Новости почему поверхностное натяжение зависит от рода жидкости

Получи верный ответ на вопрос Почему поверхностное натяжение зависит от вида жидкости? Поверхностное натяжение жидкости зависит от её рода из-за молекулярных сил, действующих на поверхности жидкости.

§ 8-1. Поверхностное натяжение

Непременным условием образования пленки является прибавление к чистой жидкости растворяющихся в ней веществ, притом таких, которые сильно понижают поверхностное натяжение В природе и технике мы обычно встречаемся не с отдельными пленками, а с собранием пленок — пеной. Часто можно видеть в ручьях, там, где небольшие струйки падают в спокойную воду, обильное образование пены. В этом случае способность воды пениться связана с наличием в воде особого органического вещества, выделяющегося из корней растений. В строительной технике используют материалы, имеющие ячеистую структуру, вроде пены. Такие материалы дешевы, легки, плохо проводят теплоту и звуки и достаточно прочны. Для их изготовления добавляют в растворы, из которых образуются стройматериалы, вещества, способствующие пенообразованию. Смачивание Небольшие капельки ртути, помещенные на стеклянную пластинку, принимают шарообразную форму. Это является результатом действия молекулярных сил, стремящихся уменьшить поверхность жидкости. Ртуть, помещенная на поверхность твердого тела, не всегда образует круглые капли. Она растекается по цинковой пластинке, причем общая поверхность капельки, несомненно, увеличится.

Капля анилина имеет шарообразную форму тоже только тогда, когда она не касается стенки стеклянного сосуда. Стоит ей коснуться стенки, как она тотчас прилипает к стеклу, растягиваясь по нему и приобретая большую общую поверхность. Это объясняется тем, что в случае соприкосновения с твердым телом силы сцепления молекул жидкости с молекулами твердого тела начинают играть существенную роль. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекулы жидкости с молекулой твердого тела. В случае ртути и стекла силы сцепления между молекулами ртути и стекла малы по сравнению с силами сцепления между молекулами ртути, и ртуть собирается в каплю. Такая жидкость называется не смачивающей твердое тело. В случае же ртути и цинка силы сцепления между молекулами жидкости и твердого тела превосходят силы сцепления, действующие между молекулами жидкости, и жидкость растекается по твердому телу. В этом случае жидкость называется смачивающей твердое тело. Отсюда следует, что, говоря о поверхности жидкости, надо иметь в виду не только поверхность, где жидкость граничит с воздухом, но также и поверхность, граничащую с другими жидкостями и ли с твердым телом.

В зависимости от того, смачивает ли жидкость стенки сосуда или не смачивает, форма поверхности жидкости у места соприкосновения с твердой стенкой и газом имеет тот или иной вид. В случае несмачивания форма поверхности жидкости у края круглая, выпуклая. В случае смачивания жидкость у края принимает вогнутую форму. Капиллярные явления. В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов бумага, пряжа, кожа, различные строительные материалы, почва, дерево. Приходя в соприкосновение с водой или другими жидкостями, такие тела часто впитывают их в себя. На этом основано действие полотенца при вытирании рук, действие фитиля в керосиновой лампе и т. Подобные явления можно также наблюдать в узких стеклянных трубочках. Узкие трубочки называются капиллярными или волосными.

При погружении такой трубочки одним концом в широкий сосуд в широкий сосуд происходит следующее: если жидкость смачивает стенки трубки, то она поднимется над уровнем жидкости в сосуде и притом тем выше, чем уже трубка; если жидкость не смачивает стенки, то наоборот уровень жидкости в трубке устанавливается ниже, чем в широком сосуде. Изменение высоты уровня жидкости в узких трубках или зазорах получило название капиллярности. В широком смысле под капиллярными явлениями понимают все явления, обусловленные существованием поверхностного натяжения. Высота поднятия жидкости в капиллярных трубках зависит от радиуса канала в трубке, поверхностного натяжения и плотности жидкости. Между жидкостью в капилляре и в широком сосуде устанавливается такая разность уровней h, чтобы гидростатическое давление rgh уравновешивало капиллярное давление: где s - поверхностное натяжение жидкости R — радиус капилляра. Высота поднятия жидкости в капилляре пропорциональна ее поверхностному натяжению и обратно пропорциональна радиусу канала капилляра и плотности жидкости закон Жюрена Почему мыльные пузыри круглые, а водомерки не тонут? Все это следствия одного и того же физического явления, без которого вода не была бы водой. Как будто жидкость заключена в упругую пленку, которая стремится сжать свое содержимое. Это позволяет веществу сохранять объем но не форму , и этот объем ограничивается поверхностью жидкости.

