Новости принцип работы водородной бомбы

Изменение ситуации с работами по водородной бомбе в СССР в 1948 году было связано с поступлением новой разведывательной информации. Иллюстрация принцип работы атомной бомбы. Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления. Иллюстрация принцип работы атомной бомбы. Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления.

Как это устроено: все секреты термоядерной бомбы

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость размером с трёхэтажный дом , наполненную жидким дейтерием. В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике. Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы 15 Мт на испытательном полигоне на атолле Бикини Тихий океан. Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации. Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза.

Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада. Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров. Эти частицы можно разглядеть невооруженным глазом, например, такую пыль можно заметить на снегу. Она приводит к летальному исходу, если кто-либо окажется поблизости. Самые мелкие частицы могут много лет находиться в атмосфере и так «путешествовать», несколько раз облетая всю планету. Их радиоактивное излучение станет более слабым к тому моменту, когда они выпадут в виде осадков. При возникновении ядерной войны с применением водородной бомбы зараженные частицы приведут к уничтожению жизни в радиусе сотни километров от эпицентра. Если будет использоваться супербомба, тогда загрязнится территория в несколько тысяч километров, что сделает землю совершенно необитаемой. Получается, что созданная человеком самая мощная бомба в мире способна к уничтожению целых континентов. Термоядерная бомба "Кузькина мать". Она была разработана в Советском Союзе в 1954-1961 годах. Имела самое мощное взрывное устройство за все время существования человечества. Работа по ее созданию проводилась в течение нескольких лет в особо засекреченной лаборатории под названием «Арзамас-16». Водородная бомба мощностью 100 мегатонн превосходит в 10 тысяч раз мощность бомбы, сброшенной на Хиросиму. Ее взрыв способен в считаные секунды стереть Москву с лица земли. Центр города запросто бы испарился в прямом смысле слова, а все остальное могло бы превратиться в мельчайший щебень. Самая мощная бомба в мире стерла бы и Нью-Йорк со всеми небоскребами. После него остался бы двадцатикилометровый расплавленный гладкий кратер. При таком взрыве не получилось бы спастись, спустившись в метро. Вся территория в радиусе 700 километров получила бы разрушения и заразилась радиоактивными частицами. Взрыв «Царь-бомбы» - быть или не быть?

Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще. По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. H-bomb А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития тяжелого и сверхтяжелого изотопа водорода энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235. Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. Классический супер К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием. Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью — реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием — стакана бензина, а атомная бомба — спички. Такая схема получила название «труба» — своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики. Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США. Чистое термоядерное оружие Основная статья: Чистое термоядерное оружие Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера. Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе — в настоящее время создать чистый термоядерный боеприпас разумных размеров и веса не представляется практически возможным. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже. При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже.

Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом. Вспышка взрыва бомбы АН602 сразу после отделения ударной волны. В это мгновение диаметр шара составлял около 5,5 км, а через несколько секунд он увеличился до 10 км. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву. Световое излучение вспышки взрыва могло вызвать ожоги третьей степени на расстоянии до ста километров. Это фото сделано с расстояния в 160 км. Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы - т.

Как действует водородная бомба и каковы последствия взрыва? Инфографика

В конструкции фон Неймана-Фукса уже заложено то, что стало основным принципом действия водородной бомбы: «радиационная имплозия». Информация о работах американцев над термоядерной бомбой и ее испытании поступала в Советский Союз очень оперативно: над ее добычей работал специальный отдел научно-технической разведки в структуре внешней разведки НКВД. Лаврентьев описал принцип действия водородной бомбы, где в качестве горючего использовался твердый дейтерид лития.

Поражающие факторы взрыва водородной бомбы. Водородная бомба

"Царь-бомба": как самое мощное оружие спасло мир — 05.04.2023 — Статьи на РЕН ТВ оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте.
Водородная бомба: история создания, принцип действия Такой стереотип работы нейтронной бомбы возник еще во времена СССР из-за непонимания принципа ее работы.
Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы :: Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза.

