Новости цифровая медицина

Цифровой доктор. Книга получилась сложной в написании и разноплановой, поскольку потребовалось описать не только технические принципы и методы создания. Это способствует его повсеместному внедрению в отрасли медицины, и теперь сканеры WSI становятся обычной частью медицинских учреждений. Также посетители могут увидеть цифровое решение для анализа эхокардиографических данных, автоматического расчета линейных размеров сердца и ряда других параметров. очень популярная и быстро развивающаяся тема, но это также очень сложный и рискованный рынок. «Телеком & Медицина» — деловая площадка, где представители профессионального сообщества обмениваются опытом внедрения передовых решений в области цифровой.

Рынок цифровой медицины существенно вырастет к 2023 г.: экспертное мнение

В этом направлении на Саммите будут широко освещены достижения Центра в тематических сессиях «Цифровой биодизайн и персонализированное здравоохранение: Онкология и кардиология будущего» и «Цифровая кардиология», а также представлены медицинские изделия и разработки в выставочной экспозиции НЦМУ. Саммит является платформой, способствующей развитию цифровой медицины и созданию связей между исследователями, специалистами в области IT-технологий, индустриальными партнерами и государством с целью формирования технологического суверенитета страны в сфере медицины», — отметил заместитель Министра науки и высшего образования РФ Дмитрий Пышный. Пирогова, академик РАН, д. Параллельно в четырех залах проходили различные тематические сессии: - «Развитие информационных систем в сфере здравоохранения» - «Искусственный интеллект в медицине»; - «Цифровая трансформация в патологической анатомии: вчера, сегодня, завтра»; - «Телемедицина и интернет медицинских вещей»; - «Цифровой биодизайн и персонализированное здравоохранение: Онкология и кардиология будущего»; - «Цифровые технологии в медицине и фармации.

Взаимодействие простых граждан с системой здравоохранения; Профилактика заболеваемости и пропаганда здорового образа жизни; Телемедицина; Заочное обучение специалистов здравоохранения; Поддержка и управление в области медицинских исследований. В рамках области интересов нашего Портала, нам наиболее близок четвертый пункт данного списка. Вопрос качественного и доступного медицинского образования стоит сегодня остро, как никогда. Причем как для студентов, так и для уже практикующих специалистов.

Пока мы не объединим данные, мы не сможем привнести в медицину те технологии, которые у нас находятся на мировом уровне». Сергей Краевой: Мы избавим врачей от бумажной волокиты! Продолжая тему телемедицины, заместитель министра здравоохранения РФ Сергей Краевой отмечает, что главным достижением принятого Государственной думой закона является то, что в России наконец появилось нормативное поле. Читайте также:Ещё семь отделений «скоропомощников» записали видеообращения к президенту «Мы ушли от «дикого» предложения и того, что у каждого свое понимание телемедицины, — поясняет свою мысль замминистра. А чтобы донести услугу, нужно поставить диагноз, назначить лечения, проконтролировать качество и эффективность лечения и результат этого лечения. Он его осматривает, назначает анализы, потом с ним беседует. Все это делается непосредственно, лично. В Москве это сделать несложно. Но если расстояния сотни, тысячи километров, то сделать это тяжело», — констатирует Краевой. Однако сейчас Россия технически к этому готова, уверяет заместитель министра здравоохранения. Сейчас же оно появилось.