Эти вторые значительно меньше первых, поэтому равнодействующая сила притяжения направлена внутрь жидкости, что способствует удержанию молекулы на поверхности. Поверхностное натяжение — это величина, которая показывает стремление жидкости сократить свою свободную поверхность, то есть уменьшить избыток своей потенциальной энергии на границе раздела с газообразной фазой. Чем больше площадь поверхности жидкости, тем больше молекул, которые обладают избыточной потенциальной энергией, и тем больше поверхностная энергия. Коэффициент поверхностного натяжения — это физическая величина, которая характеризует данную жидкость и численно равна отношению поверхностной энергии к площади свободной поверхности жидкости. Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью. Если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать форму сферы, как капля воды или мыльный пузырь. Так же ведет себя вода в невесомости. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения.

Например, их добавляют в жидкие средства для посудомоечных машин. Попадая в поверхностный слой воды, молекулы таких реагентов заметно ослабляют силы поверхностного натяжения, вода не собирается в капли и не оставляет на поверхности пятен после высыхания. Каким усилием можно оторвать кольцо от раствора?

Силы сцепления ответственны за поверхностное натяжение, склонность поверхности жидкости сопротивляться разрыву при растяжении или напряжении. Почему вода имеет сильное поверхностное натяжение и почему это важно? Вода имеет высокое поверхностное натяжение потому что водородные связи между молекулами воды сопротивляются растяжению или разрыву поверхности. Молекулы воды сильнее связаны друг с другом, чем с воздухом. Что вызывает высокое поверхностное натяжение, низкое давление пара и высокую температуру кипения воды? Многие уникальные и важные свойства воды, в том числе ее высокое поверхностное натяжение, низкое давление пара и высокая температура кипения, являются результатом водородная связь. Структура льда представляет собой правильный открытый каркас из молекул воды в шестиугольном расположении. Молекулы воды удерживаются вместе посредством водородных связей. Почему вода имеет большее поверхностное натяжение, чем глицерин? Из-за относительно высоких сил притяжения между молекулами воды из-за сети водородных связей. Как вы объясните тот факт, что вода имеет наибольшее поверхностное натяжение, но самую низкую вязкость? Вода имеет самое высокое поверхностное натяжение, но самую низкую вязкость. Поскольку молекулы воды маленькие, они движутся очень быстро, что приводит к большому избытку энергии и, следовательно, к высокому поверхностному натяжению и низкой вязкости. Смотрите также, как безопасно наблюдать за солнцем Чем отличается поверхностное натяжение воды? Чем отличается поверхностное натяжение воды от поверхностного натяжения большинства других жидкостей? Это выше. Имеет ли вода высокое поверхностное натяжение? Вода имеет высокую или низкую вязкость? Вязкость описывает внутреннее сопротивление жидкости течению и может рассматриваться как мера трения жидкости. Таким образом, вода «тонкая», имеющий низкую вязкость, а растительное масло «густое» с высокой вязкостью. Почему вещества с высоким поверхностным натяжением обладают высокой вязкостью? Почему вещества с высоким поверхностным натяжением также имеют высокую вязкость? Жидкости с более сильными межмолекулярными силами притяжения удерживают молекулы ближе друг к другу. Почему вода прилипает к поверхностям? Вода очень клейкая; он хорошо прилипает к различным веществам.

По рисунку видно, что уменьшение диаметра трубки компенсируется уменьшением массы капли, а поверхностное натяжение, естественно, останется тем же. Почему следует добиваться медленного падения капель? При вытекании жидкости из капиллярной трубки размер капли растет постепенно. Перед отрывом капли образуется шейка, диаметр d которой несколько меньше диаметра d1 капиллярной трубки. По окружности шейки капли действуют силы поверхностного натяжения, направленные вверх и удерживающие каплю. По мере увеличения размера капли растет сила тяжести mg, стремящаяся оторвать ее. Необходимо, чтобы капли отрывались от трубки самостоятельно, под действием силы тяжести.

Ввиду более близкого расположения молекул между ними возникают значительные силы притяжения. Это и является особенностью жидкостей. Так на молекулы в поверхностном слое действует некомпенсированная сила со стороны внутренних слоев. По теоретическим оценкам это давление составляет примерно 11 тыс.

