Примерами незатухающих колебаний могут служить колебания маятников в. Незатухающие колебания характеризуются постоянством и регулярностью амплитуды, частоты и фазы.
Явление резонанса
Подобным же образом поддерживаются незатухающие колебания молоточка в электрическом звонке, питающимся от сети через понижающий трансформатор. Здесь периодические толчки создаются электромагнитом, притягивающим якорёк, укреплённый на молоточке. Якорь притягивается, и боёк, связанный с ним, ударяет по чашечке звонка. При притягивании якоря между ним и винтом 3 образуется зазор, ток прерывается, электромагнит обесточивается, и якорь силой пружины 4 возвращается в исходное положение. Цепь электромагнита при этом снова замыкается, и боёк ещё раз ударяет по чашечке. Так периодически повторяется работа звонка, пока кнопка К нажата. Аналогично можно получить автоколебания со звуковыми частотами, возбудив незатухающие колебания камертона, если между ножками камертона поместить электромагнит 2. По катушке электромагнита проходит ток, намагничивая сердечник, который притягивает ножку камертона, поднимая её вверх. Цепь размыкается, и ножка камертона под действием силы тяжести опускается вниз. Цепь замыкается и далее всё повторяется.
Электромеханические автоколебательные системы, подобные рассмотренным в технике применяются очень широко. Но есть и чисто механические колебательные устройства, например маятниковые часы. Незатухающие колебания маятника 3, показанных на рисунке часов, происходят за счёт потенциальной энергии поднятой гири 2. Колесо с косыми зубьями 1 жестко скреплено с зубчатым барабаном, через который перекинута цепь с гирей 2.
А во втором случае этот первоначальный запас энергии — это кинетическая энергия в случае, когда мы толкали грузик. Согласно закону сохранения энергии в обоих случаях сумма кинетической и потенциальной энергий маятника должна оставаться неизменной с течением времени. То есть, какое бы промежуточное значение маятника мы бы ни рассмотрели, в любой из них эта сумма равна начальной энергии маятника см. Иллюстрация закона сохранения энергии Однако на самом деле мы понимаем, что маятников, которые могли бы совершать колебания довольно долго, не существует — это какая-то абстракция. Учтём, что система маятников незамкнутая, то есть в системе присутствует сила трения. В реальных условиях мы можем взять тяжелый груз, подвесить его на очень длинную и легкую нить или проволоку, закрепить один конец на опоре и получить систему, близкую по своим свойствам к математическому маятнику. Однако нельзя сказать, что механическая энергия такого маятника будет сохраняться — мы прекрасно знаем, что рано или поздно он остановится. В чем же наша недоработка? Ответ прост: в данной системе присутствуют различные виды трения, действие которых приводит к потере на каждом периоде колебаний маятника какой-то части его энергии см. В системе присутствуют различные виды трения Силы трения могут быть внутренними например, в подвесе маятника , а могут быть и внешними например, со стороны окружающего воздуха или другой среды, в которой может находиться маятник. Естественно, что силы трения зависят от свойств среды: в воде колебания будут затухать быстрее, чем в воздухе см. Затухание в воздухе и воде В итоге амплитуда колебаний будет постепенно уменьшаться, и в конце маятник остановится. На рисунке представлены смещения груза маятника от времени: видно, что амплитуда постепенно уменьшается, стремясь к нулю, такие колебания называются затухающими см. Затухающие колебания — это колебания, которые происходят в незамкнутой системе, то есть колебания, которые происходят в том числе под действием силы трения. Амплитуда таких колебаний постепенно затухает. Большинство колебаний в мире — затухающие, так как в окружающем нас мире, постоянно существуют силы трения. Итак, мы выяснили: в реальности колебания маятников механических систем затухающие, то есть их амплитуда постепенно уменьшается, стремясь к нулю. Что же нам сделать, чтоб колебания не были такими, чтоб амплитуда постоянно поддерживала свое значение? Для этого нам необходимо разомкнуть систему и подкачивать энергию извне. Таким образом, мы добьемся незатухающих колебаний. Как же разомкнуть систему? Вспомним простой пример из жизни: катание на качелях. Для того чтобы качели колебались без остановки, человек периодически толкает их, а если перевести это на язык физики, то человек действует на качели с силой, величина которой зависит от времени периодическим образом. Если построить график зависимости модуля силы от времени, то получим следующий результат: сила зависит от времени периодически см. Зависимость силы от времени Мы прекрасно понимаем, что если мы будем воздействовать на качели постоянно, то они не будут колебаться. Колебания системы, совершающие ею под действием внешней периодической силы, называются вынужденными. Силу, являющейся мерой этого внешнего воздействия, называют вынуждающей. При этом, как вы понимаете, мы уже не можем считать систему замкнутой, то есть в системе уже не совершаются свободные колебания — в системе совершаются вынужденные колебания. Примерами систем, в которых совершаются вынужденные колебания, могут быть также в полнее привычные вам часы — это могут быть настенные маятниковые часы, а могут быть и обычные пружинные механические часы.
