Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает.
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания
Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии. Лектор рассказывает о теории суперструн, голографических чёрных дырах, столкновениях параллельных вселенных и о других интересных явлениях. Иконка канала Математические теоремы: между теорией и практикой.
Нобелевская премия по физике 2008 года. Нобелевская асимметрия
Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. 28 апреля - 43672616965 - Медиаплатформа МирТесен.
Комментарии в эфире
- Стивен Хокинг надеялся, что M-теория объяснит Вселенную. Что это за теория? | Пикабу
- Нобелевский лауреат предположил открытие суперсимметрии: Космос: Наука и техника:
- Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
- Теория суперсимметрии под угрозой
Суперсимметрия
Ученые работают все вместе — если кто-то предложил интересную идею, об этом становится известно всем, но реализует ее лишь тот, у кого есть не только интеллект, но и средства. Наука похожа на спорт, и, если у тебя нет амбиций, трудно чего-то добиться. Развитие фундаментальной науки очень важно. Если вы хотите, чтобы в вашей стране были профессора мирового уровня — необходимо, чтобы они работали именно у вас, а не в CERN.
Потому что, если в ваших вузах преподают лучшие профессора, у вас и студенты будут соответствующие. Например, мое поколение получило фантастически хорошее образование. Я скорее отрицательно отношусь к рейтинговой системе оценок университетов, потому что она ориентирована на «западный» стиль организации науки, в котором тоже есть проблемы.
Мне кажется более привлекательным способ организации науки как в Новосибирском Академгородке в Советском Союзе, где университет и научные институты были единым целым. Насколько я понимаю, эта система действует до сих пор. Лучшее учебное заведение в районе Fermilab — Чикагский университет — в одном часе езды на автомобиле, и то если повезет с трафиком.
Также до недавнего времени к нам на стажировку приезжали ребята из России. Для них это хороший опыт, и для нас польза. Как это получилось?
По результатам экспериментов я защитил кандидатскую диссертацию. Мне повезло с учителями. Пожалуй, наибольшее влияние на мое воспитание как ученого оказал Василий Васильевич Пархомчук теперь академик.
Когда я еще был студентом, я участвовал в экспериментах на НАП-М накопитель антипротонов , где Василий Васильевич был основной движущей силой. Это был один из лучших экспериментов ИЯФ. За изучение однопролетного электронного охлаждения мы получили премию Сибирского отделения Академии наук.
В 1994 году я уехал, сначала в Данию, а через год в Америку. Однако отмечу, что при этом ни одна лаборатория, работающая в физике высоких энергий в России, не сохранила научный потенциал так, как это сделали в Новосибирске. Даже технику безопасности можно довести до полной потери какого бы то ни было смысла.
Один мой знакомый стоял на лестнице между двумя этажами, потерял равновесие, упал и порвал связку на ноге. Дело житейское и, казалось бы, не имеет отношения к производственной травме, но этот случай был расценен именно так. Никто не спорит, что безопасность — это очень важно, но всякое хорошее дело можно довести до абсурда.
Вторая серьезная проблема — личная ответственность. Если, например, вспомнить советскую космическую программу и советский опыт в целом, личная ответственность, несомненно, играла важную роль. Сегодня в Америке все немного иначе.
Если дело провалено — жестких последствий ни для кого нет, ответственность разделяется между огромным количеством людей, и никто ни в чем не виноват. В худшем случае поменяют начальство без каких-либо серьезных последствий для этих людей. В Советском Союзе возможностей по трудоустройству было меньше, но то, что я действительно ценил в Новосибирском университете, — нас никого не заставляли ходить на занятия, достаточно было приходить на экзамены и успешно сдавать их.
Для университета, который готовил научных сотрудников, это более чем оправданно. Если в науке человек не мотивирован, его невозможно заставить, это же не рабочий, которому можно сказать: «Копай траншею от сих до сих». Мотивировать нужно со школы, а на последнем этапе — поздно.
Тем не менее, я не думаю, что такой способ обучения будет хорош для других вузов. Здесь нужна определенная гибкость и ясное понимание, чего вы хотите достигнуть. Но для способного человека в Fermilab всегда найдется место.
Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta. Первые ставки были сделаны еще в 2000 году, когда началось строительство Большого адронного коллайдера БАК. Ученые с мировым именем поспорили, будут ли с его помощью открыты новые частицы, подтверждающие теорию суперсимметрии, согласно которой каждая частица должна иметь своего суперпартнера.
Куда более чувствительный эксперимент, проведенный на суперколлайдере, этого влияния не обнаружил.
Если учесть, что и на других детекторах LHC никакого следа суперсимметричных частиц до сих пор не встречалось, хотя по теории вероятностей это уже должно было произойти, это ставит крест на теории суперсимметрии в его сегодняшнем виде. Один из участников команды LHC профессор Джордан Нэш из Имперского Лондонского колледжа, комментируя результаты "Красотки LHC", заявил: "Это означает, что либо мы не полностью понимаем происходящее, либо суперчастицы неамножко другие, чем мы о них думаем, либо их нет вообще". Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь, но молодые физики уже начинают говорить о том, что пора придумывать что-нибудь еще, такое же красивое, но более реалистичное. Пора, как они говорят "менять старую шляпу".
Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему, пришло время обсудить, что это за суперсимметрия и зачем она нам. На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах.
Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе.
И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия.
Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса.
Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи.
Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие.
Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях. Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении.
Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн.
Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми.
Конечно, мы можем ничего и не найти. Но это тоже пойдет нам на пользу. Если суперсимметрия ошибочна, это откроет дверь к новому набору теорий. Также появится больше доверия к другим теориям, вроде идеи о мультивселенной, к которой никогда не было особого доверия.
«Уродливая Вселенная: как поиски красоты заводят физиков в тупик»
Исследователям удалось исключить варианты теории, согласно которым масса суперпартнера глюона — глюино — меньше 700 гигаэлектронвольт. Вместе с тем, многие ученые полагают, что отсутствие признаков суперсимметрии в данных коллайдера не является дурным предзнаменованием для этой теории, которая сама по себе состоит из сотен разных вариантов, зависящих от сочетаний десятков возможных параметров. Его коллега, итальянский физик Томмазо Дориго полагает, что есть основания для беспокойства. Суперсимметрия должна нарушаться, чтобы суперпартнеры стали тяжелее «обычных» частиц. Причем это нарушение должно происходить при той же энергии, при которой нарушается электрослабая симметрия, в точке, когда переносчики слабого взаимодействия — W- и Z-бозоны — становятся массивными, а переносчики электромагнитного — фотоны — остаются безмассовыми. Считалось, что такое нарушение происходит при энергиях около 250 гигаэлектронвольт.
Однако результаты БАКа показывают, что «точка разрыва» находится выше этого значения.
Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении.
Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной.
Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя.
Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми. Конечно, мы можем ничего и не найти.
Об этом в пятницу, 12 декабря, было объявлено на 174-й сессии совета ЦЕРН, сообщается в пресс-релизе организации.
В настоящее время специалисты проводят.. Препринт исследования находится в распоряжении редакции «Ленты. Выводы ученых основаны на интерпретации результатов.. Достигнутая энергия в два раза превысила предыдущий «рекордный» результат.
Суммарная энергия.. Это первый научный инструмент для создания и изучения кварк-глюонной плазмы. Кварки и глюоны являются строительными блоками всего видимого вещества - от звезд и планет до человеческих тел. Понимание эволюции..
Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером.
Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми.
Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель.
Экзамены суперсимметричной модели вселенной 1978
му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы. Возвращаясь к эпизоду "Теории большого взрыва", предлагаемым объяснением наблюдаемого в настоящее время несоответствия является суперсимметрия. Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений.
Суперсимметрия
Другие физики считают ландшафт теории струн логическим продолжением коперниканской революции : если Земля может не быть центром Солнечной системы и единственной планетой, наша вселенная тоже может быть не единственной. Существует и группа ученых, которые считают идею мультивселенной эпистемологическим абсурдом, тупиковой ветвью познания, основанного на бездоказательных спекуляциях. Долгожданное открытие бозона Хиггса в 2012 году стало последним кирпичиком в фундаменте амбициозной теоретической конструкции в физике элементарных частиц , известной как Стандартная модель элементарных частиц. Стандартная модель объясняет все формы материи и энергии, кроме темной материи и энергии. Физики всего мира искали отклонения в Стандартной модели с помощью Большого адронного коллайдера, сталкивая триллионы протонов.