Они общаются с пациентами и успокаивают их, оказывая положительное эмоциональное воздействие. Роботы участвуют в больничной логистике: доставляют бельё, еду и медикаменты10. Носимые устройства для мониторинга здоровья Смарт-часы из аксессуара превращаются в миниатюрный диагностический комплекс. Они не только показывают время, но и выполняют множество других функций: от измерения количества пройденных шагов до анализа важных биологических показателей. Технология распознаёт параметры здоровья благодаря встроенным датчикам и программному обеспечению. Чтобы гаджет работал корректно, он должен располагаться близко к коже11. В последние годы смарт-часы всё чаще используют в рамках медицинских исследований. В том числе прибор помогает отслеживать состояние пациентов: с неврологическими заболеваниями. Мониторинг с помощью носимых устройств проводится у пациентов с болезнью Паркинсона, болезнью Альцгеймера, эпилепсией и инсультом. Устройство анализирует изменения голоса и речи, двигательные нарушения, регистрирует судороги12; с сердечно-сосудистыми заболеваниями. Недостаток физических упражнений — один из кардиологических факторов риска13. Девайс помогает объективно оценить пройденное расстояние и физическую активность в течение дня. Эти данные могут стать для пациента убедительным аргументом в пользу изменения образа жизни. Устройство наблюдает за сердечным ритмом пользователя. В будущем ещё больше информации дадут датчики артериального давления, биохимические и биомеханические сенсоры. Производители совершенствуют их для использования в медицине14; Также смарт-часы улучшают приверженность медикаментозной терапии и диете. Устройство отслеживает движения пациента при глотании и жевании и оценивает, сколько времени он ел. Смарт-часы напоминают, когда нужно принять лекарство12. В носимые устройства интегрируются алгоритмы глубокого обучения, что улучшает анализ собранной информации. Ещё одна инновация в области мониторинга — датчики в виде патчей. Это небольшие пластыри, которые наклеивают на кожу. В ходе одного из исследований патч отслеживал жизненно важные функции: частоту сердечных сокращений, частоту дыхания и температуру19. Анализ и редактирование генома В медицине для расшифровки генетического кода используется лабораторный метод —секвенирование ДНК. За ними скрывается информация о жизнедеятельности организма и природе генетических болезней20. Портативный нанопоровый секвенатор — инновация, которая умещается в ладони. За небольшими размерами скрываются мощные возможности для секвенирования. Молекула ДНК проходит через наноразмерные белковые поры устройства и считывается в реальном времени21. Программное обеспечение, синхронизированное с нанопоровым секвенатором, обрабатывает полученные данные21: оценивает качество информации; ищет и исправляет ошибки; проводит анализ и сборку генома. Разработчики постоянно обновляют систему, создавая новые инженерные белки для анализа. Несмотря на свою фундаментальность, геном может меняться. Инновацию подсказали бактерии. Нуклеаза Cas9 способна расщеплять цепочку ДНК, которую враждебный вирус вводит в клетку22. Учёные улучшили систему и сделали её более специфичной. Лабораторные модели нужны в медицине, чтобы понять механизмы заболеваний человека22. Технологии виртуальной и дополненной реальности Виртуальная реальность Virtual Reality, VR и дополненная реальность Augmented Reality, AR дают возможность моделировать различные ситуации в медицине. Используя головные устройства и трёхмерные проекции, врачи и пациенты погружаются в виртуальный мир. Там может найтись подходящее решение для диагностики и терапии. Точки соприкосновения инновации и медицины встречаются всё чаще23: лечение хронической и фантомной боли; улучшение внимания и памяти пациентов с неврологическими заболеваниями; помощь при психиатрических расстройствах: тревоге, депрессии, фобиях, расстройстве пищевого поведения. Технологии VR — наглядный учебник и удобный тренажёр для студентов-медиков. Трёхмерные анатомические модели позволяют почувствовать себя настоящим исследователем: можно вращать виртуальный орган, менять его масштаб. Инновация помогает будущим хирургам оттачивать свои навыки. Перед работой с настоящими пациентами можно встретиться с виртуальными, чтобы улучшить коммуникативные навыки и отработать технику оказания неотложной помощи24. Имплантируемые устройства и протезы Медицинские импланты — устройства или ткани, которые размещаются внутри или на поверхности тела. Импланты давно используются в медицине для разных целей: от контроля функций организма до замены отсутствующей части тела25. Направление patient-specific devices PSD изучает методы изготовления индивидуальных имплантов. Такие изделия учитывают анатомические особенности пациента и обеспечивают приемлемый эстетический результат. Разработка PSD тесно связана с аддитивным производством. Ещё больше идей для инноваций появляется благодаря беспроводным технологиям. Импланты передают информацию о процессах внутри организма на компьютер. В ортопедических протезах размещают датчики давления, чтобы узнать больше о движении сустава.

MedSoft-2022: цифровая медицина сегодня и завтра

Цифровая медицина 2023, Москва - все конференции на Саммит является платформой, способствующей развитию цифровой медицины и созданию связей между исследователями, специалистами в области IT-технологий, индустриальными.
ФГБУ «ЦНИИОИЗ» Минздрава России - Главная страница Цифровой доктор. Книга получилась сложной в написании и разноплановой, поскольку потребовалось описать не только технические принципы и методы создания.
Эксперты цифрового здравоохранения 08 апр 2022 424 / Цифровая медицина в России. К стендовым испытаниям готов: в России разработан прототип робота для проведения УЗИ в автономном режиме.

Диагноз за минуту: как ИТ меняет здравоохранение

Цифровизация медицинского образования В России активно используют цифровые технологии и ПО для обучения студентов медицинских ВУЗов и повышения квалификации врачей. Евдокимова используют тренажер для обучения стоматологии и отработки навыков, которые оцениваются без участия преподавателя. В КемГМУ будущие врачи на симуляторе человека, практикуют медицинские процедуры и различные сценарии лечения. Распространение медицинских информационных систем МИС — электронная база данных, хранящая весь документооборот клиники, включая медкарты, финансовую и административную информацию, лабораторные исследования и т. Состоит из модулей, которые при необходимости можно добавлять и убирать.