Амплитуда затухающих колебаний постоянно изменяется со временем. И убывает по экспоненциальному закону: 4. Время затухания время релаксации — величина, обратная коэффициенту затухания; время, в течение которого амплитуда уменьшается.
Таким образом, колебание пружинного маятника, которое само по себе затухало бы, поддерживается периодическими толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдает порцию энергии, часть которой идет на подъем груза. Система сама управляет действующей на нее силой и регулирует поступление энергии из источника — батареи. Колебания не затухают именно потому, что за каждый период от батареи отбирается как раз столько энергии, сколько расходуется за то же время на трение и другие потери. Что же касается периода этих незатухающих колебаний, то он практически совпадает с периодом собственных колебаний груза на пружине, т. Автоколебания груза на пружине Подобным же образом возникают незатухающие колебания молоточка в электрическом звонке, с той лишь разницей, что в нем периодические толчки создаются отдельным электромагнитом, притягивающим якорек, укрепленный на молоточке. Аналогичным путем можно получить автоколебания со звуковыми частотами, например возбудить незатухающие колебания камертона рис. Когда ножки камертона расходятся, замыкается контакт 1; через обмотку электромагнита 2 проходит ток, и электромагнит стягивает ножки камертона. Контакт при этом размыкается, и далее следует повторение всего цикла. Автоколебания камертона Чрезвычайно существенна для возникновения колебаний разность фаз между колебанием и силой, которую оно регулирует. Перенесем контакт 1 с внешней стороны ножки камертона на внутреннюю. Замыкание происходит теперь не при расхождении, а при сближении ножек, т. Легко видеть, что в этом случае камертон будет все время сжат непрерывно включенным электромагнитом, т.
Затухающие и незатухающие колебания: разница и сравнение
Гармонические колебания и их характеристики. | Акустические незатухающие колебания Акустические незатухающие колебания — это колебания звуковой волны в среде, которые не теряют энергию и продолжают распространяться на большие расстояния без изменения амплитуды. |
Характеристика затухающих колебаний, какие колебания называют затухающими / Справочник :: Бингоскул | Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. |
Гармонические колебания и их характеристики. | Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. |
Гармонические колебания и их характеристики. | Примерами незатухающих колебаний являются осцилляции маятника, электромагнитные колебания в контуре, а также световые волны, распространяющиеся в оптических волокнах. |
Приведи пример вариантов незатухающих колебаний
Колебательной системой в часах является маятник или балансир. Источником энергии — поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири или закрученной пружины постепенно, отдельными порциями передается маятнику.
Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике.
В идеальных условиях, без учета потери энергии на поглощение или рассеяние, электромагнитные колебания будут незатухающими. Незатухающие колебательные процессы имеют множество практических применений. Например, в часах и механических часовых механизмах используются незатухающие колебания для точного измерения времени. Также незатухающие колебания находят применение в музыкальных инструментах, оптических приборах, электронных устройствах и многих других системах. В заключение можно сказать, что незатухающие колебания являются важным явлением в физике и науке в целом. Они позволяют изучать и практически применять различные системы, сохраняя энергию и обеспечивая стабильные колебания в течение продолжительного времени. Эти примеры незатухающих колебаний демонстрируют возможности и применения этого явления в различных областях наших жизней.
Основные параметры: 1. Скоростью затухания колебаний принято называть величину, которая прямо пропорциональна силе затухания колебаний. Период затухающих колебаний — это минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении. Амплитуда затухающих колебаний при небольших затуханиях — это наибольшее отклонение от положения равновесия за период.