Что такое поверхностное натяжение?

Капиллярные явления Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском. У смачивающей жидкости образуется вогнутый мениск рис. Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться. Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости рис. Если поверхность жидкости выпуклая, то сила поверхностного натяжения направлена внутрь жидкости рис. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.

Если поместить узкую трубку капилляр одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается если жидкость смачивающая или опускается если жидкость несмачивающая рис. Капиллярные явления весьма распространены. Поднятие воды в почве, система кровеносных сосудов в легких, корневая система у растений, фитиль и промокательная бумага — капиллярные системы. Литература Аксенович Л. Физика в средней школе: Теория. Тесты: Учеб.

Аксенович, Н. Ракина, К.

В верхней части страницы расположена кнопка, с помощью которой можно сформулировать новый вопрос, который наиболее полно отвечает критериям поиска. Удобный интерфейс позволяет обсудить интересующую тему с посетителями в комментариях. Последние ответы Никитоз2 27 апр. Эваникулина 27 апр. Kazentseva0905 27 апр. Колесо делает 120 оборотов за 3 минуты?

Yagura22 27 апр. Utfkt5968 27 апр. Как изменится сила взаимодействиядвух точеснах зарядовитые если модуль каждого из них увеличится в 2 Assaqqws 27 апр.

Внутри краевого угла всегда находится жидкость рис. При смачивании он будет острым рис. В случае вогнутой поверхности результирующая сила направлена, наоборот, в сторону газа, граничащего с жидкостью рис. Если смачивающая жидкость находится на открытой поверхности твердого тела рис. Если на открытой поверхности твердого тела находится несмачивающая жидкость, то она принимает форму, близкую к шаровой рис. Хорошее смачивание необходимо при крашении, стирке, обработке фотоматериалов, нанесении лакокрасочных покрытий, при склеивании материалов, при пайке, во флотационных процессах обогащение руд ценной породой. И наоборот, при сооружении гидроизоляционных устройств необходимы материалы, не смачиваемые водой.

Капиллярные явления Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском. У смачивающей жидкости образуется вогнутый мениск рис. Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться. Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости рис. Если поверхность жидкости выпуклая, то сила поверхностного натяжения направлена внутрь жидкости рис. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Если поместить узкую трубку капилляр одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается если жидкость смачивающая или опускается если жидкость несмачивающая рис.

Эти силы определяют, насколько тесно молекулы жидкости связаны между собой на поверхности, что влияет на её поверхностное натяжение. Поверхностное натяжение Свойства поверхностного слоя жидкости.

Поверхностное натяжение.

Что такое поверхностное натяжение?

Поверхностное натяжение жидкости: определение в физике. Как определить коэффициент поверхностного натяжения, формула, примеры решения. Главная» Новости» Почему поверхностное натяжение зависит от рода жидкости. Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью. Поверхностное натяжение воды и других жидкостей зависит от рода жидкости из-за различий в их межмолекулярных силах.

2.2.3. Факторы, влияющие на величину поверхностного натяжения

Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, то есть их равнодействующая равна нулю. Молекула Б с одной стороны окружена молекулами жидкости, а с другой — молекулами газа. Чтобы молекула из глубины попала в поверхностный слой, нужно совершить работу против межмолекулярных сил. Это означает, что молекулы поверхностного слоя жидкости по сравнению с молекулами внутри жидкости обладают избыточной потенциальной энергией. Эта избыточная энергия является частью внутренней энергии жидкости и называется поверхностной энергией Wпов. Поверхностное натяжение жидкости — физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости: Единица поверхностного натяжения в СИ — ньютон на метр: Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит: от природы жидкости: у летучих жидкостей эфир, спирт, бензин поверхностное натяжение меньше, чем у нелетучих ртуть, жидкие металлы ; температуры жидкости: чем выше температура жидкости, тем меньше поверхностное натяжение; присутствия в составе жидкости поверхностно активных веществ — их наличие уменьшает поверхностное натяжение; свойств газа, с которым жидкость граничит. В таблицах обычно приводят значение поверхностного натяжения на границе жидкости и воздуха при определенной температуре табл. То есть вдоль поверхности жидкости действуют силы, которые пытаются стянуть эту поверхность. Эти силы называют силами поверхностного натяжения. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на натянутую резиновую пленку, однако упругие силы в резиновой пленке зависят от площади ее поверхности от того, насколько пленка деформирована , а поверхность жидкости всегда «натянута» одинаково, то есть силы поверхностного натяжения не зависят от площади поверхности жидкости. Наличие сил поверхностного натяжения можно доказать с помощью такого опыта.