Как устроена водородная бомба

В момент взрыва они сжимают и нагревают находящийся в сердечнике бомбы дейтерий так, чтобы произошла реакция синтеза. Благодаря этому мощность взрыва термоядерного оружия более чем в пять раз выше, чем у атомной бомбы, а площадь распространения радиоактивных осадков увеличивается в 5-10 раз. Сам, вероятно, не знает 0 Николай Николаев 03 Декабря 2021, 03:16 Каков механизм получения из реакции ядерного синтеза энергии большей, чем затрачивается на этот синтез? Если в реакции ядерного распада используются свертяжёлые неустойчивые ядра, уже созданные природой, то есть, природа уже затратила энергию на создание критического состояния, то лёгкие ядра очень устойчивы и чтобы заставить их вступить в синтез, необходимо затратить энергии больше, чем может быть получено из этого синтеза. В любом советском учебнике по гражданской обороне написано гораздо понятнее и правильнее 1 Nicolay1 30 Апреля 2021, 16:43 При взрыве водородной бомбы основная энергия выделяется в виде выделения нейтронов при слиянии двух изотопов водорода из которых образуется один атом гелия. Автор именно эту подробность скрыл. Во сколько раз дейтерид лития сжимается,? В миллиард? Москва, Большой Саввинский пер.

Да и советские лидеры этого не скрывали. Более того, еще 17 октября 1961 года, когда в Москве начал работу XXII съезд КПСС, а на Новой Земле готовились испытать самую мощную термоядерную бомбу, Никита Хрущев публично, прямо в докладе, предупредил об ожидаемом "подарке съезду". Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. А кроме того, испытывались оперативно-тактическая ракета Р-12, зенитные и самонаводящиеся крылатые ракеты. Но об этих идущих на вооружение боевых системах в открытой печати не сообщалось. В августе-декабре 1962 года, включая самые тревожные дни Карибского кризиса, "грибной сезон" продолжился. Всего в СССР, включая Семипалатинский полигон, в период с 20 октября по 5 ноября 1962 года было проведено пятнадцать ядерных взрывов. А завершилась программа таких испытаний декабрьской серией из 11 термоядерных бомб и боеголовок мегатонного класса, взорванных над мысом Сухой Нос у западного побережья Новой Земли.

Причем 18, 24 и 25 декабря проводили по два испытания в день, а 23-го было проведено три... В 1961-1963 годах США провели как минимум 125 ядерных испытаний Справедливости ради отметим, что Соединенные Штаты за период 1961-1963 годов провели на трех своих полигонах в Неваде, на острове Рождества и острове Джонстона как минимум 125 ядерных испытаний в атмосфере и под водой. Советский Союз в 1963 году ядерных испытаний не проводил. А серия мощных взрывов над Новой Землей в конце декабря 1962 года вообще стала последним для нашей страны эпизодом ядерных испытаний в открытых средах: с 1964 года в СССР проводились только подземные испытания.

Открытие ядерного деления открыло возможность использования ядерных технологий, включая оружие. Атомная бомба — оружие, которое получает свою взрывную энергию только от реакции деления.

Принцип действия водородной бомбы или термоядерного заряда, основаны на комбинации ядерного деления и ядерного синтеза. Ядерный синтез — еще один тип реакции, в котором более легкие атомы объединяются для высвобождения энергии. Например, в результате реакции ядерного синтеза из атомов дейтерия и трития образуется атом гелия с высвобождением энергии. Проект «Манхэттен» Проект «Манхэттен» — кодовое название американского проекта по разработке практической атомной бомбы во время Второй мировой войны. Проект «Манхэттен» был начат как ответ усилиям немецких ученых, работавших над оружием, использующим ядерную технологию, с 1930-х годов. Большая часть работы была выполнена в Лос-Аламосе, штат Нью-Мексико, под руководством физика-теоретика Дж.

