В период холодной войны надводные или подводные объекты могли развивать скорость не более 50 узлов, однако «Шквал» стал исключением — он разгонялся до 200 узлов (370 километров в час).
В США назвали российскую торпеду «Шквал» угрозой американским кораблям
Достоинства скоростной подводной ракеты очевидны: движущийся со скоростью в 200 узлов в час (375 км/ч) снаряд поразит любой корабль прежде, чем тот сможет применить средства самообороны. Скоростная подводная ракета «Шквал» «Шквал» — советская скоростная подводная ракета (ракета-торпеда). Российская подводная торпеда «Шквал» должна стать серьезной причиной для беспокойства в Пентагоне.
В США испугались супероружия России «Шквал»
И все же суперкавитационная торпеда — особая история. Законы физики на нашей планете позволяют большинству кораблей и подводных видов оружия достигать скорости 50 узлов. Гидрореактивный двигатель делает торпеду еще быстрее, но ускорение движения под водой встречает значительный эффект торможения. Для наращивания скорости необходимо убрать воду с пути торпеды, оптимально — превратить плотную жидкость в газ. Как это делается? Горячий выхлоп из ракетного двигателя частично направляется в каналы носовой части, и вода впереди торпеды превращается в пар. Таким образом, в движении создается и постоянно окружает торпеду газовая оболочка.
Торпеда соприкасается с водой только узкой головной частью, в газовой среде испытывает значительно меньшее сопротивление и достигает скорости свыше 300 километров в час. Есть и другая проблема: суперкавитация усложняет маневрирование. Изменение направления движения выводит часть массивного корпуса торпеды из каверны, и резко возрастает сопротивление среды. Многие знают, как трудно на высокой скорости высунуть руку из автомобиля, преодолевая сопротивление воздушного потока. Вода гораздо плотнее. Удалось решить и эту гидродинамическую задачу.
Кавитационную головку на носу «Шквала» сделали отклоняемой, то есть маневрирует сама кавитационная каверна, постоянно сохраняющая торпеду в своих «объятиях». На пути к цели повороты осуществляются за счет рулей и отклонения головки кавитатора по ранее заложенной программе. Аналогов в мире нет Торпеды нередко конфликтуют с гидрологией, то есть с перепадами плотности и температуры воды на разных глубинах, меняющейся электромагнитной проводимостью морской среды.
При этом, разумеется, учитывают упреждение, то есть рассчитывают вероятное местонахождение цели в момент поражения торпедой. Торпеда движется строго по прямой к заранее рассчитанной точке встречи с целью. Система стабилизации постоянно отслеживает положение торпеды и ее курс и вносит коррективы с помощью выдвижных рулей, едва касающихся стенок «пузыря», а также за счет наклона кавитатора — малейшее отклонение грозит не только потерей курса, но и разрушением каверны. Замаскировать запуск «Шквала» невозможно: торпеда издает сильнейший шум, а газовые пузыри всплывают на поверхность, образуя отлично видимый след. Один из разработчиков, присутствовавший при испытаниях на озере Иссык-Куль, сказал нам: «На что похож запуск "Шквала"? Представьте себе, как будто бог морей Посейдон взял в руки хлыст: свист и грохот, а затем очень быстро убегающий вдаль прямой, как стрела, след от хлыста на водной глади».
Действительно, одна из возможных задач «Шквала» — выведение из строя авианосца или даже всей авианосной группы боеголовка торпеды предполагалась ядерной. Ведь, несмотря на отсутствие скрытности и «прямолинейность», уйти или защититься от «Шквала» а тем более — от залпа двух таких торпед практически невозможно: за 100 секунд подводного «полета» к цели крупное судно или подводная лодка не успеют ни изменить курс или хотя бы погасить набранную скорость , ни принять какие-либо контрмеры. Наверно, сначала торпеда выходит в заданную точку, наводится на заданное направление, а уж потом - прямой наводкой. К тому же наверняка работает и самонаведение - до запуска ускорителя. А вот задать торпеде параметры цели и точку запуска ускорителя - сам Бог велел. Хотя линейность курса может дать возможность для перехвата, произведением на ее пути достаточно сильного взрыва в момент приближения.