КМИС — информационная система комплексной автоматизации бизнес-процессов клиник, стоматологий, аптек и т. Все эти тенденции показывают насколько большой потенциал цифровизация медицины имеет для улучшения системы здравоохранения.

Всего 376 материалов.

Различные технологии, ориентированные на ИИ, такие как компьютерное зрение, обработка естественного языка и алгоритмы распознавания изображений, уже глубоко укоренились в экосистеме здравоохранения и будут продолжать внедряться по мере роста их полезности в течение 2023 года. Некоторые примеры областей, где используется ИИ, включают открытие лекарств, где он может помочь в прогнозировании результатов клинических испытаний и потенциальных побочных эффектов новых лекарств, а также анализ медицинских изображений, который включает использование алгоритмов компьютерного зрения для обнаружения патологий на ранней стадии по рентгеновским снимкам или МРТ.

ИИ также успешно используется для выявления и лечения неврологических расстройств, включая болезнь Паркинсона и болезнь Альцгеймера. Помимо всего этого, ИИ также применяется в канцелярской работе, такой как обработка страховых требований и управление или анализ ведения медицинской документации. Его также можно использовать для анализа данных, собранных с носимых устройств пациентов или домашних датчиков, используемых в виртуальных больницах , чтобы обеспечить раннее предупреждение или прогнозную диагностику различных состояний. В совокупности все эти варианты использования указывают на то, что ИИ и машинное обучение будут по-прежнему оставаться заметной тенденцией в здравоохранении в течение следующего года. Дистанционное оказание мед. Пришло понимание, что при многих состояниях помощь может оказываться более эффективно и с меньшими затратами.

Удаленное здравоохранение подразделяется на несколько категорий. Сейчас наблюдается рост устройств для мониторинга на дому: знакомая среда и близость к семье могут иметь положительное влияние на результаты лечения пациентов, а также являются чрезвычайно экономически эффективными по сравнению со стационарным лечением.

Цифровой контур здравоохранения в России полностью сформирован, осталось решить еще несколько задач до конца 2024 года, сообщил заместитель министра здравоохранения России Павел Пугачев. Уже, на самом деле, можно подводить многие итоги, где мы сейчас находимся, но есть задачи, которые нам необходимо завершить до конца этого года. Но самое главное - можно уже сегодня сказать, что цифровой контур создан, сформирован", - сказал он во время XXXI Российского национального конгресса "Человек и лекарство".

Доктор в зоне доступа: как работает цифровая медицина?

Сейчас же, продолжил мэр, цифровые технологии могут повышать качество лечения. В этом можно было убедиться на примере внедрения искусственного интеллекта в работу службы лучевой диагностики. Анализируя снимки КТ, МРТ, маммографию или рентген, компьютерное зрение распознает 37 различных заболеваний. При этом часто ИИ выявляет патологию на максимально ранней стадии, когда врач еще этого сделать не может.

Сразу вопрос — а можно ли слепо доверять «предиктивному моделированию» при назначении лекарства или того или иного метода лечения с «помощью» нейросети? Нужна ли нам такая помощь? Как можно принимать управленческие решения в здравоохранении, базируясь на ИИ. Ведь в медицине на первом месте должен быть человеческий фактор.

И почему такой упор именно на беспроводную связь? Проводной интернет в тех же поликлиниках и больницах медленнее, не стабильнее? Нет, очевидно, что беспроводная связь будет поддерживаться между людьми, носимыми устройствами и базовыми устройствами мониторинга показателей людей. Вот и дождались упоминания о телемедицине — чем больше удаленных консультаций врачей, тем лучше, значит, идет цифровая трансформация сектора. Главное, чтобы на портале Госуслуг побольше использовали сервис «Мое здоровье». А вот как Правительство воспринимает главный вызов при внедрении пилотного проекта по дистанционному наблюдению за состоянием здоровья с использованием информационной системы "Персональные медицинские помощники": «- высокие финансовые издержки при внедрении инструментов дистанционного мониторинга; высокие затраты на внедрение практики широкого использования носимых устройств, включая обучение их правильному применению; низкая скорость внедрения инструментов контроля за своим здоровьем; несовершенство аппаратного или программного обеспечения при обработке данных». Низкая скорость внедрения и большие затраты — вот какая у них главная проблема.