Роберта Оппенгеймера. Взрыв водородной бомбы создал огромное грибоподобное облако высотой около 150 метров и открыл атомный век. Единственное фото первого в мире атомного взрыва, сделанное американским физиком Джеком Аэби Малыш и Толстяк Ученые из Лос-Аламоса разработали два различных типа атомных бомб к 1945 году — проект на основе урана под названием «Малыш» и оружие на основе плутония под названием «Толстяк». В то время как война в Европе закончилась в апреле, боевые действия в Тихоокеанском регионе продолжались между японскими войсками и войсками США. В конце июля президент Гарри Трумэн призвал к капитуляции Японии в Потсдамской декларации. Декларация обещала «быстрое и полное уничтожение», если бы Япония не сдалась.

Взрыв «Малыша» соответствовал 13 килотоннам в тротиловом эквиваленте, сравнял с землёй пять квадратных миль города и мгновенно убил 80 000 человек. Десятки тысяч людей позже умрут от радиационного облучения. Японцы продолжали сражаться, и Соединенные Штаты сбросили вторую атомную бомбу через три дня в городе Нагасаки. Взрыв «Толстяка» убил около 40 000 человек. Ссылаясь на разрушительную силу «новой и самой жестокой бомбы», японский император Хирохито объявил о капитуляции своей страны 15 августа, закончив Вторую мировую войну. Холодная Война В послевоенные годы Соединенные Штаты были единственной страной с ядерным оружием.

Сначала у СССР не хватало научных наработок и сырья для создания ядерных боеголовок. Но, благодаря усилиям советских учёных, данным разведки и обнаруженным региональным источникам урана в Восточной Европе, 29 августа 1949 года СССР опробовал свою первую ядерную бомбу. Устройство водородной бомбы разработано академиком Сахаровым. От атомного оружия к термоядерному Соединенные Штаты ответили в 1950 запуском программы разработки более совершенного термоядерного оружия. Началась гонка вооружений «холодной войны», а ядерные испытания и исследования стали широкомасштабными целями для нескольких стран, особенно для Соединенных Штатов и Советского Союза. Но главные успехи советского ВПК были впереди.

Только в 1958 году СССР испытал 36 ядерных бомб различного класса. Но ничто из того, что испытал Советский Союз, не сравнится с Царь — бомбой. Испытание и первый врыв водородной бомбы в СССР Утром 30 октября 1961 года советский бомбардировщик Ту-95 взлетел с аэродрома Оленя на Кольском полуострове на крайнем севере России. Самолёт был специально измененной версией, появившейся в эксплуатации несколько лет назад — огромный четырехмоторный монстр, которому поручено носить советский ядерный арсенал. Модифицированная версия ТУ-95 «Медведь», специально подготовленная для первого испытания водородной Царь-бомбы в СССР Ту-95 нёс под собой огромную 58-мегатонную бомбу, устройство слишком большое, чтобы вместить внутри бомбового отсека самолета, где такие боеприпасы обычно перевозились. Бомба длиной 8 м имела диаметр около 2,6 м и весила более 27 тонн и в истории осталась с именем Царь-бомба — «Tsar Bomba».

Царь-бомба не была обычной ядерной бомбой. Это был результат напряженных усилий ученых СССР создать самое мощное ядерное оружие. Царь Бомба взорвалась в 11:32 по московскому времени. Результаты испытания водородной бомбы в СССР продемонстрировали весь букет поражающих факторов данного вида оружия. Прежде, чем ответить на вопрос, что мощнее, атомная или водородная бомба, следует знать, что мощность последней ихмеряется мегатоннами, а у атомных — килотоннами. Световое излучение В мгновение ока бомба создала огненный шар шириной в семь километров.

Огненный шар пульсировал от силы собственной ударной волны. Вспышку можно было увидеть за тысячи километров — на Аляске, в Сибири и в Северной Европе. Ударная волна Последствия взрыва водородной бомбы Новой Земле были катастрофическими. В селе Северный, примерно в 55 км от Ground Zero, все дома были полностью разрушены. Сообщалось о том, что на советской территории в сотнях километров от зоны взрыва было повреждено все — разрушались дома, падали крыши, повреждались двери, разрушались окна. Радиус действия водородной бомбы несколько сотен километров.