КБ создает для торпеды электрические узлы, обеспечивающие работу ракетного двигателя, и систему управления. И в случае успешной трансформации научно-технических идей в боеспособное изделие станет четвертой в мире. Оружие, действительно, уникальное. Не случайно американцы долгое время не верили в возможность его создания, несмотря на получаемые данные от своей разведки о проведении сверхсекретной ОКР. Ракето-торпеда "Шквал" была разработана в рамках работ по теме скоростного подводного оружия, против которого были бы бессильны все существующие средства защиты. В то время особенную актуальность приобрела проблема борьбы с американскими авианосными ударными группами АУГ , которые были хорошо прикрыты как с воздуха - за счет своей авиации и кораблей обеспечения, так и под водой, где "слепые" зоны "сонаров" прикрывали многоцелевые субмарины. Подобраться незамеченным к такой цели на дистанцию торпедного залпа было нелегкой задачей, но, даже если это удавалось, корабли группы вполне могли бы уйти от торпед. Во-первых, современные средства обнаружения позволяют эффективно засекать точку пуска торпед и оперативно предпринимать ответные действия. Во-вторых, скорость хода торпед относительно низкая, так что при пуске с большой дистанции свыше 10 километров у кораблей противника есть время сделать противоторпедный маневр. Существует масса средств противодействия торпедам - от "шумелок", которые обманывают головку самонаведения которая реагирует на звук винтов надводных кораблей до обстрела торпеды специальными боеприпасами, взрывающими боевую часть. В связи с этим было решено разработать такую торпеду, среагировать на которую враг не успеет, и которая гарантированно поразит цель при выходе на позицию атаки. Так родилась идея ракето-торпеды, которая двигалась бы под водой со скоростью 300-350 километров в час, почти как легкий самолет. Разработка «Шквала» началась в 1960 году в НИИ-24 ныне — Государственное научно-производственное предприятие «Регион», входящее в корпорацию «Тактическое ракетное вооружение». Первый опытный образец торпеды был построен уже в 1964 году. Тогда же и начались его испытания на озере Иссык-Куль, а через два года — на Черном море в районе Феодосии. Испытания были признаны неудовлетворительными. И конструкторы, шаг за шагом, учитывая накапливаемый отрицательный опыт, создавали все новые и новые модели. Но и они не вписывались в жесткие рамки технического задания. Лишь шестой опытный образец выдержал полный цикл испытаний и был рекомендован к серийному производству. В 1977 году торпеда была принята на вооружение подводного флота ВМФ. Столь чудовищную скорость, в возможность развития которой в водной среде долго не верили американцы, была достигнута за счет кавитационного эффекта. В результате в конце 50-х годов ученые создали строгую теорию кавитационного движения и сформулировали рекомендации по использованию его принципов при создании скоростных подводных аппаратов. Сущность кавитационного эффекта состоит в том, что физическое тело в данном случае — торпеда перемещается в воздушном пузыре. На носу торпеды-ракеты устанавливается специальная деталь - кавитатор. Она представляет собой металлическую пластину эллиптической формы с заточенными краями и расположена перпендикулярно оси торпеды.
Крупному кораблю, а тем более авианосцу, непросто за это время совершить маневр, позволяющий избежать столкновения с торпедой. Непросто, но возможно. Поэтому на первой модификации торпеды устанавливалась 150-килотонная ядерная боеголовка. И лишь впоследствии, когда дело дошло до сокращения арсенала ядерного оружия, ее заменили фугасной весом около четверти тонны. Была и еще одна опасность. Выпустив реактивную торпеду, лодка себя обнаруживала. След, который оставлял «Шквал» на поверхности воды, точно указывал на ее местоположение. Малая дальность торпеды была чревата и еще одним неприятным обстоятельством. Для атаки авианосца или крупного корабля неприятеля подводная лодка должна была войти в зону противолодочной обороны. И это снижало шансы успешного проведения операции. Выдающиеся скоростные характеристики создали торпеде незаслуженную медийную славу. В СМИ постоянно писали о российском чудо-оружии, которого так боятся американцы. Это было, конечно, далеко не так. Американцы больше боялись не "Шквала", а т. Обмануть такую торпеду "шумелками" невозможно. Зарубежные попытки. Идеи, заложенные в «Шквале», повторили конструкторы еще двух стран. Но речь идет не о готовом к использованию оружию, а об образцах, проходящих испытания. Работы на данный момент. Вполне понятно, что «Хищник» — это не модификация «Шквала». Поскольку на то, чтобы повторить те же самые тактические ошибки, немного скорректировав их, никто бы денег не дал. А деньги выделены очень серьезные. В рамках данной работы опубликованы более 20 научных трудов, в том числе 4 научные работы в 2015 году. Оформляются заявки на несколько патентов на полезные модели. В 2015 году были изготовлены первые два опытных образца составной части летательного аппарата, а также проведены стыковочные и лабораторно-стендовые испытания, наземная отработка.
