Биотехнологии, биоинженерия, биомедицина и смежные области. Лента новостей. Курс евро на 20 апреля EUR ЦБ: 99,58 (-0,95) Инвестиции, 19 апр, 16:51 Курс доллара на 20 апреля USD ЦБ: 93,44 (-0,65) Инвестиции, 19 апр, 16:51.
Новое слово в биотехнологиях
Введение Современное состояние биотехнологии Биотехнология и её роль в практической деятельности человека Биотехнологии в растениеводстве. Биотехнологии-драйвер развития территорий. Посмотрите презентацию на 13 слайдах, которую биотехнология использовала для привлечения 120 миллионов долларов.
🗊Биотехнология Направления развития и достижения
Перспективы развития биотехнологий Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, Агро биотехнологии и экологические. 83 фото | Фото и картинки - сборники. Презентация Перспективы развития биотехнологии 2. Развитие биотехнологии позволит решить многие острые проблемы человечества. Презентация на тему: " Биотехнология " — Транскрипт: 1 Биотехнология дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их.
Медицинские новинки: редактирование генов, компьютер внутри человека и лекарство от рака
Статья автора «РБК Тренды» в Дзене: Что сегодня происходит в биомедицине и как высокие технологии помогают даже в безнадежных случаях Биотехнологии – сфера науки. Ученые рассказали ребятам о том, как биотехнологии применяют в современном мире. Презентация учебника «Биотехнология: основы биотехнологии и медицинской нанобиотехнологии» педагога и депутата ЗСО Елены Бахтенко прошла в ВоГУ. Перспективы развития биотехнологий Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, Агро биотехнологии и экологические. Главная» Новости» Конференции по биотехнологии в 2024 году в россии. Введение Современное состояние биотехнологии Биотехнология и её роль в практической деятельности человека Биотехнологии в растениеводстве.
Презентация на тему "Биотехнологии"
В настоящем выпуске информационного бюллетеня представлены три перспективных тренда в области биотехнологий. В рамках Форума пройдет Выставки-презентации инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства. Последние новости по теме биотехнологии: Исследование: 90% компаний Европы инвестируют в наукоемкие технологии. Таким чекпойнтом для многих молодых биологов, биотехнологов, предпринимателей стали зимние школы «Современная биология и Биотехнологии будущего». Перспективы развития биотехнологий Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, Агро биотехнологии и экологические. Презентация на тему "Биотехнология: достижения и перспективы развития", предназначена для сопровождения урока по аналогичной теме для обучающихся 10 класса.
Отраслевые биотехнологии
Ферменты обладают удивительным свойством — они сохраняют свою «работоспособность» и вне живой клетки, поэтому учёные занимаются разработкой технологий получения промышленной продукции с помощью ферментов, действующих как в колониях живых микроорганизмов, так и в свободном состоянии. Выделяемые из клеток свободные ферменты имеют ряд недостатков: они растворимы в воде, поэтому после окончания реакции в растворе их приходится отделять от продуктов процесса. При выделении и хранении ферменты могут потерять свою активность. Учёные нашли пути преодоления перечисленных трудностей. Для этого ферменты переводят в нерастворимую форму, закрепляя их на твёрдом носителе.
Владимир Волобуев CEO, MyGenetics Мы продолжаем рассказывать вам о последних достижениях биотехнологической науки, который изменят будущее и способны сделать нашу жизнь лучше. На очереди следующие революционные разработки, изменившие нашу жизнь: ГМО продукты, искусственный хрусталик, РНК-вакцины и 3D-печать органов. Ирина Колесникова, кандидат биологических наук, ведущий научный сотрудник компании MyGenetics, и Владимир Волобуев, СЕО компании MyGenetics, собрали главные достижения биотеха за последние годы. Читайте «Хайтек» в Генетически модифицированные организмы ГМО Эта тема уже набила оскомину всем, кто хотя бы раз покупал продукты в магазине, но, тем не менее, есть нюанс. А именно: тот же самый результат, которого селекция добивалась десятилетиями, генетическая инженерия получает значительно быстрее.