В зависимости от мощности заряда и поражающих факторов. Датчики регистрировали взрывную волну, обернувшуюся вокруг Земли не один раз, не дважды, а три раза. Звуковую волну зафиксировали у острова Диксон на расстоянии около 800 км. Электромагнитный импульс Более часа была нарушена радиосвязь во всей Арктике. Проникающая радиация Получил некоторую дозу радиации экипаж. Радиоактивное заражение местности Взрыв Царь-бомбы на Новой Земле оказался на удивление «чистым».

Испытатели прибыли в точку взрыва через два часа. Причинами были особенности конструкции бомбы и выполнение взрыва на достаточно большом расстоянии от поверхности. Тепловое излучение Несмотря на то, что самолет-носитель, покрытый особой свето- и теплоотражающей краской, в момент подрыва бомбы ушёл на расстояние 45 км, он вернулся на базу со значительными термическими повреждениями обшивки. У незащищенного человека излучение вызвало бы ожоги третьей степени на расстоянии до 100 км. Гриб после взрыва виден на расстоянии 160 км, диаметр облака в момент съёмки — 56 км Вспышка от взрыва Царь-бомбы, около 8 км в диаметре Принцип действия водородной бомбы Устройство водородной бомбы. Первичная ступень выполняет роль включателя — триггера.

Происходит термоядерный взрыв. Первое испытание водородной бомбы шокировало мировое сообщество своей разрушительной силой. Имея те же поражающие факторы, что и у ядерного оружия , термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва. Это дало основания называть термоядерное оружие «чистым».

Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления. Общее описание Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6 Li - единственный промышленный источник получения трития: В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7.

Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру порядка 50 млн градусов , в водородной бомбе сначала взрывается небольшая по мощности атомная бомба. Взрыв сопровождается резким ростом температуры, электромагнитным излучением, а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий. Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию 234 , которая и дает основное выделение энергии при взрыве водородной термоядерной бомбы. Возникает третья фаза взрыва водородной бомбы.

Подобным образом создается термоядерный взрыв практически неограниченной мощности. Дополнительным поражающим фактором является нейтронное излучение , возникающее в момент взрыва водородной бомбы. Устройство термоядерного боеприпаса Термоядерные боеприпасы существуют как в виде авиационных бомб водородная или термоядерная бомба , так и боеголовок для баллистических и крылатых ракет. История СССР Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием «первая идея Сахарова».

Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз. Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа Джозефа Сталина «Дядя Джо». Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.

В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом «лучевая имплозия». Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов. Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле.

Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное хотя и вторичное последствие взрыва - это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени.

Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости.

Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.

Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок.

Термоядерное оружие: Как устроена водородная бомба

Поскольку было ясно, что химические взрывчатые вещества не могут генерировать температуру в десятки миллионов градусов, необходимую для зажигания термоядерных реакций, единственным вариантом было использование бомбы деления. Название изобретения — «Совершенствование методов и средств использования ядерной энергии». Что и говорить, устройство не предназначалось для гражданского использования! Содержание патента фон Неймана-Фукса до сих пор официально является секретом правительства США, но его можно найти в увлекательной серии томов, опубликованных в России в 2008 году «Атомный проект СССР: Документы и материалы». Там можно найти подробный текст с расчетами и диаграммами в переводе на английский и русский языки, а также комментарии к нему ведущих советских исследователей с 1948 года. Как такое возможно? Клаус Фукс позже признал, что был советским агентом! В конструкции фон Неймана-Фукса уже заложено то, что стало основным принципом действия водородной бомбы: «радиационная имплозия». Вместо того, чтобы оборачивать термоядерное топливо вокруг бомбы деления, как это было изначально задумано для Super, поместите топливо в отдельный контейнер и используйте интенсивный импульс излучения, генерируемый взрывом деления, чтобы нагреть, сжать и воспламенить его.

