Эффективность и безопасность вакцины протестировали в третьей фазе клинических исследований с участием 219 пациентов с немелкоклеточным раком легких (НМРЛ) из девяти стран. Уточняется, что российская вакцина от рака доказала свою эффективность даже при самых тяжелых случаях, таких как саркомы, меланомы и глиобластомы. Эффективность и безопасность вакцины протестировали в третьей фазе клинических исследований с участием 219 пациентов с немелкоклеточным раком легких (НМРЛ) из девяти стран. По его словам, эффективность вакцин от рака не превышает 5%, а в онкологии всё, что меньше 10%, считается неэффективным. При этом сама "вакцина" активно уничтожает раковые клетки.
Курсы валюты:
- Руководства и рекомендации для пациентов и их близких
- Moderna: вакцины от рака и сердечных заболеваний будут готовы к концу десятилетия
- «Живая» вакцина. Когда в России может появиться «убийца рака» на основе COVID-19
- В Петербурге создали вакцину от рака, которая поможет даже умирающим
- Вакцину от рака на базе "старых" клеток создали ученые
- Оспа против рака: новосибирский препарат для онкобольных прошел доклинические испытания - Вести
AUA-2023: вирус против рака и новая вакцина против инфекций мочевыводящих путей
Здоровье - 22 февраля 2024 - Новости Ханты-Мансийска - проводим экспериментальные исследования вакцин второго и третьего поколений. Это доказывает, что вакцина от рака Коли была достаточно эффективной и не уступала по качеству классическим методами лечения онкологических заболеваний.
Когда опухоль сильнее лимфоцита
- Перспективы противоопухолевых вакцин от рака
- Российскую вакцину от рака успешно испытали на животных
- Прививки от рака: спасительные технологии
- Вакцина против опухолей: мифы, реальность и будущее
Петербургские ученые разработали технологию создания вакцины от рака
Такой вклад и называют атрибутивным риском, а также добавочной долей. Вероятность воздействия того или иного фактора может отличаться для разных групп людей. Поэтому атрибутивный риск могут посчитать для отдельной страны, региона, мужчин или женщин, стран с низким и высоким доходом населения и так далее. К таким относится ВПЧ по отношению к карциноме шейки матки и плоскоклеточной карциноме ануса. Этих заболеваний просто не бывает без ВПЧ. Практический смысл атрибутивного риска — это ответ на вопрос: Какую часть риска заболевания мы сможем предотвратить, если сможем избавиться от интересующего нас фактора? Смерти от рака Атрибутивный риск можно вычислить не только для новых случаев какого-либо заболевания, но также и для смертей от этого заболевания.
По данным следствия, задержанный предприниматель вместе с подельниками в 2013 году организовал в Костроме производство вакцины «Стрептобластолизин».
Предполагаемые мошенники утверждали, что их препарат излечивает рак, ВИЧ, гепатит и другие тяжелые […] Опубликовано в категории: Фармация.
Да, она будет считаться экспериментальной, но при этом она достаточно хорошо отработана и может применяться на постоянной основе в рамках высоко технологичной медицинской помощи. Я надеюсь, что в течение года-двух у нас пройдут клинические исследования, которые смогут эту историю зафиксировать как один из методов терапии. Потому что в результате мы получаем иммунную систему, активированную против определённого агента, в данном случае — это клетки опухоли. Задача вакцины — активировать иммунную систему.
Самая известная форма вакцины — когда бактерии или вирусы вносятся в разрушенном, убитом или ослабленном виде. В этом случае происходит активация иммунной системы против чужеродного агента. Здесь похожий метод, только мы не применяем просто клетки опухоли, хотя это в свое время изучалось — пытались найти некую универсальную опухоль, которую можно лизировать, превратить в раствор, и она будет работать как вакцина. Очень много компонентов в клетках опухоли, хотя, может быть, там и появляются общие антигены для некоторых типов опухолей. Но их не так много, к сожалению.