Далее читаем интересное: «…внедрение технологии дистанционного мониторинга обеспечит контроль за состоянием здоровья как пациентов с хроническими заболеваниями, так и пациентов, не имеющих хронических заболеваний, при помощи прогностических инструментов, используемых в практике медицинских работников». То есть дистанционный мониторинг показан будет не только диабетикам, а вообще всем нам. Чтобы «обеспечить контроль за нашим состоянием здоровья». На единой платформе «Гостех».

Все больше компаний предлагают удаленные рабочие места. По данным сервисов вакансий, сегодня в каждой четвертой компании есть работники, переведенные на удаленку. Почти все республиканские предприятия вводят дополнительные меры по снижению рисков распространения коронавируса. Например, сотрудникам измеряют температуру, проводится уборка с применением дезинфицирующих средств и проветривание помещений. Из-за болезней снижается работоспособность не только сотрудников, но и самих предпринимателей. Эффективность бизнеса падает. Руководители компаний все чаще задумываются о поддержке здоровья персонала. Но что делать, если оказание медицинской помощи ограничено или дорого? На помощь придет цифровая медицина, позволяющая оставаться на связи с лечащим врачом, что бы ни случилось.

Это небольшие пластыри, которые наклеивают на кожу. В ходе одного из исследований патч отслеживал жизненно важные функции: частоту сердечных сокращений, частоту дыхания и температуру19. Анализ и редактирование генома В медицине для расшифровки генетического кода используется лабораторный метод —секвенирование ДНК. За ними скрывается информация о жизнедеятельности организма и природе генетических болезней20. Портативный нанопоровый секвенатор — инновация, которая умещается в ладони. За небольшими размерами скрываются мощные возможности для секвенирования. Молекула ДНК проходит через наноразмерные белковые поры устройства и считывается в реальном времени21. Программное обеспечение, синхронизированное с нанопоровым секвенатором, обрабатывает полученные данные21: оценивает качество информации; ищет и исправляет ошибки; проводит анализ и сборку генома. Разработчики постоянно обновляют систему, создавая новые инженерные белки для анализа. Несмотря на свою фундаментальность, геном может меняться. Инновацию подсказали бактерии. Нуклеаза Cas9 способна расщеплять цепочку ДНК, которую враждебный вирус вводит в клетку22. Учёные улучшили систему и сделали её более специфичной. Лабораторные модели нужны в медицине, чтобы понять механизмы заболеваний человека22. Технологии виртуальной и дополненной реальности Виртуальная реальность Virtual Reality, VR и дополненная реальность Augmented Reality, AR дают возможность моделировать различные ситуации в медицине. Используя головные устройства и трёхмерные проекции, врачи и пациенты погружаются в виртуальный мир. Там может найтись подходящее решение для диагностики и терапии. Точки соприкосновения инновации и медицины встречаются всё чаще23: лечение хронической и фантомной боли; улучшение внимания и памяти пациентов с неврологическими заболеваниями; помощь при психиатрических расстройствах: тревоге, депрессии, фобиях, расстройстве пищевого поведения. Технологии VR — наглядный учебник и удобный тренажёр для студентов-медиков. Трёхмерные анатомические модели позволяют почувствовать себя настоящим исследователем: можно вращать виртуальный орган, менять его масштаб. Инновация помогает будущим хирургам оттачивать свои навыки. Перед работой с настоящими пациентами можно встретиться с виртуальными, чтобы улучшить коммуникативные навыки и отработать технику оказания неотложной помощи24. Имплантируемые устройства и протезы Медицинские импланты — устройства или ткани, которые размещаются внутри или на поверхности тела. Импланты давно используются в медицине для разных целей: от контроля функций организма до замены отсутствующей части тела25. Направление patient-specific devices PSD изучает методы изготовления индивидуальных имплантов. Такие изделия учитывают анатомические особенности пациента и обеспечивают приемлемый эстетический результат. Разработка PSD тесно связана с аддитивным производством. Ещё больше идей для инноваций появляется благодаря беспроводным технологиям. Импланты передают информацию о процессах внутри организма на компьютер. В ортопедических протезах размещают датчики давления, чтобы узнать больше о движении сустава. Разрабатывают имплантируемые датчики для оценки сердечно-сосудистых показателей27. В нейрохирургии появляются прототипы, передающие данные об активности мозга по Wi-Fi28. Системы доставки лекарств Размеры другой инновации зачастую не превышают нескольких микрометров. Нанотехнологии могут стать тем «курьером», на которого так рассчитывает медицина. Исследователи нагружают наночастицы — полимерные, белковые, неорганические — макромолекулами препарата для доставки к очагу заболевания. При этом физические и химические свойства наночастиц меняют так, чтобы они нацеливались на нужную зону29. Одна из новинок — биомиметическая система доставки лекарств BDDS. Наносистема имитирует клетки или их компоненты. Такие «двойники» не только лучше доставляют и высвобождают лекарства, но и дольше находятся в кровотоке, умеют уклоняться от иммунитета и взаимодействовать с другими клетками30. Ещё одна новая система доставки лекарств связана с 3D-печатью. Технология используется в медицине для создания сложных лекарственных комбинаций. Напечатанные препараты получаются более персонализированными. Другое их преимущество — контролируемое высвобождение лекарства, быстрое или отсроченное30. Биопринтинг Биопринтинг — воплощение давней мечты человечества о создании органов и тканей на замену повреждённым или утраченным. В основе инновации — методы 3D-печати. Для печати используются специальные биочернила и биобумага. Их создают из жизнеспособных клеток, биоматериала и биологических молекул31. Затем выделяют клетки, подбирают биоматериал и создают биочернила. Напечатанная структура созревает в биореакторе. Биопринтинг используется в нескольких направлениях медицины: в трансплантации, для открытия лекарств и проведения научных исследований32.