Математический маятник - небольшое тело материальная точка , подвешенное на невесомой нити рис. Математический маятник а , физический маятник б Физический маятник - твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси. На рисунке 1. Период колебаний физического маятника описывается формулой где J - момент инерции тела относительно оси, m - масса, h - расстояние между центром тяжести точка С и осью подвеса точка О. Момент инерции - это величина, зависящая от массы тела, его размеров и положения относительно оси вращения. Вычисляется момент инерции по специальным формулам. Гармонические колебания и их характеристики. Колебаниями называются процессы, которые характеризуются определенной повторяемостью во времени, то есть колебания - периодические изменения какой-либо величины.
Явление резонанса
Уровень нулевой потенциальной энергии Дальше происходит обратное превращение энергии: кинетическая начинает падать, а потенциальная увеличиваться и так происходит постоянно. Теперь попытаемся вывести закон, по которому меняются потенциальная и кинетическая энергии см. Изменение энергий Потенциальная энергия пружинного маятника имеет вид: , где k — коэффициент жесткости пружины, x — координата. Кинетическая энергия:. Координата меняется по такому закону:. Скорость тоже изменяется по гармоническому закону:. Подставим выражение для координаты и для скорости в формулы для энергий и получим закон, по которому изменяется со временем энергия потенциальная и кинетическая для пружинного маятника:. Для математического маятника формула для кинетической энергии будет идентичной, а для потенциальной, с математической точки зрения, тоже похожей, но перед значением косинуса будет стоять другой коэффициент. Так как квадрат величины всегда неотрицательная величина, то график см.
В каждый момент времени сумма кинетической и потенциальной энергии одинакова — выполняется закон сохранения энергии. В реальности энергия, конечно же, не сохраняется. Любая колебательная система тратит часть своей энергии на преодоление силы сопротивления, силы трения. Энергия уменьшается, колебания на самом деле являются затухающими. В тех случаях, которые мы рассматриваем в 9 классе, этим затуханием можно пренебречь, но в реальной жизни это нужно учитывать. А каким же образом мы может заставить колебаться маятник гармонически? Это можно сделать двумя способами. Вывести груз из положения равновесия и отпустить его.
В этом случае график движения график x t будет иметь такой вид см. График движения x t Второй вариант: заставить тело совершать гармонические колебания с помощью импульса например, толкнуть его. Вспомните, например, как вы раскачиваете качели: либо толкнуть их, либо вывести их из положения равновесия и отпустить. Естественно, можно вывести их из положения равновесия и сообщить некий импульс. Превращения энергии при колебаниях. Затухающие колебания Свободные колебания могут совершаться за счет первоначального запаса энергии. Вернемся к предыдущим рассуждениям: в первом примере, который мы приводили, это была первоначальная энергия грузика, мы выводили его из положения равновесия, а потом отпускали. А во втором случае этот первоначальный запас энергии — это кинетическая энергия в случае, когда мы толкали грузик.
Согласно закону сохранения энергии в обоих случаях сумма кинетической и потенциальной энергий маятника должна оставаться неизменной с течением времени. То есть, какое бы промежуточное значение маятника мы бы ни рассмотрели, в любой из них эта сумма равна начальной энергии маятника см. Иллюстрация закона сохранения энергии Однако на самом деле мы понимаем, что маятников, которые могли бы совершать колебания довольно долго, не существует — это какая-то абстракция. Учтём, что система маятников незамкнутая, то есть в системе присутствует сила трения.
Электромеханические автоколебательные системы применяются в технике очень широко, но не менее распространенными и важными являются и чисто механические автоколебательные устройства.
Достаточно указать на любой часовой механизм. Незатухающие колебания маятника или балансира часов поддерживаются за счет потенциальной энергии поднятой гири или за счет упругой энергии заведенной пружины. На этом рисунке изображен так называемый анкерный ход. Колесо с косыми зубьями 1 ходовое колесо жестко скреплено с зубчатым барабаном, через который перекинута цепь с гирей 2. К маятнику 3 приделана перекладина 4 анкер , на концах которой укреплены палетты 5 — пластинки, изогнутые по окружности с центром на оси маятника 6.
Анкер не позволяет ходовому колесу свободно вращаться, а дает ему возможность провернуться только на один зуб за каждые полпериода маятника. Но и ходовое колесо действует при этом на маятник, а именно, пока зуб ходового колеса соприкасается с изогнутой поверхностью левой или правой палетты, маятник не получает толчка и только слегка тормозится из-за трения. Но в те моменты, когда зуб ходового колеса «чиркает» по торцу палетты, маятник получает толчок в направлении своего движения. Таким образом, маятник совершает незатухающие колебания, потому что он сам в определенных своих положениях дает возможность ходовому колесу подтолкнуть себя в нужном направлении. Эти толчки и восполняют расход энергии на трение.