С другой стороны, там огромное количество своих нормальных белков, которые тоже не очень способствуют хорошей иммуногенности. Кроме того, не забываем, что существует огромное разнообразие опухолей, как и возможных антигенов в них. Многие опухоли характеризуются тем, что у них повышена мутационная активность. В них каждый раз появляются такие мутации, разные для каждого пациента, продуцируют мутантные белки, которые отличаются от нормальных одной или несколькими аминокислотами. С одной стороны, это хорошо.
Благодаря этому механизму большинство таких появляющихся опухолевых клеток в организме здоровых людей уничтожаются. Иммунная система их убивает благодаря тому, что, мутируя, клетки начинают отличаться от здоровых — появляются белки, которые никогда в норме не присутствуют, и именно на такие белки может быть направлена иммунная система. С мутациями опухолевых клеток связаны нео-антигеные вакцины. Нео-антигены — это как раз такие мутантные белки, которые, как правило, не связаны с прогрессией опухоли. У каждого пациента они собственные.
Даже в объёме одной опухоли могут содержаться участки, несущие немного разный набор нео-антигенов. От них не зависит, растёт ли опухоль, но они появляются, а поскольку опухоль избегает иммунного ответа с помощью других механизмов, они накапливаются в ней. Но как маркеры они могут быть использованы. И так как в опухоли еще продолжают возникать дополнительные мутации, формируется такое явление как клональность опухоли. Это тоже одна из серьёзных проблем в онкологии.
Если мы проводим таргетную терапию, она направлена против какого-то антигена или сигнального пути, стимулирующего рост опухоли. Если эта мутация представлена не во всех клетках опухоли или происходит нарушение сигнального пути не во всех клонах, то будут уничтожены или подавлены только те, где есть мутация, а остальные начинают расти дальше. С этим и связана, в определённой мере, временная ремиссия. Поэтому если мы делаем вакцину против основных мутаций каких-то опухолей, мы убьём те клоны, где она присутствует, а остальные могут остаться. Если мы делаем вакцину, которая бьёт по основным нео-антигенам, допустим 20-30 одновременно, то можем накрыть весь пул клонов и, соответственно, значительно улучшить иммунный противоопухолевый ответ.
То есть надо бороться с клональностью. Мы сможем это сказать точно на стадии клинических исследований. На стадии исследований опухолевых моделей на мышах мы видим, что вакцина против опухолевых нео-антигенов, которые не относятся к опухолевому росту, работает. Это всё вероятностный процесс, но мы видим эффекты вплоть до полного излечения больных мышек. Для этого нужен свежий образец опухоли.
Это либо биопсия, либо операционный материал. Наши сотрудники берут образцы и делают полноэкзомное секвенирование — мы секвенируем все функциональные гены, которые есть в опухоли. Также мы смотрим секвенс РНК — то, что уже проэкспрессировалось. Далее мы можем по ДНК выявить те самые нео-антигеные мутации, определить специальными нейросетями с искусственным интеллектом — какие из этих кусочков могут быть максимально эффективно представлены для иммунной системы, а в дальнейшем мы составляем потенциальные короткие белки — пептиды от 10 до 25 аминокислот, как компоненты вакцины. Такую модель мы создали для мышей на примере меланомы и показали, что лекарственная форма, составленная из таких пептидов, имеет эффективность.
Технически переход от пептидов к РНК-вакцине позволит повысить, как мы надеемся, её иммуногенность. В практике это подтверждается зарубежными публикациями и работами отечественных учёных. И, возможно, если удастся нарабатывать РНК-вакцину оперативно, мы постараемся сократить время между операцией и введением персональной вакцины. Тут очень важен срок чтобы не допустить рецидива, особенно в случае меланомы. Всем пациентам — нет, потому что все пациенты разные.
Но исследования мы не прекращаем, будем оценивать эффективность и дальше. Это лечебная вакцина, это не профилактика рака. У пациента берут кровь, извлекают моноциты, получают дендритные клетки. Эти клетки обогащают антигеном опухоли, у нас есть банк опухолей.
В лаборатории эти клетки активируем и вводим пациенту. Цикл созревания клеток занимает около двух недель. Это помогает бороться с разными видами рака. Это меланомы кожи, саркомы, рак толстой или прямой кишки, рак молочной железы», - рассказал онколог.