Найденный бозон Хиггса ведет себя согласно предсказаниям Стандартной модели. Это величайшее интеллектуальное достижение, но оно совсем не радостно. Отсутствие несоответствий не поможет углубить существующую теорию. К примеру, ученым очень хотелось, но не удалось найти подтверждения суперсимметрии — теории о том, что у каждой элементарной частицы есть гораздо более тяжелый «суперпартнер».
А ведь эта теория могла бы связать воедино физические силы и расширила бы наши представления об элементарных частицах куда бы уже можно было включить темную материю. Сабин Хоссенфельдер, физик-теоретик Франкфуртского института перспективных исследований, опасается, что суперсимметрии предначертано остаться лишь мечтой. В прошлом году Сабин стала одним из самых громких критиков состояния современной физики, выпустив книгу с провокационным названием «Заблудшие в математике: куда ведет физику поиск красоты». Хоссенфельдер утверждает, что современные физики сбились с пути в погоне за математической грацией: «Они поверили, что матушка природа следовала простому и элегантному замыслу и обязательно даст нам знак.
Они думали, что слышат ее шепот, а в действительности говорили сами с собой». Физики не согласны с этими обвинениями: они полвека гонялись за бозоном Хиггса и уже почти опустили руки, пока матушка природа чуть ли не вложила его им в ладони.
Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов.
Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса.
Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель.
Пока суперсимметрия остается точной симметрией, суперсимметричный мир элегантен и относительно прост. Если дело так и обстоит, то только при исключительно высоких энергиях. Но в нашем низкоэнергетическом мире — даже в момент протонных столкновений на LHC! В результате теория предсказывает большое число суперчастиц частиц-суперпартнеров обычных частиц , массы и взаимодействие которых могут быть почти произвольными. Теория не говорит, какие из частиц будут легче, какие тяжелее, сколько времени какие из них будут жить, какие у них будут наиболее вероятные процессы рождения и распада. Подчеркнем, что даже перечисление всех сколько-нибудь различающихся вариантов суперсимметричных теорий является совершенно неподъемной задачей.
Например, в самой простой реализации идеи суперсимметрии — минимальном суперсимметричном расширении Стандартной модели MSSM — имеется 105 свободных параметров см. Даже если попытаться «просканировать» весь набор их возможных комбинаций в самом грубом приближении например, предположив, что каждый параметр может принимать либо нулевое, либо какое-то одно ненулевое значение , мы получим 2105 комбинаций. Ясно, что ни о каком перечислении всех моделей не может быть и речи. К счастью, подавляющая часть всех таких вариантов сильно расходится с опытными данными. Но задача выбрать все те, которые согласуются, не проще. Выходом будет попытка сформулировать и тщательно проанализировать нескольких конкретных и очень ограниченных вариантов суперсимметричных теорий. Эти модели должны, с одной стороны, удерживать основные черты суперсимметрии и при этом не входить в явное противоречие с опытом, а с другой стороны, должны предоставить свободу лишь очень малому количеству параметров. Только в этом случае появляется разумный шанс просканировать всё пространство параметров, разбить его на области, различающиеся по физическим последствиям, провести подробные вычисления и сделать предсказания для эксперимента.
Они характеризуются предположением об исключительной универсальности всех скалярных частиц и всех фермионов частиц до момента нарушения суперсимметрии и содержат всего 5 свободных параметров в довесок к параметрам Стандартной модели. Именно в рамках этих моделей делалось множество предсказаний для LHC, на основании которых затем разрабатывалась стратегия экспериментального поиска суперсимметрии. NUHM модель с неуниверсальными хиггсами — чуть более свободная разновидность MSSM, в которой снято предположение о жесткой универсальности между хиггсовскими полями; 6 свободных параметров.
Затем суперсимметричные частицы стали намного тяжелее обычного вещества и распались, а их «остатки» образовали «темную материю», из которой почти на четверть состоит Вселенная.
Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. В экспериментах на коллайдере ученые рассчитывают увидеть рождение суперсимметричных частиц, которые пока не были обнаружены ни в одном эксперименте. Члены коллаборации CMS пытались обнаружить «суперпартнеров» кварков и глюонов. Если бы эти частицы рождались в столкновениях протонов на коллайдере, они распадались бы на «обычные» кварки и глюоны, а также легкие стабильные частицы нейтралино, из которых, согласно, теории может состоять «темная материя».
Кварки и глюоны, в свою очередь, создавали бы потоки джеты других частиц, а нейтралино, не взаимодействующие с обычной материей, «улетали» бы незамеченными. Детектор CMS мог бы видеть джеты, и ученые, обнаружив «недостачу» энергии, унесенной нейтралино, могли бы сделать вывод о рождении суперсимметричных частиц.
Суперсимметрия для пешеходов
- Теория суперструн для начинающих
- Неполная теория
- Физик Эмиль Ахмедов о рядах Тейлора, березиновских координатах и свойствах полей фермионов
- Комментарии:
- Нобелевская премия по физике 2008 года. Нобелевская асимметрия
- Нобелевская премия по физике 2008 года. Нобелевская асимметрия
Концепция развивается
- ВЗГЛЯД / «Вселенная удваивается» :: Общество
- Неполная теория
- Российский физик — о поисках тёмной материи и её роли во Вселенной
- «Уродливая Вселенная: как поиски красоты заводят физиков в тупик»
Симметрия, суперсимметрия и супергравитация
Доказательство суперсимметрии полностью изменит наше понимание Вселенной - | Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. |
Нобелевский лауреат предположил открытие суперсимметрии: Космос: Наука и техника: | Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. |
СУПЕРСИММЕТРИЯ | Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. |
Поиски суперсимметрии на коллайдере принесли новую интригу | Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. |
Доказательство суперсимметрии полностью изменит наше понимание Вселенной
Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении. Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем.
Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми. Конечно, мы можем ничего и не найти. Но это тоже пойдет нам на пользу. Если суперсимметрия ошибочна, это откроет дверь к новому набору теорий. Также появится больше доверия к другим теориям, вроде идеи о мультивселенной, к которой никогда не было особого доверия.
Последние тесты по сталкиванию протонов в Киото, Япония, исключили ещё один большой класс суперсимметричных моделей, и другие теории «новой физики», поскольку не нашли ничего необычного в распадавшихся частицах.
В отсутствие намёков на направление движения в экспериментальных данных, как можно догадаться о чём-нибудь, происходящем в природе? Более молодые физики, изучающие частицы, встали перед трудным выбором: следовать путём, проторённым за десятилетия их учителями, и изобретать ещё более изощрённые версии суперсимметрии, или пойти своим путём, без всякого направления со стороны каких бы то ни было данных. В блогпосте о японских испытаниях Фальковский шутит, что пора уже искать работу в неврологии. Я просто не могу придумать ничего лучше». Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Теория привлекательна по трём причинам. Она предсказывает существование частиц, из которых может состоять «тёмная материя», невидимая субстанция, пронизывающая окраины галактик. Она объединяет три фундаментальных взаимодействия при высоких энергиях.
И, самое большое преимущество,— она решает загадку физики под названием «проблема калибровочной иерархии». Загадка связана с несоразмерностью гравитации и слабым ядерным взаимодействием, которое в 100 миллионов триллионов триллионов 1032 раз сильнее, и действует на гораздо меньших масштабах, управляя взаимодействием внутри атомного ядра. Частицы, переносящие слабое взаимодействие, W и Z-бозоны, получают массу из хиггсовского поля, поля энергии, пропитывающего пространство. Но непонятно, почему энергия поля Хиггса, и соответственно массы W и Z-бозонов, такие небольшие.
Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии. В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют. Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий.
Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория петлевой квантовой гравитации в качестве отправной точки использует квантование пространства и времени. Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе. Квантование силы тяжести Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание силы тяжести в ОТО не согласуется с квантовой физикой. Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий. Унификация сил В настоящее время физикам известны четыре фундаментальные силы: гравитация, электромагнитная, слабые и сильные ядерные взаимодействия. Из теории струн следует, что все они когда-то являлись проявлениями одной.
Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня. Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии. Пять вариантов После суперструнной революции 1984 г. Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта. Какие-то их свойства отражали физическую реальность мира, другие не соответствовали действительности. М-теория На конференции в 1995 году физик Эдвард Виттен предложил смелое решение проблемы пяти гипотез. Основываясь на недавно обнаруженой дуальности, все они стали частными случаями единой всеобъемлющей концепции, названной Виттеном М-теория суперструн. Одним из ключевых ее понятий стали браны сокращение от мембраны , фундаментальные объекты, обладающие более чем 1 измерением.
Хотя автор не предложил полную версию, которой нет до сих пор, М-теория суперструн кратко состоит из таких черт: 11-мерность 10 пространственных плюс 1 временное измерение ; двойственности, которые приводят к пяти теориям, объясняющих ту же физическую реальность; браны — струны, с более чем 1 измерением. Следствия В результате вместо одного возникло 10500 решений. Для некоторых физиков это стало причиной кризиса, другие же приняли антропный принцип, объясняющий свойства вселенной нашим присутствием в ней. Остается ожидать, когда теоретики найдут другой способ ориентирования в теории суперструн. Некоторые интерпретации говорят о том, что наш мир не единственный. Наиболее радикальные версии позволяют существование бесконечного числа вселенных, некоторые из которых содержат точные копии нашей. Теория Эйнштейна предсказывает существование свернутого пространства, которое называют червоточиной или мостом Эйнштейна-Розена. В этом случае два отдаленных участка связаны коротким проходом.
Gidley, R. Conti, and A. Precision measurement of the orthopositronium vacuum rate using the gas technique. A40 10 , p. Nico, D. Gidley, and A.
Rich, P. Vallery, P. Zitzewitz, and D. Resolution of the Orthopositronium-Lifetime Puzzle. Котов, Б. Левин, В.
Ортопозитроний: «О возможной связи между тяготением и электричеством». Препринт 1784 ФТИ им. Kotov, B.
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания
Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. Теория суперсимметрии основывается на стандартной модели физики, которая включает гравитацию и объясняет существование темной материи и темной энергии. Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. Жесткие требования суперсимметрии при отборе жизнеспособных теорий должны замениться на какой-то руководящий принцип, который, не будучи суперсимметрией, действует по. Суперсимметрия, возникшая независимо в теории струн, «убила» тахион.
Суперсимметрия в свете данных LHC: что делать дальше?
Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. На днях теория суперсимметрии получила еще один удар от большого адронного коллайдера (бак.
Доказательство суперсимметрии полностью изменит наше понимание Вселенной
Суперсимметрия под вопросом Теория суперсимметрии предполагает существование более массивных версий элементарных частиц по сравнению с наблюдаемыми. Их обнаружение помогло бы объяснить, почему галактики вращаются быстрее, чем это можно объяснить Стандартной моделью. Физики высказывали догадки, что галактики содержат некую невидимую и необнаружимую обычными средствами темную материю, состоящую из суперчастиц. Поэтому их масса в реальности больше, чем следует из астрономических наблюдений, и поэтому они вращаются быстрее. Они измерили скорость распада частицы под названием мезон Bs на две частицы - мюоны. Впервые такой распад наблюдался в искусственных условиях, и по подсчетам ученых, на каждый миллиард распадов этого мезона приходится всего три распада такого рода. Если бы сверхпартнеры обычных частиц существовали в реальности, число таких распадов было бы куда выше. Это важнейший тест правильности всей теории суперсимметрии, которая является весьма популярной среди многих физиков-теоретиков. Профессор Вал Гибсон, руководитель группы исследователей из Кембриджа, которая участвует в эксперименте LHCb, заявил, что новые результаты ставят в опасное положение тех его коллег, кто работает с теорией суперсимметрии.
Фактически, ЦЕРН публично заявляет, что если суперсимметричная модель Стандартной модели «верна, суперсимметричные частицы должны появляться в столкновениях на LHC».