Предварительно проводятся исследования функций и особенностей планируемой модификации и ее безопасности для потребления. Повышенная токсичность, аллергенность и канцерогенность ГМО также не доказаны, то есть риск отравления и аллергии при употреблении таких продуктов совершенно такой же, как и при употреблении продуктов с пометкой «без ГМО». Что, разумеется, вовсе не отменяет контроля качества. Более того, исследования показывают значительно большую урожайность генномодифицированных сельскохозяйственных культур по сравнению с обычными. Такие культуры требуют в среднем значительно меньшей обработки пестицидами, поскольку могут быть значительно более устойчивы к вредителям.
Он наделяет своего «хозяина» новыми свойствами: высокая урожайность, пищевая и вкусовая ценность, устойчивость к болезням, пестицидам, выносливость и др. Встраиваются гены не только растений, но и бактерий , вирусов, рыб, млекопитающих и даже человека. В России с 1999 года зарегистрировано 7 трансгенных культур: соя, сахарная свёкла, 3 сорта кукурузы, 2 сорта картофеля. Генетически модифицированные продукты Слайд 12 Использование генетически модифицированных организмов ГМО сопровождается несколькими рисками.
В дополнение к теме Что такое биотехнологии? Биотехнология — междисциплинарная прикладная наука, изучающая и разрабатывающая различные способы использования биологических материалов и процессов в промышленных масштабах. Она включает изучение ДНК, РНК, белков, ферментов, микроорганизмов, культур клеток в процессах генетической модификации, биосинтеза, биотрансформации, а также выделение и модификацию биопродуктов, полученных таким путем. Биотехнологию на словах часто путают с генной инженерией. Между тем, последняя представляет собой набор очень сложных методов молекулярной биологии, которые могут быть использованы как в биотехнологии, так и в других областях науки, причем наибольший успех отмечается в здравоохранении. Биотехнологические процессы используются для селекции растений, производства лекарств первыми были антибиотики и вакцины и продуктов питания первенство принадлежало ферментированным продуктам , в химической и горнодобывающей промышленности. В зависимости от областей, в которых используется биотехнология, выделяют 3 ее категории, обозначенные цветами: белый, красный и зеленый. Каждое направление имеет свои особенности: Белая биотехнология. Используется в промышленном производстве и охране окружающей среды. Использование клеток бактерий, плесневых грибов, дрожжей и их ферментов позволяет преобразовывать сельскохозяйственную продукцию и производить лекарства, химикаты, пищевые добавки и другие продукты. Микроорганизмы также используются в промышленных масштабах для очистки сточных вод и почвы. Промышленные процессы на основе биотехнологии более экологичны и менее затратны, чем традиционные, что связано с меньшим потреблением энергии, экономией сырья и сокращением отходов. Красная биотехнология. Используется в здравоохранении для производства новых лекарств биопрепаратов и разработки генетической диагностики. В настоящее время большинство биопрепаратов производится с участием генетически модифицированных бактерий E. Используя биопрепараты, врачи могут успешно предотвращать диабет, инсульт, гепатит, анемию, астму, а также лейкемию и другие виды рака. Зеленая биотехнология. Связана с сельским хозяйством и используется для увеличения производства растений и животных. Один из продуктов этой отрасли биотехнологии — генетически модифицированные сорта растений, устойчивые, например, к грибковым и бактериальным заболеваниям. Некоторые культуры, такие как соя и кукуруза, были снабжены геном устойчивости к гербицидам. Примером белка, полученного учеными методами биотехнологии, является инсулин, который сегодня спасает жизни людей с диабетом.
Презентация: Биотехнология
По сути, это были попытки использовать в промышленном производстве отдельные клетки микроорганизмы и некоторые ферменты, способствующие протеканию ряда химических процессов. Слайд 7 Так, в 1814 году петербургский академик К. Кирхгоф открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья до середины XIX века сахар получали только из сахарного тростника. В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов. Слайд 8 Первый антибиотик — пенициллин — был выделен в 1940 году.
Вслед за пенициллином были открыты и другие антибиотики эта работа продолжается и поныне. С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине. Слайд 9 Синтезировать антибиотики химически было очень дорого или вообще невероятно трудно, почти невозможно недаром химический синтез тетрациклина советским учёным академиком М. Шемякиным считается одним из крупнейших достижений органического синтеза. И тогда решили для промышленного производства лекарственных препаратов использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики.
Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза. Слайд 10 Слайд 11 Микробиологический синтез Развитие микробиологической промышленности, выпускающей ценные продукты биосинтеза, позволило накопить очень важный опыт конструирования, производства и эксплуатации принципиально нового промышленного оборудования. Современное микробиологическое производство — производство очень высокой культуры.
Правда, пока установлено, насколько это безопасно для жизни и здоровья пациентов. Компьютеры внутри человека.
Человечество постепенно входит в эпоху квантовых технологий. Компания Илона Маска Neuralink уже вовсю производит миниатюрные нейрокомпьютерные интерфейсы. Имплантируемые в мозг частицы могут связать организм человека с Интернетом. В «пучке» из шести нейронитей содержатся 192 электрода, которые вживляются в мозг при помощи робота-хирурга. Если буквально, то человеческий мозг подключают к компьютерной системе.
Фото: Pixabay Фото: Pixabay Лекарство против рака. Изучение влияния бактерий на онкологию подтолкнуло специалистов к работе над препаратом Блеомицин.
Возможные способы применения массовой культуры водорослей. Слайд 15 Иммобилизованные ферменты находят применение и в медицине. Так, в нашей стране для лечения сердечно-сосудистых заболеваний разработан препарат иммобилизованной стрептокиназы препарат получил название «стрептодеказа». Этот препарат можно вводить в сосуды для растворения образовавшихся в них тромбов.
Растворимая в воде полисахаридная матрица к классу полисахаридов относятся, как известно, крахмал и целлюлоза, близким к ним по строению был и подобранный полимерный носитель , к которой химически «привязана» стрептокиназа, значительно повышает устойчивость фермента, снижает его токсичность и аллергическое действие и не влияет на активность, способность фермента растворять тромбы. Слайд 16 Субстраты для получения белка одноклеточных для разных классов микроорганизмов. Слайд 17 Слайд 18 Плазмиды Наибольшие успехи были достигнуты в области изменения генетического аппарата бактерий. Вводить новые гены в геном бактерии научились с помощью небольших кольцеобразных молекул ДНК — плазмид, присутствующих в бактериальных клетках. В плазмиды «вклеивают» необходимые гены, а затем такие гибридные плазмиды добавляют к культуре бактерий, например кишечной палочки. Некоторые из этих бактерий поглощают такие плазмиды целиком.
После этого плазмида начинает работать в клетке как ген, изготавливая в клетке кишечной палочки десятки своих копий, которые обеспечивают синтез новых белков. Слайд 19 Биогеотехнология Слайд 20 Итак, какова же структура биотехнологии? Учитывая, что биотехнология активно развивается и структура её окончательно не определилась, можно говорить лишь о тех видах биотехнологии, которые существуют в настоящее время. Это клеточная биотехнология — прикладная микробиология, культуры растительных и животных клеток об этом шла речь, когда мы говорили о микробиологической промышленности, о возможностях клеточных культур, о химическом мутагенезе.
На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства и награждение научно-исследовательских коллективов за актуальные разработки. Основная цель Форума — предоставить специалистам в фундаментальных и прикладных отраслях биотехнологий, медицины, фармацевтических и пищевых производств возможность презентовать свои исследования, наладить контакты, провести плодотворные научные дискуссии, в том числе для возможности инициирования совместных проектов — междисциплинарных и международных.
На мероприятии встретились учёные и разработчики наукоёмких технологий из России, Индии, Китая, Ирана, Австралии, Кубы и других стран. Требуется взаимодействие между людьми разных специальностей, это дает толчок к развитию», — обратился с приветствием к участникам Алексей Николаевич Фёдоров, директор ФИЦ Биотехнологии РАН. На торжественном открытии академик РАН Владимир Олегович Попов, научный руководитель ФИЦ Биотехнологии РАН, рассказал о направлениях работы Центра, его достижениях и ведущих проектах, а также подчеркнул значимость международной кооперации при реализации научных исследований. Господин Субрата Дас, Министр образования и социального обеспечения Посольства Республики Индия в РФ, отметил, что сотрудничество в развитии научных исследований и технологий — важнейшая часть отношений между Россией и Индией, а направления сотрудничества в области разработок для сельского хозяйства и энергетики являются одними из самых привлекательных для сотрудничества и инвестиций.
