые огни включают два светильника «СИ» белого света с импульсными ртутными лампами мощностью по 600 Вт, установленными внизу за отсеком передней стойки шасси и вверху между входными каналами воздухозаборников. Также на самолёте используются огни полёта строем, состоящие из восьми оранжевых светильников ОПС-69, расположенных на верхней части фюзеляжа и ПЧК, и в плане образующие «Т» при обзоре самолёта сзади сверху, и двух белых огней, расположенных посредине законцовок стабилизатора. Освещение кабин полётное — красное и наземное — белое, бестеневыми светильниками. Общее количество ламп освещения кабины — около 550 шт. Вооружение Ту-22М3 с подвешенной боевой крылатой ракетой Х-22, в рамках учений «Восток-2010». Ракета заправлена компонентами топлива Самолёт Ту-22МЗ предназначен для ведения боевых действий в оперативных зонах сухопутных и морских театров военных действий с целью уничтожения подвижных и неподвижных, радиолокационно-контрастных и площадных, видимых и невидимых целей объектов ракетами и бомбами днем и ночью в простых и сложных метеорологических условиях. Самолёт обеспечивает выполнение следующих задач: Балочный держатель внешней бомбовой подвески МБД-3-У9М-01 нанесение ударов тремя ракетами типа Х-22, в диапазоне высот полёта носителя от 1000 м до практического потолка по радиолокационно видимым и невидимым целям, с максимальной дальностью пуска до 300 км 600 км по площадной цели. Также планируется модификация 30 самолётов до уровня Ту-22М3М, способных применять модифицированную ракету Х-32 выполнение прицельного бомбометания свободнопадающими неуправляемыми боеприпасами с высот от 200 м до практического потолка максимальная бомбовая нагрузка — 24 000 кг ; выполнение оптической, тепловой, радиолокационной, радиационной и других видов разведки Ту-22МР.
Экран телевизионного прицела 015-Т т. ФАБ-250 , общей массой до 24 000 кг. Нормальной боевой нагрузкой являются две ракеты Х-22 или бомбы в грузоотсеке массой до 12 000 кг. Возможно расположение бомб и на внешней подвеске 2 балочных держателя МБД3-У-9М под каналами воздухозаборников. Любой строевой самолёт может за относительно непродолжительное время силами личного состава переоборудоваться в ракетный, минно-бомбовый или смешанный вариант вооружения путём демонтажа ракетных балочных держателей и установки кассетных и бомбовых балочных держателей в различных сочетаниях. Применение ракетного или бомбового оружия автоматизировано и осуществляется от навигационно-бомбовой системы НБС , в составе которой — РЛС ПНА, оптико-телевизионный бомбовый прицел 015Т, сопряжённые с пилотажно-навигационным комплексом ПНК. Однако эти ракеты уже сняты с вооружения и на их замену идут работы по созданию новых образцов. ГШ-23 в кормовой огневой установке Ту-22М.
На стволы пушки надет теплоизоляционный кожух. Для тактических пусков тренировки экипажей применяется подвешиваемый имитатор ракеты И-98.
Например, ещё в 1930-е годы КБ Туполева сконструировало три типа торпедных катеров, которые были выпущены в количестве почти 400 штук! Они принимали участие в боевых действиях у озера Хасан и в Великой Отечественной войне. Во время движения этих катеров вибрация была такова, что моряки за время одного выхода в море теряли в весе до двух кг! Также КБ Туполева конструировало и гидросамолёты, и торпедоносцы и разведчики.
До создания Ту-22М3 было ещё очень далеко. Ту-22М3 Положение крыльев с минимальной стреловидностью В 1950-м году 25-го июня началась война в Корее. На ней впервые советские и американские лётчики выступили в воздушных боевых действиях друг против друга смотри статью «Иван Никитович Кожедуб». В воздушных боях стало очевидно, что тяжёлые американские бомбардировщики В-29 слишком уязвимы в боях против советских реактивных истребителей МиГ-15 смотри статью «Артём Иванович Микоян». Потери были очень велики! Особенно трагическим по своим потерям оказался день 11-го апреля 1951-го года, в котором 100 американских, В-29 были разгромлены 50-ю советскими МиГ-15.