Директор Центра индустрии здоровья Сбербанка рассказал о пользе ИИ для врачей и пациентов

Рынок цифровой медицины существенно вырастет к 2023 г.: экспертное мнение. IoMT, Health IoT и какие решения будут особенно востребованы и чего хотят современные пациенты обсудили участники конференции "Цифровая медицина 2022". Цифровая медицина представляет собой область здравоохранения, в которой применяются новые цифровые технологии для улучшения качества медицинской помощи. новости, статьи, обзоры, аналитика. В Москве открылся Международный конгресс «Цифровая медицина и информационные технологии в здравоохранении».

VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году

Технология цифровых биомаркеров является одной из ключевых составляющих цифровой медицины. Она использует носимые устройства, сенсоры и мобильные приложения, для автоматического сбора и интерпретации в реальном времени данных для анализа состояния здоровье пациентов. Таким образом, технология цифровых биомаркеров дополняет и усиливает возможности цифровой медицины, обеспечивая более точную и непрерывную оценку здоровья пациентов. Real Life Evidence доказательства из реальной жизни, RWE , это сами данные, полученные из повседневной жизни пациентов.

Путем анализа таких данных, полученных из реальной жизни, можно получить более полное понимание эффективности и результатов медицинских вмешательств. Это помогает улучшить принятие решений, а также персонифицировать медицинскую помощь для пациентов. Количество исследований, посвященных этой теме, растет быстрыми темпами.

Однако, необходимо отметить, что большая часть этих новых технологий требует дополнительных клинических валидаций для полной проверки их эффективности и надежности. Не секрет, что значительная часть работ над цифровыми биомаркерами была проведена исследователями и учеными в области компьютерных наук и электротехники, а не в медицине. В результате происходит перекос в технические аспекты технологий, без учета особенностей клинических применения и жестких регуляторных требований индустрии.

Прежде чем они могут быть широко применены на практике, необходимы дополнительные исследования, включающие обширные клинические испытания и сравнение с традиционными методами оценки здоровья. Это поможет убедиться в высокой достоверности и полезности этих технологий для диагностики, мониторинга и улучшения здоровья пациентов. Тем не менее, стоит отметить, что даже на текущем этапе развития цифровых биомаркеров уже можно наблюдать положительные результаты и применение в различных областях здравоохранения, начиная от мониторинга физической активности и сна до контроля сердечного ритма и обнаружении нарушений в образе жизни.

Согласно закону, врач не мог ставить диагноз по видеосвязи, первичный прием обязательно должен быть очным. Но по телефону либо интернету можно было получить медицинскую консультацию: врач мог заранее собрать жалобы пациента и составить анамнез, поставив окончательный диагноз при очной встрече с пациентом, и в дальнейшем корректировать лечение только очно. Онлайн-консультации проводились также в формате "врач-врач".

Рамочный закон об ЭПР, который допускал введение особого регулирования в телемедицине на определенный период, вступил в силу в январе 2021 года в связи с пандемией COVID-19. Тогда значительно возросла нагрузка на амбулаторно-поликлиническое звено, поэтому врачам фактически разрешили дистанционно подтверждать диагнозы пациентам с симптомами ОРВИ и COVID-19. В июле того же года были опубликованы поправки в Федеральный закон "Об основах охраны здоровья граждан в Российской Федерации", позволяющие применять ЭПР в телемедицине.