Если проволочный каркас с закрепленной на нем нитью опустить в мыльный раствор, каркас затянется мыльной пленкой, а нить приобретет произвольную форму рис. Если осторожно проткнуть иглой мыльную пленку по одну сторону от нити, сила поверхностного натяжения мыльного раствора, действующая с другой стороны, натянет нить рис. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна. На рамке образуется мыльная пленка рис. Будем растягивать эту пленку, действуя на перекладину подвижную сторону рамки с некоторой силой.

В этом случае, поверхностное натяжение преодолевает силу тяжести и создает вогнутую форму. Поверхностное натяжение также может влиять на форму пузырьков воздуха, образующихся в жидкости. Они также принимают сферическую форму, так как поверхностное натяжение стремится уменьшить площадь поверхности пузырька. Все эти примеры демонстрируют, как поверхностное натяжение влияет на форму жидкости и объясняют некоторые явления, которые мы наблюдаем в повседневной жизни. Практическое применение поверхностного натяжения Поверхностное натяжение имеет множество практических применений в различных областях науки и техники.

Вот некоторые из них: Мыльные пузыри Поверхностное натяжение играет ключевую роль в образовании мыльных пузырей. Мыльные пузыри образуются из мыльного раствора, который содержит поверхностно-активные вещества. Поверхностно-активные вещества снижают поверхностное натяжение жидкости, позволяя пузырю образовываться и сохранять свою форму. Мыльные пузыри также могут быть использованы для демонстрации различных физических явлений, таких как интерференция света. Капиллярное действие Капиллярное действие — это явление, при котором жидкость поднимается или опускается в узкой трубке или капилляре. Это явление обусловлено поверхностным натяжением и капиллярным давлением. Капиллярное действие имеет множество практических применений, например, в капиллярных термометрах, где изменение уровня жидкости в капилляре позволяет измерять температуру. Капиллярные материалы Некоторые материалы обладают способностью впитывать жидкость благодаря капиллярному действию. Это свойство используется в различных областях, таких как медицина впитывающие повязки , строительство капиллярные материалы для управления влагой и фильтрация капиллярные фильтры. Поверхностно-активные вещества Поверхностно-активные вещества, такие как моющие средства и детергенты, используются для снижения поверхностного натяжения жидкости.

Это позволяет им проникать в малейшие щели и удалять грязь и жир.

Это приводит к повышению поверхностного натяжения. Таким образом, различия в химическом составе и структуре молекул вещества приводят к различию в межмолекулярных силах и, следовательно, в поверхностном натяжении разных жидкостей.

Если в сообщающиеся сосуды разного диаметра вливать воду, то наибольшая высота жидкости будет соответствовать трубке с наименьшим диаметром. Так происходит потому, что вода смачивает поверхность стекла, и капиллярный эффект направлен на подъем жидкости. А вот если наливать ртуть, которая не смачивает поверхность стекла, то получим ровно обратную картину - высота жидкостного столбика будет наибольшей в трубке с наибольшим диаметром. Причина такого поведения довольно проста. Молекулы воды сильнее притягиваются к стеклу, чем к друг другу, поэтому капиллярный эффект в них направлен на подъем жидкости. Чем уже капилляр, тем подъем выше. Молекулы же ртути притягиваются сильнее друг к другу, поэтому они сопротивляются подъему и тем сильнее, чем уже капилляр.

Обратите внимание, что во всех случаях из-за капиллярного эффекта нарушается закон сообщающихся сосудов, согласно которому вне зависимости от формы сосуда жидкость должна находиться на одинаковой высоте. Жидкости с разным поверхностным натяжением Очень простой и симпатишный опыт. Если поверхность воды засыпать пыльцой и поднести к пыльце на небольшое расстояние ватку с эфиром, то мы увидим, что пыльца отталкивается от ватки, как будто маленькие магнитики от большого магнита. Объяснение предлагаю такое. При поднесении ватки эфир образует на поверхности воды тонкую пленку, которая ослабляет натяжение коэффициент поверхностного натяжения эфира в несколько раз меньше по сравнению с водой. После отклонения палочки с ваткой пленка испаряется, и пыльца возвращается на место. Поскольку эфир уменьшает коэффициент поверхностного натяжения, то на границе вода-эфир натяжение меньше, чем на границе вода-воздух, и большие силы стягивают пыльцу к краям. Так происходит из-за того, что вода натянута сильнее, чем мыльный раствор.