Есть также и вторая вакцина, которая по эффективности может сравниться с «очень дорогими» препаратами, добавил он.
Российскую вакцину от рака успешно испытали на животных
В структуре смертности женщин от онкологических заболеваний фактически 31% — это смертность от рака органов репродуктивной системы молочной железы. одного из самых опасных видов рака кожи. Здоровье - 22 февраля 2024 - Новости Краснодара - Здоровье - 22 февраля 2024 - Новости Краснодара - Здоровье - 22 февраля 2024 - Новости Ростова-на-Дону -
NTD: лечить рак в будущем будут с помощью вакцины
Этот метод используется Moderna для разработки вакцин, нацеленных на различные типы опухолей. Поделитесь новостью. «Мы вплотную подошли к созданию так называемых онковакцин (вакцин против рака) и иммуномодулирующих препаратов нового поколения.
Это будет прорыв: ученые пообещали создать вакцину от рака до 2030 года
Самая известная форма вакцины — когда бактерии или вирусы вносятся в разрушенном, убитом или ослабленном виде. В этом случае происходит активация иммунной системы против чужеродного агента. Здесь похожий метод, только мы не применяем просто клетки опухоли, хотя это в свое время изучалось — пытались найти некую универсальную опухоль, которую можно лизировать, превратить в раствор, и она будет работать как вакцина. Очень много компонентов в клетках опухоли, хотя, может быть, там и появляются общие антигены для некоторых типов опухолей. Но их не так много, к сожалению. С другой стороны, там огромное количество своих нормальных белков, которые тоже не очень способствуют хорошей иммуногенности.
Кроме того, не забываем, что существует огромное разнообразие опухолей, как и возможных антигенов в них. Многие опухоли характеризуются тем, что у них повышена мутационная активность. В них каждый раз появляются такие мутации, разные для каждого пациента, продуцируют мутантные белки, которые отличаются от нормальных одной или несколькими аминокислотами. С одной стороны, это хорошо. Благодаря этому механизму большинство таких появляющихся опухолевых клеток в организме здоровых людей уничтожаются.
Иммунная система их убивает благодаря тому, что, мутируя, клетки начинают отличаться от здоровых — появляются белки, которые никогда в норме не присутствуют, и именно на такие белки может быть направлена иммунная система. С мутациями опухолевых клеток связаны нео-антигеные вакцины. Нео-антигены — это как раз такие мутантные белки, которые, как правило, не связаны с прогрессией опухоли. У каждого пациента они собственные. Даже в объёме одной опухоли могут содержаться участки, несущие немного разный набор нео-антигенов.
От них не зависит, растёт ли опухоль, но они появляются, а поскольку опухоль избегает иммунного ответа с помощью других механизмов, они накапливаются в ней. Но как маркеры они могут быть использованы. И так как в опухоли еще продолжают возникать дополнительные мутации, формируется такое явление как клональность опухоли. Это тоже одна из серьёзных проблем в онкологии. Если мы проводим таргетную терапию, она направлена против какого-то антигена или сигнального пути, стимулирующего рост опухоли.
Если эта мутация представлена не во всех клетках опухоли или происходит нарушение сигнального пути не во всех клонах, то будут уничтожены или подавлены только те, где есть мутация, а остальные начинают расти дальше. С этим и связана, в определённой мере, временная ремиссия. Поэтому если мы делаем вакцину против основных мутаций каких-то опухолей, мы убьём те клоны, где она присутствует, а остальные могут остаться. Если мы делаем вакцину, которая бьёт по основным нео-антигенам, допустим 20-30 одновременно, то можем накрыть весь пул клонов и, соответственно, значительно улучшить иммунный противоопухолевый ответ. То есть надо бороться с клональностью.
Мы сможем это сказать точно на стадии клинических исследований. На стадии исследований опухолевых моделей на мышах мы видим, что вакцина против опухолевых нео-антигенов, которые не относятся к опухолевому росту, работает. Это всё вероятностный процесс, но мы видим эффекты вплоть до полного излечения больных мышек. Для этого нужен свежий образец опухоли. Это либо биопсия, либо операционный материал.