Биотехнология — презентация
Ученые уверенны, что решить эти и многие другие проблемы возможно при помощи биотехнологии. Основные типовые технологические приемы современной биотехнологии Биотехнологию можно выделить не только как науку, но еще и как сферу практической деятельности человека, которая отвечает за производство разного вида продукции при участии живых организмов или их клеток. Теоретической основой для биотехнологии в свое время стала такая наука, как генетика, это случилось в ХХ веке. А вот практически биотехнология основывалась на микробиологической промышленности. Микробиологическая промышленность в свою очередь получила сильный толчок в развитии после открытия и активного производства антибиотиков. Объектами, с которыми работает биотехнология, являются вирусы, бактерии, различные представители флоры и фауны, грибы, а также органоиды и изолированные клетки.
Наглядная биотехнология. Генная и клеточная инженерия Генетическая и клеточная инженерия в сочетании с биохимией — это основные сферы современной биотехнологии. Клеточная инженерия — выращивание в специальных условиях клеток различных живых организмов растений, животных, бактерий , разного рода исследования над ними комбинация, извлечение или пересадка. Самой успешной считается клеточная инженерия растений. При помощи клеточной инженерии растений стало возможным ускорение селекционных процессов, что позволяет выводить новые сорта сельхоз культур.
Теперь выведение нового сорта сократилось от 11 лет до 3-4. Генетическая или генная инженерия — отдел молекулярной биологии, в котором занимаются изучением и выделением генов из клеток живых организмов, после чего над ними проводятся манипуляции для достижения определенной цели. Главными инструментами, которые используются в генной инженерии, являются ферменты и векторы. Биотехнологии клонирования Клонирование — это процесс получения клонов то есть потомков полностью идентичных прототипу. Первый опыт клонирования был проведен на растениях, которые клонировались вегетативным путем.
Каждое отдельное растение, которое получилось вследствие клонирования, называлось клоном. В процессе развития генетики это термин начали применять не только к растениям, но и к генетическому выведению бактерий. Уже в конце ХХ века ученые начали активное обсуждение клонирования человека.
Работа ежегодной конференции охватывает следующие направления: «Сельскохозяйственная биотехнология»; «Пищевая биотехнология»; «Биоинформатика, клеточная и генетическая инженерия»; Медицинская биотехнология и биофармацевтика»; «Экология, биоэнергетика и биогеотехнология»; Секция «Промышленная биотехнология и производство БАВ». Заявлены как очные выступления учёных, так и постерная сессия. Организовано дистанционное участие молодых ученых из нашего университета. В рамках конференции проходило заседание Федерального УМО в системе высшего образования по укрупненной группе специальностей и направлений подготовки 19.
В результате исследований были разработаны методы лечения онкологических заболеваний, гепатита В и аутоиммунных заболеваний, которые уже начали применяться в клинике в экспериментальном режиме. Чрезвычайно актуальными в наши дни стали проекты создания банков культур клеток пациентов с наследственными и онкологическими заболеваниями для тестирования фармакологических препаратов. В Новосибирском научном центре такой проект уже реализуется межинститутским коллективом под руководством проф. Новосибирские специалисты отработали технологии внесения мутаций в культивируемые клетки человека, в результате чего были получены клеточные модели таких заболеваний, как боковой амиотрофический склероз, болезнь Альцгеймера, спинальная мышечная атрофия, синдром удлиненного интервала QT и гипертрофическая кардиомиопатия.
Разработка методов получения из обычных соматических клеток плюрипотентных стволовых, способных превратиться в любую клетку взрослого организма, привела и к появлению клеточной инженерии, позволяющей восстанавливать пораженные структуры организма. Удивительно быстро развиваются технологии получения трехмерных структур для клеточной и тканевой инженерии на основе биоразрушаемых полимеров: протезов сосудов, трехмерных матриксов для выращивания хрящевой ткани и конструирования искусственных органов. Мешалкина Новосибирск разработали технологию создания протезов сосудов и сердечных клапанов методом электроспиннинга. С помощью этой технологии из раствора полимера можно получить волокна толщиной от десятков нанометров до нескольких микрон.