Устройство, которое, наконец, использовалось в успешном испытании 1952 года, основывалось на этом радиационном взрыве в более продвинутой форме, разработанном Эдвардом Теллером и Станиславом Уламом. Это знаменитая двухступенчатая «конфигурация Теллера-Улама», проиллюстрированная на прилагаемой диаграмме. Он стал своего рода моделью для более позднего развития термоядерного синтеза с лазерным управлением. Конфигурация Теллера-Улама слева. Первое испытание водородной бомбы «Айви Майк» Избавляемся от триггера деления Учитывая успех водородной бомбы в высвобождении большого количества термоядерной энергии, естественно спросить, в какой степени термоядерные взрывы можно уменьшить до такой степени, что они могут быть использованы для коммерческого производства электроэнергии. Сам процесс термоядерного синтеза не создает внутренних препятствий для миниатюризации: не существует нижнего предела количества топлива, которое может быть использовано для обеспечения «микровзрыва» термоядерного синтеза. А вот первая ступень водородной бомбы не может быть произвольно уменьшена, по крайней мере, каким-либо прямым образом, потому что самоподдерживающаяся реакция деления требует определенной минимальной критической массы, что приводит к слишком сильному взрыву. Даже если бы мы могли производить микровзрывы деления, то они все равно генерировали бы значительную радиоактивность, предотвращение которойкак раз и является главной мотивацией для достижения термоядерного синтеза.

Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. Введите лазер Одно из самых полезных свойств лазеров заключается в том, что лазерный луч может быть сфокусирован до крошечного пятна, сравнимого по размеру с длиной световой волны. Концентрация энергии луча таким образом позволяет достичь очень высоких интенсивностей. Коммерчески доступны лазерные системы, которые могут мгновенно испарять любой известный материал. Каков предел этой возможности?

Корпус бомбы, выполненный из стальных или алюминиевых сплавов. В него помещают наполнитель с основными элементами бомбы. При взрыве инициирующего ядерного заряда возникает поток рентгеновского излучения, приводящий к мгновенному испарению оборочки контейнера с термоядерным топливом. При её испарении происходит мощное обжатие находящегося внутри термоядерного топлива и запального стержня. Запальный стержень переходит в сверхкритическое состояние, тем самым инициируя цепную реакцию деления, следствием которой является выделение огромного количества тепла.

В разогретом и сжатом термоядерном топливе происходит реакция синтеза ядер гелия из ядер водорода с выделением большого количества энергии электромагнитной энергии различного спектра, а также потока нейтронов. Если оболочка контейнера изготовлена из изотопов урана поток нейтронов вызовет цепную реакцию его деления, тем самым увеличив мощность взрыва. Последствия применения водородной бомбы Прямые — они зависят от непосредственного воздействия основных поражающих факторов термоядерного взрыва: Многочисленные пожары на обширные местности, вызванные одним из поражающих факторов термоядерного взрыва — световым излучением. Оно представляет собой поток лучистой энергии, состоящий из ультрафиолетового, видимого, а также инфракрасного излучения. Площадь и сила пожаров тем выше, чем мощнее термоядерный взрыв и ближе к земле его эпицентр. Значительное количество пострадавших с термическими ожогами разной степени тяжести — от сравнительно лёгких ожогов 1 и 2 степени, до тяжелейших ожогов 4 степени гибель подкожно-жировой клетчатки, обугливание мышц и костей. К отдельной категории можно отнести ожоги сетчатки глаза, приводящие временной или постоянной потере зрения. Причины — световое излучение взрыва и пожары на местности.

Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы.

Уже тогда стало понятно, что любой военный конфликт с использованием подобного оружия, сотрет человечество с лица Земли. История создания водородной бомбы Ядерная гонка вооружений началась еще до Второй мировой войны. Лучшие физики трудились над атомной бомбой по разные стороны океана. Казалось, что это самое мощное оружие, которое сможет придумать человек. Однако разведка различных стран докладывала о параллельной работе американских ученых над еще более мощным термоядерным зарядом. Некоторые уважаемые физики не считали возможным такую реакцию, что ставило под сомнение правдивость информации. Еще не успело человечество прийти в себя от взрывов атомных бомб в Хиросиме и Нагасаки, как ученые взялись за новые эксперименты. Теперь было решено использовать реакции, которые наблюдаются на Солнце и других звездах. Именно небесные светила невольно подали идею водородной бомбы. Еще в 1941 году Энрико Ферми выдвинул идею термоядерного синтеза, катализатором которого должен был стать атомный заряд. В самом начале Манхэттенского проекта Ферми поделился своими соображениями с коллегой Эдвардом Теллером, которого заинтересовала такая идея. Теллер посвятил приличное количество своего времени на обдумывание замысла Ферми. Чуть позже команда Эдварда Теллера стала предлагать практические идеи реализации термоядерного синтеза. Некий Станислав Улам выработал основные принципы, предложив разместить отдельно термоядерный заряд и атомный заряд-катализатор, при этом сжимая термоядерное топливо до начала его нагрева. Такие умозаключения позволили приступить к практическим исследованиям. Известно, что ученые в Германии также плотно занимались возможностью подобных зарядов, но, к счастью, прикладных успехов они не достигли.