Что за суперторпеды «Шквал» стоят на вооружении российских подлодок?
Шквал (скоростная подводная ракета) - Неповторимая разработка российских конструкторов. | это суперкавитирующие торпеды, первоначально разработанные Советским Союзом. |
Шквал (скоростная подводная ракета) — Рувики | Подводная ракета-торпеда ВА-111 «Шквал», находящаяся на вооружении советского флота с 1977 года, обладавшая скоростью до 200 узлов или 370 км/ч, была снята с вооружения по причине малой дальности поражения. |
Модернизация уникальной скоростной торпеды "Шквал" - ВОЙНА и МИР | Предприятие сделало почти невозможное: в 1978 году скоростная ракета «Шквал» была поставлена на вооружение. |
Советская подводная ракета "Шквал" | Подводная ракета-торпеда ВА-111 «Шквал», находящаяся на вооружении советского флота с 1977 года, обладавшая скоростью до 200 узлов или 370 км/ч, была снята с вооружения по причине малой дальности поражения. |
Модификации
- TNI: советская торпеда "Шквал" произвела революцию в подводной войне
- Подводную ракету "Шквал" назвали одной из лучших в мире
- Вступай в наши группы и добавляй нас в друзья :)
- Российская торпеда «Шквал» напугала ВМС США
- Пуля из пузыря
Российская ракета «Шквал» названа лучшим оружием подводной войны
В США рассказали об уникальности российской подводной ракеты «Шквал» | Военное дело | Принцип применения «Шквала» Применение данной подводной ракеты заключается в следующем: носитель (корабль, береговая ПУ) при обнаружение подводного или надводного объекта отрабатывают характеристики скорости, дистанции, направление движения. |
Плюсы и минусы советской торпеды "Шквал": masterok — LiveJournal | «Шквал» (ВА-111) — советский комплекс со скоростной подводной ракетой (ракета-торпеда) М-5[1]. Предназначена для поражения надводных[2] и подводных целей. |
Ракета шквал
Ракета-торпеда «Шквал» получила ракетный двигатель, топливо в котором начинает окисляться при контакте с морской водой. Этот двигатель может разгонять ракету-торпеду до большой скорости, на которой в носовой части «Шквала» начинает образовываться кавитационный пузырь, полностью обволакивающий боеприпас. Образованию кавитационного пузыря способствует специальное устройство в носовой части ракеты-торпеды — кавитатор. Кавитатор на «Шквале» представляет собой наклоненную плоскую шайбу, в центре которой размещено отверстие для забора воды. Через это отверстие вода поступает в двигательный отсек, где происходит окисление топлива. На краях же шайбы кавитатора и образуется кавитационный пузырь. В этом пузыре ракета-торпеда буквально летит. Модернизированная версия «Шквала» может поражать корабли противника на дальности до 13 километров. По сравнению с дальностью обычных торпед 30—140 километров это немного, и в этом заключается главный недостаток боеприпаса. Дело в том, что в полете ракета-торпеда издает сильный шум, демаскирующий позицию подлодки, запустившей ее. Ракета-торпеда, летящая в кавитационном пузыре, не может маневрировать.