В результате серии экспериментов удалось отобрать изделия с выдающимися физическими характеристиками, которые сейчас успешно проходят доклинические испытания. Благодаря высокой био- и гемосовместимости такие протезы со временем замещаются собственными тканями организма. Микробиом как объект и субъект терапии К настоящему времени хорошо изучены и расшифрованы геномы многих микроорганизмов, поражающих человека. Существенный вклад в эту область исследований внесли и отечественные ученые.
Также были изучены микробные сообщества, ассоциированные с различными видами опасных для человека клещей. В развитых странах сегодня активно ведутся работы, направленные на создание средств регуляции микробиома организма человека, в первую очередь его пищеварительного тракта. Как оказалось, от состава микробиома кишечника в огромной степени зависит состояние здоровья. Методы воздействия на микробиом уже существуют: например, обогащение его новыми терапевтическими бактериями, использование пробиотиков, благоприятствующих размножению полезных бактерий, а также прием бактериофагов вирусов бактерий , избирательно убивающих «вредные» микроорганизмы.
В последнее время работы по созданию средств терапии на основе бактериофагов активизировались во всем мире в связи с проблемой распространения лекарственно-устойчивых бактерий. В РФ существует промышленное производство препаратов, разработанных еще в советское время, и чтобы получать более эффективные бактериофаги, необходимо их совершенствовать, и эта задача может быть решена методами синтетической биологии. В институте охарактеризованы промышленно производимые в РФ фаговые препараты, расшифрованы геномы ряда бактериофагов, а также создана их коллекция, в которую вошли и уникальные вирусы, перспективные для применения в медицине. В клинике института отрабатываются механизмы оказания персонализированной помощи больным, страдающим от бактериальных инфекций, вызванных лекарственно-устойчивыми микроорганизмами.
Последние возникают при лечении диабетической стопы, а также в результате пролежней или послеоперационных осложнений. Разрабатываются и методы коррекции нарушений состава микробиома человека. Совершенно новые возможности использования вирусов открываются в связи с созданием технологий получения интеллектуальных систем высокоизбирательного действия на определенные клетки. Речь идет об онколитических вирусах, способных поражать только опухолевые клетки.
В экспериментальном режиме несколько таких вирусов уже применяются в Китае и США. Быстрое развитие синтетической биологии дает основание ожидать в ближайшие годы важных открытий и появления новых биомедицинских технологий, которые избавят человечество от многих проблем и позволят реально управлять здоровьем, а не только лечить наследственные и «благоприобретенные» заболевания. Фронт исследований в этой области чрезвычайно широк. Уже сейчас доступные гаджеты представляют собой не просто игрушки, но реально полезные приборы, ежедневно обеспечивающие человека информацией, необходимой для контроля и поддержания здоровья.
Новые технологии быстрого углубленного обследования дают возможность предсказать или своевременно обнаружить развитие болезни, а персонализированные препараты на основе «умных» информационных биополимеров позволят радикально решить проблемы борьбы с инфекционными и генетическими заболеваниями в самом ближайшем будущем. Литература Брызгунова О. Власов В. Комплементарные здоровью.
Лифшиц Г. Рихтер В. Kupryushkin M. Nasedkina T.
Ponomaryova A.
Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул. Группа генетически идентичных организмов или клеток — клон. Может осуществляться в пределах одного вида внутривидовая гибридизация и между разными систематическими группами отдалённая гибридизация, при которой происходит объединение разных геномов. Для первого поколения гибридов часто характерен гетерозис, выражающийся в лучшей приспособляемости, большей плодовитости и жизнеспособности организмов. При отдалённой гибридизации гибриды часто стерильны.