Многие экипажи спаслись на парашютах. В этом бою американцы потеряли 25 самолётов В-29. Американское командование назвало этот день «Чёрным четвергом». Ту-16 во время боевого вылета на фоне американского авианосца После этого события в СССР сделали выводы о том, что Ту-4 необходимо менять на более скоростные машины. В КБ Туполева прекратили работу над летающей лодкой и начали разработку более скоростного реактивного бомбардировщика «Ту-16», приведшую в дальнейшем к логическому созданию Ту-22М3. Главным конструктором Ту-16 назначили Дмитрия Маркова.
Первый полёт Ту-16 совершил уже 27-го апреля 1952-го года, а в серию его запустили в Казани всего через пять месяцев! Ту-16 стал первым реактивным бомбардировщиком ракетоносцем дальней авиации! На базе Ту-16 позже был создан первый в Мире реактивный пассажирский самолёт Ту-104. Ту-16 нёс 9 тонн бомб или 2 противокорабельные управляемые ракеты. Также очень серьёзным его недостатком являлся большой расход топлива, как в прочем и у подавляющего большинства советских самолётов смотри статью «Главные причины развала советской и российской авиапромышленности». Однако дорабатывать двигатели до приемлемого расхода топлива НЕ стали, так как посчитали, что век дозвуковой авиации уже заканчивается и предвидится создание сверхзвуковых самолётов и в дальнейшей перспективе Ту-22М3.
Ту-22 в полёте В конце 1950-х годов по многим странам мира прокатилась волна национальных политических движений определённого толка, которым СССР оказал поддержку, в том числе и поставками вооружений. Это повлекло недовольство руководства США и к берегам бурлящих государств были высланы американские ударные авианосные соединения. В то время США располагали 24-мя авианосцами, один из которых «Enterprise» Предприимчивый был атомный. Эту работу снова возглавил Дмитрий Марков. В феврале 1958-го года опытный экземпляр нового бомбардировщика «Ту-22», явившийся предшественником Ту22-М3, был построен. Несмотря на очень жёсткое постановление правительства СССР о том, что запускать в серийное производство только окончательно испытанные и доведённые до ума образцы новой военной техники, Ту-22 был запущен в серию не до испытанным и не доработанным???
Даже когда лётчики уже летали на Ту-22 на серьёзные задания, испытания этой машины ещё продолжались. Ту-22 Ту-22 нёс новую крылатую ракету Х-22. Но для уничтожения авианосца с его авианосной группой требовался целый полк Ту-22. Вдобавок ко всему для достижения сверхзвуковой скорости было пожертвовано дальностью полёта. Ту-22 обладал дальностью полёта на 1 000 км меньше, чем Ту-16. Для Ту-22М3 длина полосы требуется меньше, так как у него крыло изменяемой стреловидности.
Ещё одним существенным недостатком Ту-22 являлась работа катапультируемых кресел. Дело в том, что они выстреливались ВНИЗ, а не вверх как на всех последующих бомбардировщиках, в том числе и на Ту-22М3. Соответственно если лётчики Ту-22 катапультировались на высоте ниже 250-ти метров, то парашюты просто не успевали раскрыться. Ту-22М3 производит бомбардировку Следующим серьёзным недостатком Ту-22 был плохой обзор из кабины пилотов, усложняющий пилотирование. В том числе и именно по этой причине с ним произошло несколько катастроф. Например, такая катастрофа случилась ночью под Киевом рядом с городом Нежин.
Два Ту-22 летели парой. При выполнении разворота ведомый потерял ведущего. Ведомый решил не уходить в сторону, а попытаться найти ведущего, в результате чего произошло столкновение самолётов. Впоследствии на Ту-22М3 подобных ошибок не повторяли. Экипаж ведомого сразу катапультировался. Ведущий тоже получил повреждения, но сначала попытался с повреждениями посадить самолёт на аэродром.