Наши сотрудники берут образцы и делают полноэкзомное секвенирование — мы секвенируем все функциональные гены, которые есть в опухоли. Также мы смотрим секвенс РНК — то, что уже проэкспрессировалось. Далее мы можем по ДНК выявить те самые нео-антигеные мутации, определить специальными нейросетями с искусственным интеллектом — какие из этих кусочков могут быть максимально эффективно представлены для иммунной системы, а в дальнейшем мы составляем потенциальные короткие белки — пептиды от 10 до 25 аминокислот, как компоненты вакцины. Такую модель мы создали для мышей на примере меланомы и показали, что лекарственная форма, составленная из таких пептидов, имеет эффективность. Технически переход от пептидов к РНК-вакцине позволит повысить, как мы надеемся, её иммуногенность.
В практике это подтверждается зарубежными публикациями и работами отечественных учёных. И, возможно, если удастся нарабатывать РНК-вакцину оперативно, мы постараемся сократить время между операцией и введением персональной вакцины. Тут очень важен срок чтобы не допустить рецидива, особенно в случае меланомы. Всем пациентам — нет, потому что все пациенты разные. Это препараты из антител, которые нарушают один из путей избегания иммунного ответа опухолью.
Блокируется этот путь, опухоль становится более чувствительной к иммунной терапии, и мы ещё добавляем в «котел» — обученные, активированные, «злые» иммунные клетки, которые начинают воздействовать на опухоль. В будущем мы предварительно, может быть, даже до операционного вмешательства сможем подбирать пациентов, состояние иммунной системы которых подходит под такую терапию. Сейчас работы ведутся для меланомы, рака ЖКТ, яичников и мы ориентируемся на рак лёгкого.
Ученый-биолог Шнейдер родом из Ленинграда. В годы перестройки уехал в Израиль, где трудился в одной из биотехнологических компаний. Потом отправился покорять США, там работал в университете Бостона, потом основал свою компанию по разработке инновационных лекарств. Его самым успешным проектом стала вакцина от рака. Как рассказывают генетики, в ее основе кольцо ДНК под названием плазмида, в которое встроен особый ген - p62. То, что Шнейдер выбрал именно его, не случайность, а результат большой деятельности и научного предвидения. Сергей Красный объяснил, как вышло, что все запасы вакцины "Еленаген" остались в Беларуси. Однако пандемия парализовала медицинские системы этих государств. А белорусские ученые продолжили работать в рамках уже начатого научно-исследовательского проекта по изучению эффективности вакцины от рака.
Эффективность и безопасность вакцины протестировали в третьей фазе клинических исследований с участием 219 пациентов с немелкоклеточным раком легких НМРЛ из девяти стран. Результаты, опубликованные в журнале Annals of Oncology, показали превосходство препарата в сравнении с химиотерапевтическим лечением. Что умеют программные роботы В исследовании приняли участие добровольцы с резистентной формой рака, которые выработали устойчивость к терапии ингибиторами иммунных контрольных точек. Этот метод лечения часто применяется при НМРЛ, однако у большинства пациентов при рецидиве рака вырабатывается резистентность, требующая новой стратегии лечения. Наблюдения показали, что медиана выживаемости при приеме OSE2101 составила 11,1 мес.