Какая бомба мощнее: ядерная или водородная

Это изделие проходит под кодовым названием РДС-6Т. В ней предполагалось цилиндрическое расположение заряда. Второе изделие РДС-6С. Ее конструкция представляла собой «слоеный пирог» из урана и термоядерного горючего, окруженных взрывчатым веществом. Эту альтернативную схему водородной бомбы предложил Андрей Сахаров. В итоге успешной будет именно «сахаровская слойка», а американская идея окажется тупиковой. Уже через несколько дней после принятия секретной правительственной директивы многие талантливые физики и математики окажутся в Арзамасе-16. Среди них будет выпускник физического факультета Ленинградского университета Юрий Трутнев. Они говорят: "Мы хотим вас отправить в очень интересное место, и очень интересная работа. Как вы? Мне объяснили: "Вам нужно пройти на бульвар.

Напротив ресторана "Узбекистан" пройдете, двор 13, в дворницкую, там вам объяснят". Пошел, прихожу туда. Открыл дверь, смотрю - газовые горелки, кирпичи на них греются, и бабка какая-то сидит. Я говорю: "Сюда я попал? Пришел парень и говорит мне: "Вам нужно завтра с утра ехать во Внуково, встать около статуи Сталина. Там к вам подойдут, и вы дальше полетите туда, куда нужно"», - делится воспоминаниями Юрий Трутнев, первый зам. Для разработчиков супероружия были созданы самые комфортные условия. За этим лично следил Лаврентий Берия.

Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6Li. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже. При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже. После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны. Однако все, что мы могли почерпнуть из предыдущего текста, говорит о взрывном характере таких процессов. Тогда почему Солнце не взрывается как термоядерная бомба? Дело в том, что ядра дейтерия сами образуются в результате слияния двух ядер водорода, да не просто слияния, а с распадом одного из протонов на нейтрон, позитрон и нейтрино т. При этом образующиеся ядра дейтерия распределены по объему солнечного ядра довольно равномерно. Поэтому при её огромных размерах и массе отдельные и редкие очаги термоядерных реакций относительно небольшой мощности как бы размазаны по всему его ядру Солнца. Выделяемого при этих реакциях тепла явно недостаточно, чтобы мгновенно выжечь весь дейтерий в Солнце, но хватает для его нагрева до температуры, обеспечивающей жизнь на Земле.

Сконструировать термоядерный боеприпас оказалось намного сложнее. Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов. Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году проект неофициально назывался Super , но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу.