Теперь решение перешло в реальную практику. Все рекомендации и назначения, сделанные на дистанционных сеансах, приобретают правовую силу и могут стать предметом судебных рассмотрений при возникновении конфликтных ситуаций. Использование телекоммуникаций окажется большим подспорьем для фельдшеров и начинающих врачей.

Предоставив более опытному и квалифицированному специалисту анамнез, историю болезни и данные обследования пациента, они смогут получить консультацию коллеги и поставить пациенту верный диагноз. В случае положительных результатов пилот будет распространен на все медучреждения и станет новым важным этапом в развитии телемедицины - фактически узаконит широкое применение дистанционных технологий обследования и лечения. С чего все начиналось Сегодня слово "телемедицина" стало привычным.

Но ее началом можно считать 1905 год - именно тогда состоялась первая в мире трансляция электрокардиограммы на расстоянии. С развитием технологий передачи видеосигнала появилась и первая видеоконференцсвязь: врачи и пациенты смогли обмениваться информацией, общаться, проводить консультации и лекции, разбор конкретных клинических случаев по видеосвязи. Первая в мире цветная видеоконференцсвязь между медицинскими работниками прошла в 1949 году.

В СССР с1960 по 1990 годы прошло огромное количество дистанционных консультаций, в основном в космической, морской и военной сферах. В частности, телемедицинские технологии активно использовались во время полета Юрия Гагарина - он был подключен к различным устройствам, которые передавали его данные, а врачи на Земле контролировали состояние космонавта. В практическом здравоохранении России первые видеоконсультации были проведены в 1995 году в Санкт-Петербурге на базе Российской военно-медицинской академии.

В 1999 году была создана московская корпоративная телемедицинская сеть, объединяющая 32 медицинских учреждения. С 2000 года началось проведение выездных коллегий Минздрава России с применением телемедицинских технологий. Наконец, в 2001 году стартовала интеграция российских телемедицинских сетей с мировым информационным пространством - российские врачи могли обмениваться опытом и консультировать своих пациентов с зарубежными коллегами.

Для этой цели комитет планирует работать и с регуляторами, и с участниками рынка. Об эффективном обучении и совместной работе с коллегами в едином цифровом контуре рассказал в своем докладе Алексей Нечипорук, директор по работе с индустрией здравоохранения Webinar Group. Мы верим — говорит Алексей, — что удобство наших инструментов для коммуникации и командной работы позволит распространить успешный опыт лучших специалистов на всю отрасль здравоохранения и раскрыть весь потенциал наших врачей. Эксперт считает, что на государственном уровне задача комитета не критиковать текущие условия в отрасли, а помогать и предлагать свою экспертизу, выработанную многолетним опытом участников комитета, как Министерству здравоохранения РФ, так и Минцифре России. Только благодаря взаимодействию структур мы сможем добиться улучшений в сфере МедТех. По мнению профессора кафедры Интеллектуальных информационных технологий факультета Вычислительной математики и кибернетики МГУ имени М. Ломоносова Александра Рыжова представления об искусственном интеллекте и интеллектуальных технологиях анализа данных во многом остаются религиозно-мистическими. Это свойственно не только людям, работающим в здравоохранении, но и отечественным специалистам.

Среди наиболее известных и распространённых устройств — смарт-часы, фитнес-браслеты. Люди с хроническими заболеваниями могут использовать носимые мониторы здоровья, отслеживающие жизненные показатели и предупреждающие пользователей об отклонениях. Появляется умная одежда со встроенными датчиками, позволяющими контролировать показатели физподготовки. Медработникам такие устройства дают дополнительную информацию и позволяют оказать помощь пациенту до того, как его состояние ухудшится. Мобильные приложения для здоровья Практически на все современные смартфоны можно установить приложения, позволяющие следить за состоянием здоровья. Мобильные технологии породили новое направление в медицине — mHealth. Это использование мобильных технологий для укрепления и восстановления здоровья. Сегмент приложения мобильного здравоохранения можно условно разделить на два направления: Медицинское — технологии, устройства, приложения и услуги для лечения и ухода за пациентами. На данный момент такие приложения в основном содержат справочную информацию о лекарствах, заболеваниях, их симптомах, советы относительно правил приёма препаратов или того, что необходимо делать в случае появления болей, данные о расположении аптек и медицинских центров. Фитнес-направление — устройства и приложения предназначены для контроля за соблюдением здорового образа жизни и фитнеса шагомеры, регуляторы физической активности. Искусственный интеллект используется в различных сферах здравоохранения: для анализа медицинских изображений рентгенограммы, МРТ и КТ , для обнаружения патологий и определения оптимальных методов лечения; для анализа больших объемов данных о здоровье пациентов, помогает предсказать вероятность развития заболеваний и своевременно принять меры профилактики; способствует ускорению клинических исследований и разработке новых лекарственных средств; играет важную роль в развитии робототехники и телемедицины; облегчает доступ к информации и ресурсам для медработников и пациентов виртуальные помощники, чат-боты ; способствует развитию персонализированной медицины, предоставляет индивидуальные рекомендации по лечению на основе уникальных особенностей каждого пациента. Цифровая терапия ЦТ Относительно новая форма лечения, предполагающая применение цифровых технологий для стимулирования изменений в поведении пациента, лечения конкретного заболевания или психологического состояния.