Ту-22М3 стратегический бомбардировщик Когда стало ясно, что на 50-титонной машине сделать это не удастся, командир полка приказал ведущему, комэску Лескову, катапультироваться. Лётчик вывел самолёт на середину аэродрома, направил его в степь и вместе с экипажем покинул машину. А самолёт продолжал летать в воздухе, причём делал при этом большие круги, захватывая сам город. Эти круги приняли постоянный радиус, и с каждым кругом самолёт снижался всё ниже и ниже над городом. Сбить его оказалось нечем, поблизости не было ни истребителей, ни зенитных ракет. В эту ночь командование не решилось эвакуировать население Нежина.
На данном самолете используется современное оборудование, построенное на новой элементной базе, одновременно с этим были улучшены эргономические показатели кабины пилотов. В настоящее время стоимость самолетов и авиационных средств поражения растет лавинообразными темпами, что ведет военную авиацию практически в тупик. Так, к примеру, в ценах 2010 года один истребитель 5-го поколения F-22 обходился бюджету США в 412,7 млн. На этом фоне «классический» F-18E, который обходился заказчику в 50 млн. Стоимость российских перспективных разработок пока не разглашается, но вряд ли она будет в разы отличаться от затрат наших вероятных «друзей». Не менее стремительными темпами растут и цены на авиационные средства поражения, особенно высокоточное оружие. Так в настоящее время на Западе упор делается на применение управляемого вооружения.
Только уже сейчас модуль JDAM, который способен превратить обычную бомбу в высокоточную, даже в самой своей дешевой комплектации обходится западному налогоплательщику приблизительно в 30 000 долларов, в то время как цены на специально разработанные управляемые и корректируемые боеприпасы достигают сотен тысяч долларов. Более того, во всех крупных конфликтах последних лет операция «Буря в Пустыне», бомбардировки Югославии, Ирак, Ливия, в гораздо меньше степени Афганистан с определенного момента начинал наблюдаться дефицит высокоточных средств поражения, что было обусловлено невозможностью своевременно восполнять затраты высокоточных УР и КАБ. Выход был найден в снижении стоимости авиационной техники , а также бортовых систем, вместе с пересмотром самой концепции использования авиационного вооружения. Большого ума, чтобы прийти к таким выводам не требуется, ум необходим для того, чтобы на практике реализовать данный подход, так как данная задача в современных реалиях представляется едва ли не фантастической. Однако в России уже существуют наработки в этом направлении. В 2012 году комплекс бортового и наземного оборудования СВП-24-22 планировалось установить на 4 сверхзвуковых дальних ракетоносца-бомбардировщика Ту-22М3. Данное предприятие является создателем модификации комплекса СВП-24, который уже достаточно успешно эксплуатируется на модернизации российских фронтовых бомбардировщиков Су-24.
При этом подчеркивается, что установка систем СВП-24-22 предусматривается отдельной программой и будет осуществляться независимо от планов по глубокой модернизации, которой подлежат 30 ракетоносцев Ту-22М3. Новый комплекс СВП-24-22 позволяет с большей эффективностью решать боевые и навигационные задачи, а также добиться улучшения точностных характеристик авиационных систем поражения. Помимо этого комплекс обеспечивает точный заход боевого самолета на посадку в сложных метеоусловиях и без наземных курсоглиссадных систем. Еще одним ее неоспоримым достоинством является тот факт, что данная система позволяет снизить время наземной подготовки и контроля самолета в 4-5 раз. Для Ту-22М3, один летный час которого требует 51 человека-часа инженерно-технического обеспечения, это достаточно важно. По информации газеты «Известия» из Ту-22М3 могут сделать настоящего убийцу ЕвроПРО, превратив устаревающий стратегический ракетоносец в носителя высокоточного оружия. Для этого самолет оснастят новой электроникой, а также, вероятнее всего, новой крылатой ракетой Х-32.