Это вполне понятно: в кавитационной полости боеприпас не может взаимодействовать с водой, чтобы изменить направление. Кроме того, резкая смена траектории движения приведет к частичному схлопыванию кавитационной полости, из-за чего часть ракеты-торпеды окажется в воде и на большой скорости разрушится. Изначально «Шквал» оснащался ядерной боевой частью мощностью 150 килотонн, которую позднее заменили обычной фугасной боевой частью с взрывчатым веществом массой 210 килограммов. Сегодня, помимо России, кавитирующие торпеды имеют на вооружении Германия и Иран. В 2014 году Технологический институт Харбина представил концепцию подводной лодки, способной перемещаться под водой на около- или даже сверхзвуковой скорости. Разработчики объявили, что такая подводная лодка сможет доплывать от Шанхая до Сан-Франциско около десяти тысяч километров примерно за один час и 40 минут. Перемещаться подлодка будет внутри кавитационной полости. Новый подводный корабль получит кавитатор в носовой части, который будет начинать работать на скорости более 40 узлов. Затем подлодка сможет быстро набрать маршевую скорость. За движение подлодки в кавитационной полости будут отвечать ракетные двигатели.
Скорость звука в воде составляет около около 5,5 тысячи километров в час при температуре 24 градуса и солености 35 промилле. Представляя свою концепцию, разработчики отметили, что прежде, чем создать новую подлодку, необходимо решить несколько проблем. Одной из них является нестабильность кавитационного пузыря, внутри которого должна лететь подлодка. Кроме того, необходимо найти надежный способ управлять кораблем, движущимся под водой со сверхзвуковой скоростью. В качестве одного из вариантов рассматривается возможность сделать рули, которые бы выдвигались за пределы кавитационной полости. Между тем в начале 2000-х годов Центральное конструкторско-исследовательское бюро спортивного и охотничьего оружия тульского Конструкторского бюро приборостроения решило использовать явление кавитации при создании нового автомата для боевых пловцов.
Причем не только по характеристикам дальности, но и по большей мощности заряда в том числе ядерного , меньшей заметности и большей точности. Действительно, уникальность суперторпеды именно в скорости. Развить в воде такую скорость совсем не просто.
Мешают многие факторы, в первую очередь сопротивление воды, которое примерно в 1000 раз больше, чем в воздухе. Поэтому для разгона торпеды требовалась огромная тяга, которая в «Шквале» была достигнута за счет ракетных ускорителей. В этой ракетоторпеде вначале срабатывает стартовый твердотопливный ускоритель, который разгоняет ее до крейсерской скорости, а затем отстреливается. Далее вступает в работу маршевый реактивный двигатель, который работает на гидрореагирующем топливе, содержащем алюминий, магний, литий, а в качестве окислителя использует забортную воду. Подобная адская смесь позволяет поддерживать высокую скорость, но дает мощный выхлоп газов, след от которых становится заметен на поверхности воды. Впрочем, попробуй увернуться! Еще одна изюминка скорости «Шквала» — в эффекте суперкавитации. Торпеда по сути ракета не плывет в воде, а летит в газовом пузыре — каверне, который сама и создает. В ее носовой части расположена специальная деталь — кавитатор.
Лица Торпеда «Шквал»: на какие рекорды способна лучшая в своем классе «убийца авианосцев» Уникальность суперторпеды именно в скорости. Если обычная торпеда может разогнаться под водой до 60-70 узлов, то «Шквал» в буквальном смысле слова летит в толще морской воды со скоростью 200 узлов 370 километров в час , что является абсолютным рекордом для любого подводного объекта. Несмотря на признание российской ракетоторпеды «Шквал» лучшей в своем классе, даже по мнению американских специализированных изданий это практически официальная оценка Пентагона , у нее есть свои минусы. Во-первых, по оценкам специалистов российского ВМФ, это относительно малая дальность поражения цели. В экспортном варианте — около 7 миль, в отечественном — 14, в модернизированном — около 20. Не так уж и много, если сравнивать с так называемыми «толстыми торпедами», которые бьют на 50 миль, а уж тем более с крылатыми ракетами подводного базирования, прозванными «убийцами авианосцев», способными поразить цель за пару тысяч километров. Во-вторых, заметность движения, даже при пусках из подводных лодок с глубины 30 метров.