Перетягивание жидкостной пленки на другой контур Натянутую на контур жидкость довольно легко разорвать, поскольку она ведет себя как тонкая пленка. Ткнул пальцем и всего делов. Выглядит это довольно эффектно.

Форум самогонщиков, пивоваров, виноделов

Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода воды). Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит. По причине воздействия сил поверхностного натяжения на капли жидкости и их действия внутри мыльных пузырей появляется некоторое избыточное давление.

Сила поверхностного натяжения

Примеси могут изменять межмолекулярные взаимодействия, приводя к изменению силы сцепления молекул у поверхности. Например, добавление поверхностно-активных веществ, таких как мыло или детергенты, может снизить коэффициент поверхностного натяжения. Это происходит за счет того, что эти вещества изменяют ориентацию молекул и уменьшают силу межмолекулярного взаимодействия. Зависимость от температуры жидкости Температура также оказывает значительное влияние на коэффициент поверхностного натяжения. Обычно с увеличением температуры коэффициент поверхностного натяжения у жидкостей снижается. Это связано с увеличением средней кинетической энергии молекул и усилением их движения.

Множество мельчайших капилляров имеется в растениях. В деревьях по капиллярам влага из почвы поднимается до вершин деревьев, где через листья испаряется в атмосферу.

В почве имеются капилляры, которые тем уже, чем плотнее почва. Вода по этим капиллярам поднимается до поверхности и быстро испаряется, а земля становится сухой. Ранняя весенняя вспашка земли разрушает капилляры, т. Процесс кровообращения связан с капиллярностью. Кровеносные сосуды являются капиллярами. В технике капиллярные явления имеют огромное значение, например, в процессах сушки капиллярно-пористых тел и т. Большое значение капиллярные явления имеют в строительном деле.

Например, чтобы кирпичная стена не сырела, между фундаментом дома и стеной делают прокладку из вещества, в котором нет капилляров. В бумажной промышленности приходится учитывать капиллярность при изготовлении различных сортов бумаги. Например, при изготовлении писчей бумаги её пропитывают специальным составом, закупоривающим капилляры. В быту капиллярные явления используют в фитилях, в промокательной бумаге, в перьях для подачи чернил и т. Рассмотрим примеры решения задач. Пример 1. Найти разность уровней воды в коленах.

Смачивание полное. Сила поверхностного натяжения должна уравновешивать вес столба жидкости в капилляре. Вес жидкости. Учитывая, что получаем вес жидкости. Сила поверхностного натяжения равна произведению периметра линии контакта в нашем случае — окружность на коэффициент поверхностного натяжения:. Здесь отсутствует косинус краевого угла, так как смачивание полное и угол этот равен нулю, а косинус нуля — 1. Учитывая все это, получаем: Выражаем высоту столба:.

Почему вода имеет более высокое поверхностное натяжение, чем этанол? Вода имеет большую степень водородных связей в объеме жидкости. Следовательно, поскольку молекулы воды на поверхности жидкости труднее протолкнуть вниз, поверхностное натяжение воды выше, чем у этилового спирта. Имеет ли вода большее поверхностное натяжение, чем глицерин? По сути, я сравнил вязкость и поверхностное натяжение воды и глицерина с помощью серии тестов и был весьма удивлен тем, что обнаружил. Согласно моим результатам и датабукам, когда я проверял , вода имеет более высокое поверхностное натяжение, чем глицерин, но глицерин более вязкий, чем вода. Что имеет более высокое поверхностное натяжение глицерин или вода? Силы, лежащие в основе возникновения поверхностного натяжения, — это силы сцепления и силы сцепления.

Итак, среди предложенных вариантов Глицерин в воде имеет самое высокое поверхностное натяжение, потому что глицерин имеет больше водородных связей, образованных на молекулу. Как работает поверхностное натяжение воды? Поверхностное натяжение в воде связано с тем, что молекулы воды притягиваются друг к другу, так как каждая молекула образует связь с соседними. Смотрите также какой состав у каменной соли Какая из следующих жидкостей, вероятно, будет иметь наибольшее поверхностное натяжение? Поскольку водородная связь сильнее, чем диполь-дипольные силы и дисперсионные силы Лондона, молекулы, удерживаемые водородной связью, будут больше притягиваться друг к другу. Это приводит к высокому поверхностному натяжению. Какие факторы влияют на поверхностное натяжение? По мере снижения температуры, поверхностное натяжение увеличивается.