Презентация: Биотехнология
Зимняя школа «Современная биология и Биотехнологии будущего»: передружить всех между собой! | Биотехнологии — последние и свежие новости сегодня и за 2024 год на | Известия. |
Презентация биотехнологического комплекса в Министерстве науки и образования РФ | презентация онлайн. |
Биотехнология - Презентации по биологии | Ознакомиться с основными понятиями биотехнологии, узнать сферы ее применения. |
РОСБИОТЕХ-2024: инновационные биотехнологии в медицине, промышленности и сельском хозяйстве
Задачи исследований: изучить теоретический материал по исследуемым биостимуляторам; исследовать влияние различных стимуляторов на развитие растений. Объект исследования: семена гороха Гипотеза: стимуляторы оказывают влияние на развитие семян гороха, но в различной степени. Методы работы: анализ научной литературы, постановка эксперимента, наблюдение, сравнительный анализ. Добавить комментарий Ваш адрес email не будет опубликован.
Таким чекпойнтом для многих молодых биологов, биотехнологов, предпринимателей стали зимние школы «Современная биология и Биотехнологии будущего»: перекресток людей и идей, побывав на котором, вы никогда уже не станете прежними. Зачин Наши предки, советские люди, верили, что наука — это святое, а бизнес и деньги — грязь и недостойны интеллигента. Такое мировоззрение оставило вмятину и в наших головах. И потому российская наука до сих пор не умеет общаться с бизнесом. То есть взъерошенный очкастый Ученый за раскапыванием пробирок иной раз и позволит себе несмело помечтать о том, как продаст он свою Интересную Молекулу в Крутую Компанию за Огромные Деньги.
Но едва начнет сбываться его мечта и окажется в его лаборатории уверенный, щеголеватый Предприниматель, как Ученый, забившись в уголок возле тяги, лихорадочно вертя в потных руках пипетку, начнет лепетать такие несуразности про бизнес-план, рыночные перспективы и выход на самоокупаемость, что Предприниматель придет вначале в недоумение, потом в ужас, потом наконец в себя и больше не придет. Ни к этому ученому, ни вообще в российскую науку. А даже если какой-нибудь талантливый и храбрый Ученый и составит бизнес-план, и подсчитает риски, и продумает стратегию, и, отважившись, сам придет к Предпринимателю, то это тоже вряд ли будет пирком да за свадебку. Предприниматель и слыхом не слыхивал, что это за Интересная Молекула или Чудодейственный Аппарат. Опасаясь связаться не пойми с чем, он так умучает Ученого экспертными проверками и выявлением рисков, что Ученый придет вначале в недоумение, потом в ужас, потом наконец в себя и тоже больше не придет. Ни к этому Предпринимателю, ни вообще в бизнес. И это порочный круг, и мы в нём сидим. А ведь стране нужна связь между наукой и бизнесом, нужны инновации, и есть на них госзаказ.
А если есть госзаказ — так никуда страна не денется, будут в ней инновации. И если настоящих инноваций нет в стране, то будут в ней инновации потемкинские. Вот так и получается, что вместо счастливого и плодотворного брака между Настоящей Наукой и Честным Бизнесом возникают темные, полузаконные внебрачные связи между Псевдонаукой и Недобизнесом. И родятся от этих союзов Демоны и Химеры, смутные и опасные, как Петрик. И так оно и было в нашей стране, и казалось, что так и будет. Но в начале 2012 года ситуация начала меняться. Первая школа « Биотехнологии будущего » Всю эту историю заварили два молодых выпускника биофака МГУ и кандидата химических наук — двадцатипятилетний на тот момент Дмитрий Кузьмин , живущий в Лондоне предприниматель, яхтсмен и нейробиолог в Университетском колледже Лондона, человек, брызжущий энергией, как чайник кипятком, и двадцатисемилетний Александр Василевский , старший научный сотрудник ИБХ РАН, с такими безупречными публикациями и таким заразительным смехом, что это и описать невозможно. Эти двое решили вот просто так взять и устроить школу для молодых ученых и предпринимателей, где представители науки и бизнеса учились бы находить общий язык друг с другом, делать общее дело и понимать, зачем они вообще друг другу нужны.