Вероятность обнаружения пуска очень высока: из глубины — из-за следа на поверхности водной глади, с поверхности — из-за грохота и дымового следа. Некоторые военные аналитики сомневаются в точности поражения цели «Шквалом» из-за отсутствия систем наведения, сравнивая их с методами торпедных атак времен Великой Отечественной войны. Ну а теперь отдадим должное «Шквалу» — на сегодняшний день это самая скоростная торпеда в мире, рекорд скорости которой под водой еще никому побить не удалось! Ближайший конкурент, немецкая торпеда «Барракуда», отстала более чем на десять лет и на 100 километров в час. Американские и английские аналоги вообще в глубоких аутсайдерах.
А после испытаний высокоскоростной подводной ракеты Пентагон не на шутку встревожился и был готов к применению «акции устрашения».
Но вскоре появляется информация, что иранские высокоскоростные подводные ракеты «Hoot» - копия советской «Шквал». По всем характеристикам и даже по внешнему виду - это российская ракето-торпеда «Шквал». Из-за малой дальности ракету не относят к наступательному виду вооружения. Но применение её в Оманском и Персидском заливах будет для Ирана очень эффективным из-за достаточно небольших размеров проливов.
Что за суперторпеды «Шквал» стоят на вооружении российских подлодок?
Разработка реактивной торпеды "Шквал" начата по Постановлению Совмина СССР №111-463 от 13 октября 1960 г. (о разработке скоростной подводной ракеты "Шквал" со скоростью движения 100 м/с). Скоростная подводная ракета (ракето-торпеда) ВА-111 "Шквал" после модернизации сможет дейс твовать на глубине и станет еще немного быстрее, сообщил РИА Новости ведущий российский разработчик торпедного оружия академик Шамиль Алиев. Описание: Комплекс вооружения со скоростной подводной ракетой «Шквал-Э» предназначен для поражения надводных целей, устанавливается на надводных кораблях, подводных лодках, стационарных пусковых установках, в т.ч. на подводных. Принцип применения «Шквала» Применение данной подводной ракеты заключается в следующем: носитель (корабль, береговая ПУ) при обнаружении подводного или надводного объекта отрабатывает характеристики скорости, дистанции, направление движения.
Шквал (скоростная подводная ракета)
Китайская подлодка. Фото Рейтер. Как такое удалось? И возможно ли это в принципе? Уверяют, что возможно. А гиперускорение достигнуто якобы за счет усовершенствования технологий, полученных еще во времена СССР. Речь о так называемом эффекте суперкавитации.
Поток набегающей воды при такой скорости взаимодействия не обтекает корпус торпеды, а срывается с ее поверхности, образуя вокруг большой воздушный пузырь - каверну.
Ракета-торпеда ВА-111 «Шквал» из России, способная развивать скорость до 370 километров в час, вызвала настоящую революцию в стратегии подводной войны Как сообщает американское издание The National Interest TNI , особенности этой торпеды делают ее уникальным видом подводного оружия. По мнению издания, «Шквал» — это суперкавитирующая торпеда, созданная в эпоху Советского Союза, которая перевернула представление об эффективности подводного вооружения. Главными особенностями торпеды считаются ее впечатляющая скорость до 200 узлов, наличие ракетного двигателя и использование суперкавитации. Проект торпеды «Шквал» был долгое время засекречен до середины 1990-х годов.