Однако во время эксперимента во избежание нежелательных последствий мощность была снижена до 1,5 Мт. И даже эта мера, по словам Трутнева, не помогла избежать разрушения Семипалатинского мясокомбината. Стекла в домах, как свидетельствуют открытые источники, вылетали в радиусе 200 км от эпицентра взрыва. Естественно, были и пострадавшие. Мы работали с киловольтами, миллионами градусов, с невероятными давлениями и временами. Чтобы вы могли представить, мы оперировали в мигах миг равен 10 в минус 7-й степени секунды. И весь процесс взрыва происходил у нас за 10—40 мигов. Испытание проводилось в 1955 году». Если при испытании атомной бомбы ученые и партийные деятели находились в 10 километрах от эпицентра, то при испытании РДС-37 это расстояние пришлось увеличить в 4 раза. Когда мы увидели взрыв, то закричали: «Ура! Как нас грохнуло тогда! Кто попадал, кто остался стоять, кто лег и со страху лежал до конца… Я вскочил — и потом снова едва удержался на ногах, потому что пришла вторая волна, отразившаяся от земли. Ударная волна сопровождалась двукратным резким звуком, напоминающим грозовой разряд. Юрий Алексеевич не рассказывает про машины с погибшими козами и овцами, которых начали свозить после взрыва к командному пункту: животных держали на поле для изучения воздействия поражающих факторов на разных расстояниях от эпицентра. Тяжелое было зрелище, непросто вспоминать такие моменты, но у ученых выхода не было. Надо было изучать ядерное оружие, проводить экспериментальные взрывы, чтобы потом в роли подопытных животных не оказались тысячи мирных жителей нашей страны… Моему собеседнику было тогда всего 27 лет. На его груди после взрыва 1955 года появился орден Ленина. Потом, за последующие разработки, были другие награды: Золотая медаль им. А недавно, в день своего 90-летия, Юрий Алексеевич получил орден «За заслуги перед Отечеством» I степени, став, таким образом, полным кавалером этого ордена. Еще в 1954 году Эдвард Теллер высказывал идею о возможности создания термоядерных зарядов неограниченной мощности — до тысяч мегатонн. В СССР же задались реальной целью создании сверхбомбы. Ученые работали, не жалея времени и сил, что позволило Хрущеву в 1959 году сказать, обращаясь к вице-президенту США Ричарду Никсону, свою коронную фразу: «В нашем распоряжении имеются средства, которые будут иметь для вас тяжелые последствия. Мы вам покажем кузькину мать! Конечно, названия у будущей царь-бомбы тогда еще не было, однако американцы поняли перевод слов первого секретаря ЦК КПСС буквально: новое секретное оружие русских будет называться «Мать Кузьмы». С тех пор за изделием так и закрепилось шутливое неофициальное: «Кузькина мать». В 1961 году проект под кодовым названием «Иван», или «Изделие-602», был реализован с учетом разработок Сахарова, Трутнева и еще нескольких ученых. Супербомбу взорвали в октябре над Новой Землей. Ее масса составляла 26 тонн, она не помещалась в отсек самолета, а потому была подвешена под его бортом. Она могла обеспечить взрыв мощностью в 100 мегатонн в тротиловом эквиваленте то есть стать в 10 тысяч раз мощнее атомной бомбы, взорванной над Хиросимой , однако по настоянию академика Сахарова, который был убежден, что подобный взрыв может привести к необратимым климатическим последствиям из-за рассеивания радиоактивных изотопов или, того хуже, сдвигу земной оси, сила бомбы была снижена до 50 мегатонн. Но даже после этого она осталась самым мощным смертельным оружием, которое когда-либо испытывало человечество. Как вспоминали после летчики, у которых было всего 30 с небольшим секунд, чтобы уйти от царь-бомбы на безопасное расстояние, их самолет просел на полкилометра под действием догнавшей их ударной волны, а белая краска, которой был выкрашен их Ту-95-В для отражения светового облучения, полностью обгорела… Если бы на расстоянии 50 километров от эпицентра взрыва находились люди, все бы они получили ожоги третьей степени. Царь-бомба могла бы полностью уничтожить такой город, как Лос-Анджелес. Связи не было в течение 40 минут. Огненный шар взрыва накрыл землю своей тенью в радиусе почти пяти километров, а ядерный гриб поднялся на высоту 67 км, чуть не достав до ближнего космоса.

Как Сахаров и Теллер чуть не взорвали мир

Пресловутая американская бомба В61 является термоядерной, или как их еще не совсем правильно, но часто, называют – водородной. Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. К истории создания водородной бомбы в СССР. Водородная (термоядерная) бомба: испытания оружия массового поражения. как действует водородная бомба и каковы последствия взрыва. Принцип действия «сухой» водородной бомбы открыли не Тамм, Сахаров и Гинзбург?

Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной

Непосредственная работа по изготовлению первой водородной бомбы началась в 1950 году. Возможность использования в качестве детонатора водородной бомбы ядерного заряда обсуждалась ещё физиками работающими в рамках Манхеттенского проекта. Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом.