Исторически сложилось так, что самые жесткие ограничения были связаны с прямым производством на коллайдерах. Позже LEP установил очень строгие ограничения, которые в 2006 году были расширены экспериментом D0 на Тэватроне. От 2003-2015, WMAP - х и Планка «ы темной материи измерение плотности сильно ограничены суперсимметричные расширения Стандартной модели, которые, если они объясняют темную материю, должно быть настроена для вызова конкретного механизма достаточно уменьшить Нейтралино плотность. Ожидалось, что нейтралино и слептоны будут довольно легкими, причем самый легкий нейтралино и самый легкий стау, скорее всего, будут обнаружены между 100 и 150 ГэВ. Первые запуски LHC превзошли существующие экспериментальные пределы для Большого электронно-позитронного коллайдера и Теватрона и частично исключили вышеупомянутые ожидаемые диапазоны. В 2011—2012 годах LHC обнаружил бозон Хиггса с массой около 125 ГэВ и связями с фермионами и бозонами, которые согласуются со Стандартной моделью. MSSM предсказывает, что масса легчайшего бозона Хиггса не должна быть намного больше массы Z-бозона и, в отсутствие точной настройки с масштабом нарушения суперсимметрии порядка 1 ТэВ , не должна превышать 135 ГэВ. БАК не обнаружил никаких ранее неизвестных частиц, кроме бозона Хиггса, который, как уже предполагалось, существует как часть Стандартной модели , и, следовательно, не обнаружил никаких доказательств суперсимметричного расширения Стандартной модели. Косвенные методы включают поиск постоянного электрического дипольного момента EDM в известных частицах Стандартной модели, который может возникнуть, когда частица Стандартной модели взаимодействует с суперсимметричными частицами.
Постоянный EDM в любой фундаментальной частице указывает на нарушение физики обращения времени и, следовательно, на нарушение CP-симметрии через теорему CPT. Такие эксперименты EDM также намного более масштабируемы, чем обычные ускорители частиц, и предлагают практическую альтернативу обнаружению физики, выходящей за рамки стандартной модели, поскольку эксперименты на ускорителях становятся все более дорогостоящими и сложными в обслуживании. Текущий лучший предел для EDM электрона уже достиг чувствительности, чтобы исключить так называемые «наивные» версии суперсимметричных расширений Стандартной модели. Текущий статус Отрицательные результаты экспериментов разочаровали многих физиков, которые считали суперсимметричные расширения Стандартной модели и других основанных на ней теорий наиболее многообещающими теориями для «новой» физики, выходящей за рамки Стандартной модели, и надеялись на признаки неожиданные результаты экспериментов. В частности, результат LHC кажется проблематичным для минимальной суперсимметричной стандартной модели, поскольку значение 125 ГэВ относительно велико для модели и может быть достигнуто только с помощью больших радиационных петлевых поправок от верхних скварков , которые многие теоретики считают «неестественными». В ответ на так называемый «кризис естественности» в минимальной суперсимметричной стандартной модели некоторые исследователи отказались от естественности и изначальной мотивации решать проблему иерархии естественным образом с помощью суперсимметрии, в то время как другие исследователи перешли к другим суперсимметричным моделям, таким как суперсимметрия расщепления. Третьи перешли к теории струн в результате кризиса естественности.
Минимальная суперсимметричная Стандартная модель МССМ требует для построения меньше всего новых частиц. Другой важной особенностью суперсимметричных моделей является нарушение суперсимметрии. Если бы такого нарушения не было, суперпартнеры имели такие же массы, что и обычные частицы.
Однако новые частицы с массами известных частиц Стандартной модели никогда не наблюдались. Также без нарушения суперсимметрии не работал бы хиггсовский механизм нарушения электрослабой симметрии. Чтобы применять суперсимметричные модели в физике высоких энергий, необходимо потребовать нарушение суперсимметрии. При этом суперпартнеры могут приобрести большие массы, чем можно объяснить их ненаблюдение в настоящее время. Конкретный механизм нарушения суперсимметрии сейчас неизвестен. Это существенно снижает предсказательную силу модели, так как в ней появляется большое число свободных параметров, подбирая которые, можно получать произвольные следствия. Некоторые соображения, например, гипотеза великого объединения, позволяют ограничить число свободных параметров. Исследование ограничений на параметры суперсимметричных моделей является одним из важных направлений в исследовании физики за пределами Стандартной модели. Экспериментальный статус суперсимметричных моделей Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. Поиски различных проявлений суперсимметрии в природе были одной из главных задач многочисленных экспериментов на коллайдерах LEP — большой электрон-позитронный коллайдер и Тэватрон и в неускорительных экспериментах на протяжении нескольких десятилетий.