Дело в том, что аэродинамическая форма обычной пули делает траекторию ее полета в воде малопредсказуемой. Например, на границе теплого и холодного водных слоев пуля может рикошетить, отклоняясь от продольной оси выстрела. Кроме того, из-за своей формы снаряд стрелкового оружия под водой быстро теряет свою энергию, а значит и убойность. В результате поражение цели из того же автомата Калашникова в воде становится практически невозможным даже на очень маленьком расстоянии. Наконец, обычные свинцовые пули с оболочкой из томпака латунный сплав на основе меди и никеля под водой быстро деформируются и даже могут разрушаться. Проблему разрушающихся пуль решила норвежская компания DSG Technology. Она разработала новый тип боеприпасов CAV-X. Они имеют не классическую оживальную форму, как обычные пули, а коническую. Кончик пули уплощен и при попадании в воду начинает выполнять роль кавитатора, благодаря чему вокруг снаряда образуется кавитационная полость. В результате пуля практически не соприкасается с водой и дольше сохраняет кинетическую энергию. Кавитирующие пули сделаны из вольфрама и запрессованы в латунную гильзу. Сегодня они выпускаются в калибрах 5,56, 7,62 и 12,7 миллиметра. По данным DSG Technology, под водой кавитирующие пули этих калибров сохраняют убойное воздействие на дальности 14, 22 и 60 метров соответственно. При этом кавитирующими могут быть выполнены и боеприпасы других калибров вплоть до артиллерийских 155 миллиметров. Правда, целесообразность создания снарядов для подводной стрельбы весьма сомнительна. В каком именно оружии планируется использовать кавитирующие пули CAV-X, пока неизвестно. Обычное стрелковое оружие без специальной переделки для стрельбы под водой не подходит. Впрочем, кавитирующие пули могут быть полезны при обстреле подводных целей с суши. Если стрелять, скажем, по боевому пловцу, находящемуся под водой, с берега из обычных пистолета или автомата, то, скорее всего, он уплывет целым и невредимым. Дело в том, что пули будут либо резко тормозиться, попав в воду, либо рикошетить от нее; это зависит от угла оси ствола к поверхности воды, под которым ведется стрельба. Кавитирующие же пули смогут, практически не отклоняясь, проходить поверхность воды и поражать подводную цель. Но с необходимостью стрелять по подводному противнику с суши военные сталкиваются не так часто, чтобы начать массовые закупки патронов с пулями CAV-X. Хотя военные инженеры и смогли найти полезное применение кавитации, по большому счету их изобретения особой популярностью не пользуются. Ракеты-торпеды «Шквал» в бою никогда не применялись, а сегодня и вовсе не используются российским флотом — слишком шумными и недальнобойными оказались эти боеприпасы. Патроны для подводной стрельбы востребованы только боевыми пловцами и диверсантами и применяются довольно редко. В способность же китайских специалистов спроектировать кавитирующую подводную лодку верится с трудом. Так что, пожалуй, кавитация все еще остается физическим явлением, которого лучше стараться избегать.
Изначально ракета несла ядерную боеголовку в 150 кт , впоследствии создан вариант с обычной боеголовкой с автономным управлением, не имеющей самонаведения. В 1992 году создан экспортный вариант — «Шквал-Э».
Проект ВА-111 "Шквал" - самая быстрая ядерная торпеда в мире, испаряющая воду на своём пути
Впрочем, Ракову никогда не было свойственно останавливаться на достигнутом. Евгений Раков на производстве При его активном участии в НИИПГМ разработаны научные основы и инженерные методы, обеспечивающие надёжность работы узлов и агрегатов скоростных подводных ракет. Были заложены основы организации комплексных разработок, натурных испытаний, промышленного производства и эксплуатации ракет данного класса, созданы испытательные базы для стендовых и натурных испытаний агрегатов и ракет в целом, построен опытный завод. Евгению Дмитриевичу присвоено звание почётного академика Российской академии ракетных и артиллерийских наук. За период научной, организационной и производственной деятельности Раковым было подготовлено 228 научно-технических отчётов, получено 87 авторских свидетельств на изобретения. Многие идеи и результаты его научной деятельности, составляющие творческое наследие, востребованы и сегодня, используются при современных разработках перспективных систем вооружения.
Новые войны — новые идеи После Второй мировой войны началось стремительное развитие флота по всему миру. Военные корабли становились всё быстрее и манёвреннее, что снижало шанс их поражения привычными на тот момент видами вооружения.
В Советском Союзе ещё в середине 30-х годов XX века начались изыскания на тему создания новых торпедных двигателей, способных дать скорость в 70 узлов и выше. Идея применить для этого эффект кавитации впервые пришла в голову в 1946 году инженеру Уварову Г. Через 6 лет провели испытания первой ходовой модели. Логвинович предлагал следующую компоновку: диск, профилированная головная часть, цилиндрическая часть с зарядом топлива и сходящаяся кормовая часть со стабилизаторами торпедного типа, рулями и соплом. Следующие четыре года испытаний не увенчались большими успехами, что привело к официальному их прекращению в 1957 году. Однако Уваров, Алферов и Либинштейн решили самостоятельно продолжить тесты и доработки. Они стали проводить испытания по другой методике, и это дало свои плоды.