Ученые нашли способ вернуть иммунным клеткам «бдительность», добиться уничтожения раковых клеток так, чтобы болезнь не возвращалась. В организме человека за противоопухолевый иммунитет отвечают так называемые дендритные клетки. Они были открыты Ральфом Штейнманом американский иммунолог и цитолог канадского происхождения, лауреат Нобелевской премии по физиологии и медицине за 2011 год. Третий в истории премии лауреат, награжденный посмертно: он умер 30 сентября 2011 года в процессе обсуждения номинантов премии. Петрова, врач клинической лабораторной диагностики. Дендритные клетки очень высокоспециализированные, они присутствуют в разных тканях организма. Петрова, доктор медицинских наук, иммунолог, онколог, врач клинической лабораторной диагностики Ирина Балдуева НМИЦ онкологии им. Петрова В основе метода петербургских ученых лежит возможность получать дендритные клетки в лабораторных условиях. Их получают из моноцитов — клеток крови пациента. Процедура лечения представляет собой забор крови у пациента, создание из ее клеток вакцины и возвращение «обученных» распознавать рак клеток в организм больного, что по форме напоминает процедуру ЭКО. Это необходимо для получения специальных клеток периферической крови — моноцитов, которые будут служить источником для приготовления индивидуальной вакцины, — рассказала Ирина Балдуева. Следующий этап — научить клетки бороться с опухолями». В лаборатории института уже накоплен банк данных так называемых опухолевых антигенов, по сути злокачественных клеток. Дендритные клетки захватывают определенные молекулы, которые находятся на поверхности опухолевых клеток, переваривают их, демонстрируют их часть на своей поверхности. Вакцина готова. Введенные в организм «обученные», или модернизированные, дендритные клетки позволяют Т-лимфоцитам, которые называют клетками-убийцами, распознавать опухолевые клетки с тем, чтобы их уничтожить. Максимальный период лечения не ограничен. Если во время лечения, по оценкам врача, появятся признаки того, что болезнь не удается контролировать, или в случае возникновения непереносимых нежелательных явлений лечение прекращают. Если контрольное обследование показало, что лечение помогло, больного переводят на вакцинацию один раз в месяц в течение года, затем один раз в три месяца, а затем один раз в полгода. При максимальной эффективности лечения вакцинотерапию отменяют, пациент проходит ежегодные профилактические осмотры. Метод запатентован. Но если вакцинный препарат индивидуален, то сам метод строго унифицирован. Лаборатория онкоиммунологии, где идет работа с культурами клеток Наталия Михальченко Кому подходит «Универсальность лечения, а именно воздействие на иммунную систему, которая более или менее однообразна у всех больных при разных злокачественных опухолях, позволяет распространить иммунотерапевтические подходы достаточно широко для большинства онкологических пациентов и в большинстве онкологических ситуаций. Это кардинально отличает ее от таргетной терапии, в результате которой пользу получает очень узкая группа больных с конкретной мутацией», — говорит Ирина Балдуева.
Персонифицированная вакцина от рака: почему спасение онкобольных не включают в программу ОМС
Авторы ввели здоровым мышам стареющие раковые клетки меланомы или поджелудочной железы, а затем стимулировали у них образование опухолей. У многих вакцинированных животных не развился рак. Ученые протестировали эту терапию на животных, которые уже заболели раком. У них наблюдались умеренные улучшения во время лечения.
С другой стороны, поскольку эти клетки не делятся, они не могут регенерировать опухоль. Именно поэтому ученые выбрали их в качестве препарата для вакцинации. Дополнительно ученые исследовали опухоли больных раком людей и подтвердили, что именно состарившиеся раковые клетки человека также обладают наибольшей способностью активировать иммунную систему.
Авторы работы уже приступили к изучению эффективности терапии стареющими клетками в сочетании со стандартной иммунотерапией.
Они уже проходят клинические испытания. Эти вакцины будут эффективны против рака кишечника, меланомы и некоторых других. Но есть и сложности — например, как «обучить» вакцину целиться именно в раковые клетки, а не в здоровые ткани. Революция в онкологии Она уже не за горами. Онкологи всего мира затаили дыхание в предвкушении итогов исследований: «Каждый год появляются всё новые эффективные препараты против рака, и уже скоро мы будем иметь такую же картину, как было с инфекциями, когда появились антибиотики», заявил российский врач-онколог Илья Фоминцев.