Период колебаний и в этом случае почти совпадает с периодом собственных колебаний маятника, т. Схема часового механизма Автоколебаниями являются также колебания струны под действием смычка в отличие от свободных колебаний струны у рояля, арфы, гитары и других несмычковых струнных инструментов, возбуждаемых однократным толчком или рывком ; автоколебаниями являются звучание духовых музыкальных инструментов, движение поршня паровой машины и многие другие периодические процессы.
Как только тело или система выводится из положения равновесия, сразу же появляется сила, стремящаяся возвратить тело в положение равновесия. Эта сила называется возвращающей, она всегда направлена к положению равновесия, происхождение ее различно: а для пружинного маятника - сила упругости; б для математического маятника - составляющая сила тяжести.
Свободные или собственные колебания - это колебание, происходящие под действием возвращающей силы.
Автор: Роман Адамчук Преподаватель физики Если колебания совершаются под воздействием внешней силы, они называются вынужденными. Работа внешней силы, которая обеспечивает колебательную систему энергией, при этом является положительной. Благодаря ей колебания не затухают и могут противодействовать силам трения. Внешняя сила не обязательно должна быть постоянной.
Гармонические колебания и их характеристики.
Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии. Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. Свободные колебания могут быть незатухающими только при отсутствии силы трения. Затухающие колебания — это колебания, амплитуда которых со временем уменьшается из-за внешней силы или трения, в то время как незатухающие колебания продолжаются неопределенно долго с постоянной амплитудой.
Вынужденные колебания. Резонанс. Автоколебания
Незатухающие колебания. Автоколебательные системы | Главная» Новости» Незатухающие колебания примеры. |
Свободные незатухающие колебания | Биологические незатухающие колебания Незатухающие колебания встречаются не только в физических системах, но и в биологических организмах. |
Незатухающие колебания. Автоколебательные системы | Другим примером незатухающих колебаний являются электромагнитные колебания в контуре с постоянными параметрами. |
Механические колебания | теория по физике 🧲 колебания и волны | Примеры незатухающих колебаний Незатухающие колебания встречаются в различных системах и процессах. |
§ 30. Незатухающие колебания. Автоколебательные системы
Возбуждение незатухающих электрических колебаний возможно с помощью других методов, но все они подобны описанному. Распространенным примером незатухающих колебаний являются волны переменного тока или напряжения, качающийся маятник в вакууме и т.д. Возбуждение незатухающих электрических колебаний возможно с помощью других методов, но все они подобны описанному. Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. Свободные колебания могут быть незатухающими только при отсутствии силы трения.
Ликбез: почему периодические колебания затухают
Примеры незатухающих колебаний в реальной жизни Незатухающие колебания встречаются во множестве различных систем и ситуаций в реальной жизни. Другим примером незатухающих колебаний является электромагнитные колебания, которые возникают в радиочастотных колебательных контурах. Свободные колебания могут быть незатухающими только при отсутствии силы трения.
Вынужденные колебания. Резонанс. Автоколебания
Приведи пример вариантов незатухающих колебаний | Однако незатухающие колебания возможны не только при периодическом внешнем воздействии, но и в некоторых других случаях — в так называемых автоколебательных и параметрических системах. |
Незатухающие колебания. Автоколебания | Примерами незатухающих колебаний могут служить колебания маятников в. Незатухающие колебания характеризуются постоянством и регулярностью амплитуды, частоты и фазы. |
Характеристика затухающих колебаний, какие колебания называют затухающими | Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии. |
3. Затухающие колебания. Колебания. Физика. Курс лекций | Биологические незатухающие колебания Незатухающие колебания встречаются не только в физических системах, но и в биологических организмах. |
Незатухающие колебания. Автоколебания | Основы физики сжато и понятно | Дзен | Примером незатухающих колебаний может служить колебание маятника с нулевым затуханием. |
Приведи пример вариантов незатухающих колебаний
Свободные незатухающие колебания или собственные характерны для идеальной системы, где отсутствует трение. Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии. Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. Незатухающие колебания маятника 3, показанных на рисунке часов, происходят за счёт потенциальной энергии поднятой гири 2.