Удалось добиться движения макета на 700 метров на постоянной глубине в течение 6 секунд. Стало понятно, что новой торпеде — быть. В ходе него он описал суть явления кавитации, возможности его применения в создании оружия, а также предложил перспективную подводную скоростную ракету на этой основе. Выступление произвело эффект разорвавшейся бомбы. Военное руководство осознало, насколько подобное оружие может оказаться полезным даже против высокоманевренных целей.
Более того, уже определен график дальнейших работ. К настоящему времени отдельные моменты проекта «Хищник» успели стать темой двух десятков научных работ.
Из них четыре были опубликованы в 2015 году. Ведется работа над оформлением заявок на получение патентов, подтверждающих приоритет КБ «Электроприбор» в создании нескольких полезных моделей. В прошлом году также были построены первые два прототипа составной части перспективного аппарата. Также были завершены стыковочные испытания и проверка на лабораторном стенде. Осуществлялась наземная отработка различных узлов и агрегатов. К настоящему времени проект «Хищник» доведен до готовности к новым испытаниям. В конце текущего года планируется провести предварительные испытания составной части аппарата, созданной КБ «Электроприбор».
Также планируется провести ходовые испытания, по результатам которых конструкторская документация по разработанной составной части получит литеру «О». Помимо отдельных узлов и агрегатов перспективной скоростной подводной ракеты «Хищник» создаются дополнительная аппаратура и программное обеспечение, предназначенные для обслуживания нового вооружения. В будущем такие приборы будут использоваться для обследования, проверок и регулировок ракет в целом и отдельных их частей. Первые упоминания этой разработки появились еще несколько лет назад, однако до сих пор большая часть известных сведений о ней основывается на слухах и оценках. Технические подробности проекта пока не появлялись в официальных публикациях. Такая ситуация способствует появлению различных обсуждений, споров и спекуляций. По-видимому, в ближайшее время ситуация не изменится.
Первое официальное упоминание работы «Хищник» появилось в судебных документах. Москвы вынес решение по иску, связанному с проблемами в области ценообразования на проведение некоторых научно-исследовательских и конструкторских работ. Впоследствии два предприятия не смогли достичь договоренности о трудоемкости и стоимости работ, из-за чего им пришлось обращаться в суд. Решением арбитражного суда указывались основные параметры работ, которые следовало использовать при дальнейшем определении трудозатрат и их стоимости. Следующее упоминание о теме «Хищник» появилось в отчете КБ «Электроприбор» за 2013 год. В этом документе указывалось начало работ по перспективной системе вооружений.
Подчеркивается, что разработка стала одним из самых инновационных видов подводного оружия, которое было создано СССР.
Развернуть 23 февраля 2024, 10:23 Ранее в The National Interest признали , что российский истребитель Су-35 по многим параметрам превосходит западные самолеты. Подпишитесь и получайте новости первыми Читайте также.
Суперкавитирующая торпеда «Шквал»: эффектно, но не эффективно
Статья опубликована в журнале Acta Optica Sinica и на китайском языке свободно доступна по ссылке. Саму идею лазерного двигателя для передвижения в воде предложили около 20 лет назад японские учёные. Принцип работы такого двигателя достаточно простой — лазерный луч создаёт плазму на конце излучателя, а та, в свою очередь, создаёт детонационную ударную волну в среде. Вскоре технология была улучшена. Создаваемая плазмой ударная волна должна была воздействовать на микросферы из металла или других материалов. Отстрел микросфер приводил в движение корабль с таким двигателем. Но вскоре энтузиазм иссяк. Эффективность предложенных решений оказалась настолько низкой, что не сулила никакой практически ценной реализации.