Один генетический анализ будет стоить более 100 тысяч. Потом нужно сделать личный препарат, провести его исследования, чтобы подтвердить его качество, не многим более простые, чем анализ серий обычных лекарств, которые производят партиями из сотен тысяч доз. Тут вообще нельзя говорить про гарантию, и это относится ко всем лекарствам, даже к препаратам от головной боли. Цель, куда мы стремимся — это комбинация терапевтических подходов, которые снимают противоиммунную защиту опухоли, методов клеточных технологий, например, технологии получения CAR-T клеток, которые целевым образом узнают опухолевые клетки и их убивают. Комбинация этих методов в результате должна приводить к значимому, стойкому противоопухолевому иммунитету, который позволит у значительного количества пациентов добиться пожизненной ремиссии. Эта цель, которая достойна «Нобелевки». Она тоже относится к технологиям иммунотерапии, но это уже такая artificial-вакцина. Мы стимулируем механизмами вне организма то, что должно происходить в организме. Технология по созданию таких клеток достаточно сложна: у пациента выделяются гемопоэтические клетки, которые являются либо предшественниками, либо самими Т-клетками, в них вносят специальный генетический вектор, и на их поверхности появляется экспрессия химерного рецептора. На поверхности к этому гибридному химерному рецептору «пришивается» молекула, как правило, из кусочков антител или лигандов — та, которая может узнать антиген на поверхности опухолевой клетки. Таким образом, изменённый лимфоцит таргетно связывается с опухолевой клеткой. Внутри клетки запускаются процессы, которые активируют Т-лимфоцит, делая его агрессивным против клетки, рядом с которой он находится. Если связь произошла, активируется лимфоцит, который начинает убивать эту опухолевую клетку. В мире она уже клинически применяется для терапии лимфом. В России проводятся клинические апробации такой технологии либо на своих, либо на зарубежных векторах. Мы построили у себя блок для наработки клеточного препарата для пациентов — у нас сейчас будет клинически верифицированная, сертифицированная площадка для производства, возможно, для детской онкологии, а возможно, перейдём на взрослую. У нас разработан вектор для солидных опухолей, который позволяет получать CAR-T клетки, нацеленные на антиген HER-2, это рак молочной железы и рак яичников. Есть ещё несколько опухолей, для которых надо делать исследования. У нас проведены доклинические исследования на животных, проведены исследования in-vitro, показана эффективность. В принципе, мы готовы переходить на стадию клинических исследований. Всё то же, о чем мы уже говорили — пациенты разные, опухоли тоже. Я бы сказал, во-первых, что надо выбирать пациентов, у которых будет высокая вероятность ответа, а, во-вторых, подбирать комбинацию терапии, в данном случае, иммунотерапии, которая снимет защиту опухоли от действия иммунной системы. Самих вариантов много и не всегда можно угадать что работает у данного пациента. Мы разрабатываем наш новый подход — мульти-функциональные CAR-T клетки, когда анализируется пул всех клеток опухоли, и у пациента получают Т-клетки, которые содержат универсальный рецептор. Тогда эти CAR-T клетки можно направить на несколько антигенов в опухоли данного пациента. Эта терапия ещё на ранней стадии исследования, там есть вопросы. Наша задача — довести эти технологии до практического применения. Сейчас у нас есть площадка, которая позволяет проводить клинические исследования для нескольких пациентов и подтверждать, что этот подход работает. А когда это нужно будет делать на пациентах в большом количестве, то это будет «завод», в котором стоят десятки ферментёров, обрабатывающие одновременно клеточный продукт от десятков пациентов, чтобы в течение месяца подготовить продукты для многих пациентов. Вот к такой цели мы сейчас движемся и продвинулись очень неплохо. К сожалению, нет. Как не существует вакцины против всех вирусов и бактерий, которые нас поражают. Они работают над вакциной, где в рамках одной вакцины либо мультивалентной из нескольких векторов, либо в рамках одного вектора могут быть внесены маркеры известного, но ограниченного чисто физически количества возбудителей, самых распространённых, которые приносят наибольший вред. В нашем случае, чтобы убить одну опухоль, нужно использовать много маркеров. Вряд ли. Мы должны знать мишень. Нет такого антигена, который присутствует, условно говоря, хотя бы в половине видов рака. Есть определённые сигнальные пути, которые ломаются или, наоборот, активируются, присущие изрядному количеству опухолей хотя бы в одном типе рака. Такое бывает. И вакцины для таких случаев как раз пытаются разрабатывать. Но они вряд ли будут профилактическими. Потому что это не вакцина против рака шейки матки. Это вакцина против вируса папилломы человека. И то против основных его видов, которые приводят к максимальному социальному эффекту.