И наоборот, при сильном уменьшении поверхностного натяжения; поскольку молекулы становятся более активными с повышением температуры, становясь нулевыми при температуре кипения и исчезающими при критической температуре. Добавление химических веществ к жидкости изменит ее характеристики поверхностного натяжения. Все ли жидкости обладают поверхностным натяжением? Поверхностное натяжение зависит в основном от сил притяжения между частицами внутри данная жидкость а также на газ, твердое тело или жидкость, соприкасающиеся с ним. Почему вода имеет большую удельную теплоемкость? Вода имеет более высокую удельную теплоемкость из-за прочности водородных связей. Для разделения этих связей требуется значительная энергия. Связано ли поверхностное натяжение с вязкостью?

Поверхностное натяжение зависит от сил сцепления молекул, а вязкость связана с касательное напряжение в растворе.

Температура является одним из факторов, которые влияют на поверхностное натяжение жидкости. Обычно, с увеличением температуры поверхностное натяжение уменьшается. Это происходит из-за того, что с повышением температуры молекулы жидкости получают больше кинетической энергии и начинают двигаться быстрее. Быстрое движение молекул позволяет им преодолевать силы взаимодействия и образовывать более слабые связи на поверхности жидкости. Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры. Разные жидкости имеют разные атомные и молекулярные структуры, поэтому их поведение при изменении температуры может отличаться.

Некоторые жидкости могут иметь большие изменения поверхностного натяжения при изменении температуры, в то время как другие могут быть менее чувствительными к изменениям. Понимание того, как поверхностное натяжение зависит от температуры и рода жидкости, имеет практическое значение в различных областях, таких как физика, химия, биология и технологии. Это позволяет контролировать поверхностное натяжение, что может быть полезно при разработке новых материалов, улучшении процессов фильтрации и создании новых технологий взаимодействия с жидкостями. Влияние рода жидкости на поверхностное натяжение Различные жидкости имеют разные значения поверхностного натяжения. Поверхностное натяжение зависит от молекулярной структуры и межмолекулярных сил вещества.

2.2.3. Факторы, влияющие на величину поверхностного натяжения

Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит. Почему поверхностное натяжение зависит от Рода Жидкости. Жидкости с маленькими и сферическими молекулами обычно имеют более высокое поверхностное натяжение, чем жидкости с большими и несферическими молекулами.

Загадки поверхностного натяжения: почему жидкость любит себя?

Главная» Новости» Почему поверхностное натяжение зависит от рода жидкости. Поверхностное натяжение зависит от рода жидкости и той среды, с которой она граничит, наличия растворённых в жидкости других веществ и от её температуры (таблица 1). Повышение температуры жидкости, добавление в неё так называемых поверхностно-активных веществ. Почему поверхностное натяжение воды зависит от рода жидкости. Проанализировав зависимость поверхностного натяжения жидкости от ее температуры, приходим к выводу, что поверхностное натяжение уменьшается с ростом температуры (с увеличением скорости движения молекул).

§ 8-1. Поверхностное натяжение

Эти вторые значительно меньше первых, поэтому равнодействующая сила притяжения направлена внутрь жидкости, что способствует удержанию молекулы на поверхности. Поверхностное натяжение — это величина, которая показывает стремление жидкости сократить свою свободную поверхность, то есть уменьшить избыток своей потенциальной энергии на границе раздела с газообразной фазой. Чем больше площадь поверхности жидкости, тем больше молекул, которые обладают избыточной потенциальной энергией, и тем больше поверхностная энергия. Коэффициент поверхностного натяжения — это физическая величина, которая характеризует данную жидкость и численно равна отношению поверхностной энергии к площади свободной поверхности жидкости.

Полученная формула, определяющая высоту поднятия жидкости в капиллярной трубочке, носит название формулы Жюрена. Очевидно, что чем меньше радиус трубки, тем на большую высоту поднимается в ней жидкость. Кроме того, высота поднятия растёт с увеличением коэффициента поверхностного натяжения жидкости. Подъём смачивающей жидкости по капилляру можно объяснить и по-другому. Как было сказано ранее, под действием сил поверхностного натяжения поверхность жидкости стремится сократиться.