В Россию пришла цифровая эра медицины

Специалисты выделили пять основных направлений, где современные технологии окажут максимальное влияние на отечественную медицину. Поэтому анализ медицинских снимков с помощью компьютерного зрения скоро станет базовой технологией. Рынок цифровой медицины существенно вырастет к 2023 г.: экспертное мнение. Также посетители могут увидеть цифровое решение для анализа эхокардиографических данных, автоматического расчета линейных размеров сердца и ряда других параметров.

Инновации в области здравоохранения

Советник по цифровой медицине Института системного программирования Российской академии наук Андрей Бурсов обозначил проблемы, которые связаны с машинным обучением. Смотрите онлайн видео «О системах в цифровой медицине | Выступление В. Е. Синицына на форуме "Цифровая Медицина'23"» на канале «Global Medical Space» в хорошем качестве. 19 октября 2023 г. в Москве пройдет ит-саммит «Цифровая медицина» – Специализированная площадка для обсуждения актуальных вопросов. Цифровые медицинские решения показывают свою эффективность при постановке диагнозов и лечении заболеваний, а также в профилактике и формировании ЗОЖ. Статья офтальмологического центра МедСтандарт: Руководители ГК «МедСтандарт» приняли участие в ежегодной конференции «Цифровая медицина-24».

MedSoft-2022: цифровая медицина сегодня и завтра

Если технология получит развитие, то в будущем она может заменить большинство современных лекарств. Персонализированная медицина Врачи уверены, что будущее медицины России за учетом индивидуальных особенностей каждого организма. Каждый предпочтет избавиться от генетической предрасположенности к какому-либо заболеванию до того, как оно проявилось. А инновационные технологии и полный мониторинг организма помогут врачам подбирать лекарства со стопроцентной эффективностью. Всё это в будущем даст персонализированная медицина. Индивидуальные наборы биомаркеров, указывающих на раннее развитие заболевания, повысят точность диагностики и помогут выбрать оптимальный план лечения. В Израиле такие технологии активно применяются при лечении злокачественных опухолей, поэтому там добились высокого процента выживаемости при различных видах рака.

Доверительные отношения между пациентом и врачом — залог успешного лечения. Персонализированный подход учитывает психологические особенности. Уже сейчас медработников учат определять психотип пациентов и навыкам избегания конфликтов. Сейчас эти знания можно получить по системе дополнительного медицинского образования, например, в нашей Академии профессиональных стандартов. Новые технологии в медицине используют индивидуализированный подход и при изучении заболеваний. Пример тому — ПСМА-диагностика и таргетная терапия, использующая уязвимость раковых клеток в виде простатспецифического мембран-антигена.

Биология и медицина Понимание глубинных процессов в организме — основа для создания эффективных методов диагностики, лечения и профилактики различных заболеваний. Биомедицину — симбиоз биологии и медицины — в будущем ожидает серьезный прорыв. Это значит, что у человечества появится шанс научиться лечить крайне тяжелые недуги. Основанием для такого утверждения служит внедрение технологий в медицину за последние пару лет: создание мРНК-вакцины. Благодаря этому иммунному препарату нового типа удалось остановить стремительное распространение коронавируса и, что важно, снизить риск тяжелых осложнений и смертности. К тому же оказалось, что мРНК-вакцина оказывает благоприятное действие при раке и вирусе Зика; учимся лечить боковой амиотрофический склероз.

Что делает этот недуг с человеком, понимают все, кто хоть раз видел Стивена Хокинга. В прошлом году FDA одобрило препарат «Реливрио», который позволяет больным долго сохранять двигательную функцию. Раньше при этом заболевании назначали исключительно симптоматические средства. В 2022 году начали применять инновационный препарат «Мавакамтен», который устраняет аномальные спазмы миокарда из-за мутации генов. Препарат менее токсичен по сравнению с классическими лекарствами и значительно улучшает качество жизни. Профилактика заболеваний Медицина будущего будет базироваться на принципе «предупредить заболевание легче и дешевле, чем его лечить».