К сожалению, результат пока отрицательный. Нет никаких прямых указаний на существование суперсимметрии в физике элементарных частиц, хотя имеющиеся суперсимметричные модели в целом не запрещены имеющимися теоретическими и экспериментальными требованиями. Его энергия в семь раз превосходит энергию действующего американского ускорителя Тэватрона. В большинстве суперсимметричных моделей массы новых частиц лежат в области, доступной LHC. Предполагается, что на LHC будет открыт бозон Хиггса и суперсимметричные частицы. В новых экспериментах низкоэнергетическая суперсимметрия будет либо обнаружена, либо исключена. Хотя суперсимметрия и не открыта на опыте, различные суперсимметричные модели могут быть исследованы уже сейчас. Во-первых, следует исключить модели, в которых новые частицы имеют недостаточно большие массы, к настоящему времени уже закрытые экспериментально. Во-вторых, расхождения некоторых экспериментальных данных и теоретических предсказаний Стандартной модели могут объясняться вкладом суперсимметричных частиц, и с этой точки зрения некоторые суперсимметричные модели оказываются предпочтительнее других. Многие специалисты в физике высоких энергий исследуют различные варианты суперсимметричных моделей и их следствия.
Вполне возможно, что одна из таких моделей будет подтверждена на ускорителе LHC. Источник Большой адронный коллайдер очень скоро снова заработает с удвоенной скоростью. Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему, пришло время обсудить, что это за суперсимметрия и зачем она нам. На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации.
Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия.
Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями.
Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами.
Теория относительности Эйнштейна прекрасно справляется с описанием и предсказанием множества аспектов нашего мира.
Его теория состоит из набора уравнению, подчиняющихся определённому набору симметрий. К примеру — трансляционная симметрия, или симметрия, связанная с переносом эксперимента из одного места пространства-времени в другое: эксперимент, проведённый сегодня в Лондоне, даст такой же результат, как тот же самый эксперимент, проведённый через несколько месяцев в Токио. В 1960-х математически было доказано, что суперсимметрия — это единственная симметрия, которую можно добавить к симметриям теории Эйнштейна так, чтобы получившиеся уравнения не стали расходиться со свойствами реального мира. В этом смысле суперсимметрия стоит особняком. Где же эти частицы-суперпартнёры? Если бы суперссиметрия была точной симметрией природы, мы бы уже нашли множество суперпартнёров.
Перед тем, как следовать далее, давайте вспомним, какие нам известны элементарные частицы. В статье по ссылке рис. Имена у них довольно уродливые, сэлектрон и странный скварк, где «с» означает суперсимметрию. Вы можете спросить, почему их по две и почему для каждого нейтрино всего по одной. Обратитесь к рис. У фотона есть фотино, у глюонов — глюино, и т.
С массивными W-бозонами всё чуть сложнее. К сожалению, в физике частиц с именованием частиц есть постоянная проблема — букв не хватает. У всех этих частиц точно такая же масса, в этом воображаемом суперсимметричном мире. Одна безмассовая, вторая массивная. Почему две? Оказывается, в суперсимметричном мире необходимо наличие двух частиц для того, чтобы у верхних и нижних кварков масса появлялась обычным способом.
Второй аргумент — два хиггсино необходимы для математической непротиворечивости. Но, очевидно, что этот идеально суперсимметричный мир — не наш. Мы бы уже более ста лет назад знали о существовании частиц, у которых был бы такой же электрический заряд и такая же масса, как у электронов, но при этом они бы электронами не являлись. Например, у нас были бы атомы с электронами, атомы с сэлектронами, и атомы с их смесью. Количество типов атомов было бы намного большим наблюдаемого, и поскольку бозоны в атомах вели бы себя совершенно не так, как фермионы, химия новых атомов была бы совершенно другой. Данные и повседневный опыт исключают эту возможность.
Нет никаких сэлектронов с массой электронов, и точка. Так что точная суперсимметрия не является корректной теорией природы, и мы это знали ещё до того, как её задумывали.