Вследствие этого поверхность вогнутого мениска стремится выпрямиться и сделаться плоской. При этом она тянет за собой частицы жидкости, лежащие под ней, и жидкость поднимается по капилляру вверх. Но поверхность жидкости в узкой трубке плоской оставаться не может, она должна иметь форму вогнутого мениска. Как только в новом положении данная поверхность примет форму мениска, она снова будет стремиться сократиться и т. В результате действия этих причин смачивающая жидкость и поднимается по капилляру. Поднятие прекратится, когда сила тяжести Fтяж поднятого столба жидкости, которая тянет поверхность вниз, уравновесит равнодействующую силу F сил поверхностного натяжения, направленных касательно к каждой точке поверхности. В случае несмачивающей жидкости последняя, стремясь сократить свою поверхность, будет опускаться вниз, выталкивая жидкость из капилляра. Выведенная формула применима и для несмачивающей жидкости.

В этом случае h — высота опускания жидкости в капилляре. Капиллярные явления в природе Капиллярные явления также весьма распространены в природе и часто используются в практической деятельности человека. Дерево, бумага, кожа, кирпич и очень многие другие предметы, окружающие нас, имеют капилляры. За счет капилляров вода поднимается по стеблям растений и впитывается в полотенце, когда мы им вытираемся. Поднятие воды по мельчайшим отверстиям в куске сахара, забор крови из пальца — это тоже примеры капиллярных явлений. Кровеносная система человека, начинаясь с весьма толстых сосудов, заканчивается очень разветвленной сетью тончайших капилляров. Могут вызвать интерес, например, такие данные. Площадь поперечного сечения аорты равна 8 см2.

Диаметр же кровеносного капилляра может быть в 50 раз меньше диаметра человеческого волоса при длине 0,5 мм. В теле взрослого человека имеется порядка 160 млрд капилляров. Их общая длина доходит до 80 тыс. По многочисленным капиллярам, имеющимся в почве, вода из глубинных слоев поднимается к поверхности и интенсивно испаряется. Чтобы замедлить процесс потери влаги, капилляры разрушают путем разрыхления почвы с помощью борон, культиваторов, рыхлителей. Опустим один из концов капилляра в сосуд с водой -вода поднимется выше уровня воды в сосуде. Поверхностное натяжение способно поднимать жидкость на сравнительно большую высоту. Поднятие жидкости вследствие действия сил поверхностного натяжения воды можно наблюдать в простом опыте.

Возьмем чистую тряпочку и опустим один ее конец в стакан с водой, а другой свесим наружу через край стакана. Вода начнет подниматься по порам ткани, аналогичным капиллярным трубкам, и пропитает всю тряпочку. Избыток воды будет капать с висящего конца см. Если для опыта брать ткань светлого цвета, то на фото очень плохо видно как вода распространяется по ткани. Также следует иметь в виду, что не для всякой ткани избыток воды будет капать со свисающего конца. Я этот опыт делал дважды. Поднятие жидкости по капиллярам происходит тогда, когда силы притяжения молекул жидкости друг к другу меньше сил их притяжения к молекулам твердого тела. В этом случае говорят, что жидкость смачивает твердое тело.

Если взять не очень тонкую трубочку, набрать в нее воды и пальцем закрыть нижний конец трубки, можно увидеть, что уровень воды в трубке вогнут рис.

Консультацию по вопросам и домашним заданиям может получить любой школьник или студент. Почему поверхностное натяжение зависит от рода воды?

Почему поверхностное натяжение зависит от рода жидкости?

Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор рис. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить рис. Эксперимент по обнаружению сил поверхностного натяжения Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх. Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать.

Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна рис. Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой. Таким образом, на перекладину действуют три силы — внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что Рис. Вычисление силы поверхностного натяжения Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу. Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:. Изменение площади, в свою очередь можно определить следующим образом: , — длина подвижной части проволочной рамки.

Остались вопросы?

Почему поверхностное натяжение зависит от Рода Жидкости. Жидкости с маленькими и сферическими молекулами обычно имеют более высокое поверхностное натяжение, чем жидкости с большими и несферическими молекулами. Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др. Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. ма») называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред и от их состояния.

Похожие новости:

Оцените статью
Добавить комментарий