Медработники могут взаимодействовать между собой в интерактивном режиме. Управлять большими объёмами данных например, медицинскими электронными картами можно эффективнее и без лишних затрат на дорогостоящую инфраструктуру. В случае чрезвычайной ситуации данные можно скопировать на резервный источник, что гарантирует их сохранность. Медицинские носимые устройства Носимые медицинские гаджеты предполагают удобный и неинвазивный способ наблюдения за различными параметрами здоровья. Например, частотой сердечных сокращений, характером сна, сожжёнными калориями. Среди наиболее известных и распространённых устройств — смарт-часы, фитнес-браслеты. Люди с хроническими заболеваниями могут использовать носимые мониторы здоровья, отслеживающие жизненные показатели и предупреждающие пользователей об отклонениях. Появляется умная одежда со встроенными датчиками, позволяющими контролировать показатели физподготовки. Медработникам такие устройства дают дополнительную информацию и позволяют оказать помощь пациенту до того, как его состояние ухудшится. Мобильные приложения для здоровья Практически на все современные смартфоны можно установить приложения, позволяющие следить за состоянием здоровья.

Мобильные технологии породили новое направление в медицине — mHealth. Это использование мобильных технологий для укрепления и восстановления здоровья.

Розничные поставщики медицинских услуг, как правило, более доступны и могут не требовать предварительной записи на прием по сравнению с традиционными поставщиками медицинских услуг. Они также в меньшей степени страдают от нехватки квалифицированного клинического персонала, с которой в настоящее время сталкиваются многие страны — эта проблема, по прогнозам , будет только усугубляться. Носимые медицинские устройства В 2023 году носимые устройства будут все чаще использоваться отдельными людьми для отслеживания собственного здоровья и физической активности, а также врачами для удаленного наблюдения за пациентами. В последние годы «Интернет медицинских вещей» быстро расширился от простых устройств, предназначенных для отслеживания жизненно важных показателей, таких как частота сердечных сокращений и уровень кислорода в крови, до умных часов, способных выполнять сложные сканирования, такие как ЭКГ, давление, риск сердечных приступов. Другой пример - умные перчатки, которые могут уменьшить тремор, от которого страдают пациенты с болезнью Паркинсона.

Наряду с физическими заболеваниями все большее внимание уделяется разработке носимых устройств, способных отслеживать и обнаруживать признаки психических заболеваний. В этом году было опубликовано исследование показывающее, как физические показатели, такие как уровни активности, характер сна и частота сердечных сокращений, могут использоваться для определения того, когда люди могут быть подвержены риску депрессии, и вскоре мы можем увидеть медицинские носимые устройства, включающие некоторые из этих функций. В 2023 году мы все чаще будем видеть носимые медицинские устройства, выступающие в качестве «пограничных» устройств, что означает, что они будут оснащены процессорами и способны использовать встроенную аналитику, а не требовать, чтобы данные передавались туда и обратно между устройством и облаком для обработки. Это имеет два основных преимущества: Во-первых - конфиденциальность, поскольку конфиденциальные личные данные пациента никогда не должны покидать устройство. Во-вторых - скорость, которая имеет решающее значение в случае устройств, предназначенных для обнаружения и предупреждения о потенциально опасных для жизни состояниях в режиме реального времени.

Санкт-Петербург, 27 апреля - АиФ-Петербург. В Петербурге подвели годовые итоги работы по выполнению федерального проекта «Создание единого цифрового контура в здравоохранении на основе Единой государственной информационной системы в сфере здравоохранения ЕГИСЗ » нацпроекта «Здравоохранение». Об этом сообщают «Санкт-Петербургские ведомости». По данным Смольного, в прошлом году около 1,7 миллиона горожан воспользовались медуслугами, обратившись к специалистам через личный кабинет пациента «Моё здоровье». При этом подавляющее большинство портала госуслуг после оказания им медпомощи смогли получить электронные документы. Всего за год было зафиксировано 29,8 записей, что на 2,2 миллиона больше, чем годом раньше. А в личном кабинете пациентов начал действовать сервис «Электронный рецепт», благодаря которому они могут получить льготный рецепт от врачей в электронном виде.

5 главных тенденций в области здравоохранения в 2023 году

очень популярная и быстро развивающаяся тема, но это также очень сложный и рискованный рынок. В Москве открылся Международный конгресс «Цифровая медицина и информационные технологии в здравоохранении». Разберём семь актуальных трендов цифрового здравоохранения (таблица 1).

Похожие новости:

Оцените статью
Добавить комментарий