Новая машина получит к названию еще одну букву М и будет называться Ту-22М3, при этом специалисты одного из предприятий, участвующих в модернизации, особо подчеркнули, что Ту-22 и Ту-22М, равно как и Ту-22М3 и Ту-22М3М будут совершенно разными машинами, в первую очередь по своим возможностям. По словам представителей ВВС страны, для того чтобы подготовить летчиков к управлению новым самолетом потребуется 2-3 месяца занятий в Рязанском учебном центре Дальней авиации. При этом процесс переобучения стандартизован, пилотам необходимо будет изучить электронные приборы, освоить новую систему навигации и управления оружием, контроля обстановки возле самолета. Отныне вся важная информация будет выводиться на жидкокристаллические электронные дисплеи, а летчику останется лишь выбрать режим, цель и осуществить пуск ракет, почти как в компьютерных играх. По его словам, модернизация лишь 30 самолетов будет достаточно для того, чтобы вывести из строя 1 американский авианосец, потопив при этом ряд кораблей сопровождения. Сивков предположил, что новая крылатая ракета Х-32 будет вести поиск цели «из-под крыла» бомбардировщика, как и ее предшественница Х-22. После пуска ракета сможет на собственном двигателе достичь цели, удаленной на несколько сотен километров и поразить ее, при этом обнаружить и поразить такую ракету крайне сложно.
В свою очередь Александр Коновалов президент Института стратегических оценок и анализа отметил, что поражение наземных объектов на сегодняшний день одно из наиболее слабых мест российской армии. Так как у современных российских тактических ракет небольшой радиус действия и достаточно низкая точность. В Грузии бомбардировщик Ту-22М3 был потерян именно по этой причине, самолету пришлось войти в зону организованной ПВО противника, для того чтобы выполнить атаку цели. А выйти из этой зоны после атаки уже очень сложно, отметил Коновалов. По словам Коновалова, для того чтобы крылатая ракета смогла поразить наземный объект на удалении в несколько сотен километров, она должна иметь его точные координаты и совершать полет, постоянно уточняя свое положение в пространстве с помощью спутника или же поражаемую цель кто-то постоянно должен будет подсвечивать, а ракета будет осуществлять полет по отраженному сигналу. При этом есть и третий способ — корреляционная система, при которой в память ракеты будет загружаться подробная карта маршрута с изображением цели, которую необходимо уничтожить, а ракета в процессе полета будет снимать местность, над которой пролетает, сверяя полученные данные с картой маршрута. Источники информации:.
Экипаж Ту-22М3 убили гнилые провода и некомпетентность авиаинженеров?
Ту 22м3 бомбовая нагрузка | Впервые поднявшийся в небо в 1969 году Ту-22М известен как первый в Советском Союзе тяжелый самолет, изначально созданный как носитель управляемого ракетного оружия, а его модификация Ту-22М3 продолжает составлять основу российской дальней авиации. |
Ту 22м3 технические характеристики | Первый опытный Ту-22М3 совершил свой первый полёт 20 июня 1977 года, а на вооружение самолет был принят в марте 1989 года. |
Состав экипажа ту 22м3. Средства аварийного покидания и спасения | Ту-22М3М, оснащенный тремя крылатыми ракетами Х-32 (дальность 600-1000 километров и скорость 4-5,4 тысячи километров в час), согласно заявленным характеристикам, способен поразить американский авианосец, а также практически любую стратегическую цель в Европе. |
Ту-22М3 Backfire - | Бомбардировщик средней дальности с изменяемой геометрией крыла Ту-22М3 создан в ОКБ ММЗ "Опыт" А.Н. Туполева. |
Ту-22М3М: Вторая молодость убийцы авианосцев | В итоге на переговорах решили, что СССР ограничит максимальную дальность полета Ту-22М, лишив его межконтинентальных характеристик, — демонтирует оборудование дозаправки в воздухе. |
«Межконтинентальный бомбардировщик»: какие задачи будет выполнять самолёт Ту-22М3М
Самолеты серии Ту-22М выполнены по нормальной аэродинамической схеме с низкорасположенным крылом изменяемой стреловидности. Конструкция и летно-технические характеристики Ту-22М3. Потрясающие ТТХ Ту-22М3М. Posted by: owner Categories: Армия. Дальний бомбардировщик Ту-22М3М является модификацией самолета Ту-22М3 (по классификации НАТО «Backfire-C», производственный шифр в СССР «Изделие 45.03»), который совершил первый полет в 1976 (по другим данным в 1977 году) и в 1983 году был принят на.