К реализации своего проекта Кузьмин с Василевским привлекли друзей, знакомых и полузнакомых, и так в нашей истории появилась разношерстная толпа молодых научных сотрудников и аспирантов, предпринимателей и менеджеров одной из заметных в толпе фигур был один из основателей «биомолекулы» — угадайте, кто ; другая фигура — выпускница Высшей школы экономики Настя Дёмина — на несколько лет стала «исполнительным директором» всей тусовки. Команда была полузнакома и разбросана по всей планете. Денег на школу не было. Опыта создания таких масштабных мероприятий тоже не было. Затея явно была на что-то обречена. И оказалось, что она обречена на успех. За несколько месяцев лихорадочного написания писем, утрясания графиков, еженедельных созвонов без отрыва от основной работы ребята ухитрились придумать программу, набрать лекторов это были их друзья, шефы и они сами , найти пансионат, в котором можно было бы провести школу. Школу было решено назвать « Биотехнологии будущего ».
Так же стала называть себя команда организаторов. Кто же знал тогда, лихорадочным летом 2012 года, что название останется в веках, потому что команда не распадется, а окрепнет, расправит крылья и... Денег не было, уверенности в том, что деньги будут, тоже не было. Финансовые обязательства выдавались на собственный страх и риск, под личные средства. Однако в итоге деньги на школу дала поверившая в успех этого начинания Российская венчурная компания , без помощи которой вся затея вообще не состоялась бы. Школу нигде специально не рекламировали — только закинули объявления в соцсети и расклеили, где могли, афиши. Однако неожиданно конкурс составил больше трех человек на место. Подавались студенты старших курсов, аспиранты, молодые ученые, а также начинающие предприниматели в технологической сфере.
В результате на школе оказались самые интересные люди — от недавней выпускницы оксфордского биофака до профессиональной скрипачки, ушедшей в биоинформатику! Неожиданно эти люди оказались лучшими людьми в своей области — в основном это были биологи, но, кроме того, и математики, и физики, и экономисты. Но главное неожиданное выяснилось уже на школе: большинство участников оказались как будто членами одного братства, разлученными с детства кровными родственниками, которые сходу понимали друг друга, хотя встретились впервые в жизни. В августе 2012 в подмосковный пансионат «Клязьма» съехались молодые ученые и предприниматели со всей России. Их ждали круглые столы о науке и круглые костры о науке, дневные лекции и ночные споры конечно, тоже о науке ;- , новые люди и новые горизонты рис. И был понедельник, и была пятница, школа одна. Как это было во всех подробностях, лучше прочитать в официальном пост-релизе , а еще лучше — в полунеофициальных отчетах парочки организаторов: « Вокруг биотехнологий за 80 часов » и « Фаги, ведра пептидов и управление мыслями ». И не забудьте посмотреть фотки!
И увидел Гельфанд, что это хорошо. Рисунок 1. Краткий фотоотчет по Первой школе « Биотехнологии будущего ». Если активность среднего человека принять за единицу, то активность Гельфанда — это где-то 146. Доктор биологических наук, кандидат физико-математических наук, профессор факультета биоинженерии и биоинформатики МГУ , член Европейской Академии , заместитель директора Института проблем передачи информации РАН. Член Общественного совета при Министерстве образования и науки РФ. Член Совета Общества научных работников.
Академик РАН Владимир Алексеевич Черепенин рассказал о возможности применения мощных ультракоротких электромагнитных импульсов для борьбы с онкологическими заболеваниями, в том числе с карциномой. Уже внедрённой в клиническую практику инфракрасной термографии посвятил свой доклад ведущий научный сотрудник Института радиотехники и электроники им. Котельникова Михаил Иванович Щербаков.
Об инновационных разработках биоматериалов на основе коллагена для неудовлетворенных биомедицинских потребностей, например для применения в кардиохирургии коллагеновой мембраны, рассказал Б. В рамках Форума прошла выставка инновационных продуктов для здоровьесбережения, а также состоялось награждение научно-исследовательских коллективов дипломами и медалями в номинациях «Конкурс молодых ученых, аспирантов и студентов» и «Конкурс инновационных разработок и проектов в области биотехнологий».
Автор знакомит с каждым из направлений, представляя краткий рассказ о каждом из них. Все слайды снабжены наглядными иллюстрациями по теме.