Причина — "Шквал" был рассчитан исключительно под применение термоядерной боевой части мощностью 150 кт. При этом торпеда могла поразить цель на расстоянии не более 13 км, что вместе с сильным шумом машины демаскирует подлодку-носитель. А невозможность погружения более чем на 30 м не позволяет ракете-торпеде поражать цели на больших глубинах. Так что "потеря" главных секретов сверхскоростной торпеды — форма носового кавитатора, создающего газовый пузырь, благодаря которому она несется под водой с огромной скоростью, и рецептура уникального гидрореагирующего металлизированного топлива — в общем-то погоды не делала. Его пуск — целое событие в подводном мире. К грохоту открывающейся крышки торпедного аппарата добавляется рев работающего двигателя. Так что акустики атакуемой подводной лодки сразу поймут, что к чему. Корабль начнет уходить от встречи с неприятностями. Другое дело, что из-за скорости нападающего это сделать невозможно. Поэтому "Шквал" воспринимали как последний аргумент подводного боя. Это рабочая глубина корабля. На ней он относительно скрытен, хотя кильватерный след, оставляемый винтами, можно видеть со спутников еще много часов после прохождения субмарины. Зато на этой глубине экипаж может общаться с берегом с помощью специальных буксируемых радиоантенн. Но в случае реальной боевой опасности тот же "Ясень" нырнет на все 400, а возможно, и более метров, буквально растворившись в глубине. Но самое главное, что на его борту стоит оружие, которое можно применять и в такой бездне. По словам разработчиков, это торпеда "Футляр". Возможно, именно ее имел в виду Борис Обносов, говоря о "перспективных изделиях". О "Футляре" известно немного: это преемник торпеды "Физик", которая в свою очередь заменила принятую на вооружение в 1980 году 533-мм торпеду УЭСТ-80. Последняя действительно устарела.
Логвинович, ставший позже научным руководителем в разработке теории прикладных решений по вопросам гидродинамики и кавитации применительно к ракетам, использующим в движении принцип кавитации. Как итог данных работ и исследований советские конструкторы и ученые нашли уникальные решения для создания подобных высокоскоростных подводных ракет. Для обеспечения высокоскоростного подводного движения около 200 узлов требовался и высокоэффективный реактивный двигатель. Начало работ по созданию такого двигателя - 1960-е годы. Они проходят под управлением М. Завершает работы в 70-х годах Е. Параллельно с созданием уникального двигателя проходят работы по созданию уникального топлива для него и конструкции зарядов и производственных технологий для массового изготовления. Двигательной установкой становится гидрореактивный прямоточный двигатель. Для работы используется гидрореагирующее топливо. Импульс данного двигателя был в три раза выше современных ракетных двигателей того времени. Он достигался применением забортной воды в качестве рабочего материала и окислителя, а как топливо использовали гидрореагирующие металлы. Кроме того, для высокоскоростной подводной ракеты создавали и автономную систему управления, которая была создана под управлением И. Сафонова и имела переменную структуру. АСУ использует инновационный способ управления подводным движением ракето-торпеды, он обусловлен наличием каверны.
Ранее российскими конструкторами были разработаны комплексы, помогающие донаводить ударные беспилотники на цель с помощью оптики, то есть превращать дрон в «воздушную самонаводящуюся торпеду». По словам гендиректора Центра комплексных беспилотных решений Дмитрия Кузякина, сейчас разработано уже несколько подобных образцов.
В США оценили опасность российской скоростной торпеды «Шквал» для своего флота
Предприятие сделало почти невозможное: в 1978 году скоростная ракета «Шквал» была поставлена на вооружение. Об этом пишет журнал The National Interest.«ВА-111 «Шквал», суперкавитационная торпеда советской эпохи, произвела революцию в подводной войне благодаря способности развивать беспрецедентную скорость до 200 узлов, ракетному двигателю и феномену суперкавитации». ВА-111 «Шквал» — комплекс со скоростной подводной ракетой (ракетой-торпедой) М-5, предназначенный для поражения надводных и подводных целей. Размещается на корабле, подводной лодке или стационарной установке. Издательство 19FortyFive заявило, что российская скоростная торпеда ВА-111 "Шквал" представляет угрозу кораблям и подлодкам ВМС США. Скорость данной ракеты составляет 370 километров в час, что в превышает скорость других ракет в четыре раза. Предприятие сделало почти невозможное: в 1978 году скоростная ракета «Шквал» была поставлена на вооружение. Российская ракета-торпеда ВА-111 «Шквал», развивающая скорость до 370 километров в час, произвела революцию в подводной войне, пишет издание The National Interest.