Водородная бомба

Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. В конструкции фон Неймана-Фукса уже заложено то, что стало основным принципом действия водородной бомбы: «радиационная имплозия». В водородной бомбе водорода нет вовсе, а принцип действия атомной бомбы связан не с атомами, а с ядрами. Водородная бомба – это термоядерный боеприпас комбинированного действия, использующий оба указанных принципа ядерных реакций. Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика.

История создания первой водородной бомбы: последствия термоядерного взрыва

Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное хотя и вторичное последствие взрыва - это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени.

Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет.

Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека.

Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек.

Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища.

Выгорание кислорода образует везде вакуум.

В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн - самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба». Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно - это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель.

На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае в 1967 году и во Франции в 1968 году. Принцип действия водородной бомбы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии - благодаря этому звёзды и выделяют огромное количество энергии постоянно.

Учёные скопировали эту реакцию с использованием изотопов водорода - дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития. Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития.

Однако разработка и развертывание ядерного оружия имеют серьезные этические, политические и экологические последствия. Использование атомных бомб в Хиросиме и Нагасаки во время Второй мировой войны привело к гибели сотен тысяч людей и оставило долгосрочные последствия для здоровья из-за радиационного облучения. Продолжающееся обладание ядерными арсеналами и их модернизация несколькими странами сопряжены со значительным риском случайного или преднамеренного применения, что приведет к глобальным разрушениям и человеческим жертвам. Кроме того, при производстве, испытаниях и хранении ядерного оружия образуется большое количество радиоактивных отходов, что представляет долгосрочную угрозу для здоровья населения и окружающей среды. Ядерное оружие также отвлекает ресурсы от социального и экономического развития, усугубляя нищету, неравенство и конфликты. Поэтому крайне важно, чтобы международное сообщество работало над достижением цели ядерного разоружения и нераспространения, чтобы уменьшить риск ядерной катастрофы и содействовать построению более мирного и устойчивого мира. В заключение, атомная, водородная и нейтронная бомбы — это все виды ядерного оружия, различающиеся по своей взрывной силе, механизму детонации и радиационному воздействию. Это оружие имеет серьезные этические, политические и экологические последствия и представляет серьезную угрозу глобальной безопасности и стабильности.

Международному сообществу необходимо работать сообща для достижения цели ядерного разоружения и нераспространения, предотвращения применения и распространения ядерного оружия и содействия построению более безопасного мира для всех.

Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР

Водородная против атомной. Что нужно знать о ядерном оружии | Futurist - будущее уже здесь Такой стереотип работы нейтронной бомбы возник еще во времена СССР из-за непонимания принципа ее работы.
3. Водородная бомба: кто выдал её секрет. Оружие, которое себя исчерпало Принцип их работы немного отличается: если к взрыву атомной бомбы приводит распад ядра, то водородная бомба взрывается благодаря синтезу элементов с выделением колоссального количества энергии.

Поражающие факторы взрыва водородной бомбы. Водородная бомба

3. Водородная бомба: кто выдал её секрет. Оружие, которое себя исчерпало Работа создателей первой водородной бомбы, в том числе и сотрудников КБ-11, была высоко оценена советским правительством.
История создания первой водородной бомбы: последствия термоядерного взрыва Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании.
Водородная и атомная бомбы: сравнительные характеристики Принцип работы водородной бомбы. Все уже успели обсудить одну из самых неприятных новостей декабря — успешные испытания Северной Кореей водородной бомбы.
Термоядерное оружие: Как устроена водородная бомба Такой стереотип работы нейтронной бомбы возник еще во времена СССР из-за непонимания принципа ее работы.

Водородная против атомной. Что нужно знать о ядерном оружии

Принцип работы. Водородные бомбы, считающиеся ядерным оружием, работают с использованием комбинации ядерного деления и термоядерного синтеза. К истории создания водородной бомбы в СССР. «Вследствие осуществления в водородной бомбе мощной термоядерной реакции взрыв был большой силы, — писали «Известия».

Похожие новости:

Оцените статью
Добавить комментарий