Новости нервные импульсы поступают непосредственно к железам по

Найди верный ответ на вопрос«Нервные импульсы поступают к мышцам, железам и другим рабочим органам по 1) белому веществу спинного мозга 2) вставочным нейронам 3) » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся. По какому нейрону нервные импульсы поступают из ЦНС к рабочему органу?

Информация

Задание №9 ОГЭ по Биологии Слайд 6 Нервные импульсы поступают непосредственно к железам по.
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам От него по волокнам симпатической нервной системы импульсы идут к мышцам сосудов и вызывают их сокращение, вследствие чего наступает сужение сосудов.

Задание №9 ОГЭ по Биологии

Рефлекс - это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями - рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др. Простейшая рефлекторная дуга состоит из трех нейронов - чувствительного, вставочного и двигательного или секреторного. Тело первого нейрона афферентного находится в спинномозговом узле или чувствительном узле черепного нерва. Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение.

В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру. В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу.

Аксоны этих нейронов сильно ветвятся и проецируются в различные области — гипоталамус, мозжечок и передний мозг. Норадреналиновые нейроны причастны к поддержанию бодрствования, к системе поощрения центр удовольствия , к сновидениям и к регуляции настроения. Нейроны, содержащие моноамин дофамин сосредоточены в substantia nigra и в вентральной покрышку. Нейроны, содержащие дофамин посылают свои аксоны в передний мозг эмоции и в область полосатого тела регуляция сложных движений. Деградация дофаминовых волокон в данной части мозга приводит к ригидности мышц и тремору, симптомам, характерным для болезни Паркинсона. Избыток дофамина в лимбической системе переднего мозга, возможно причастен к шизофрении. Процесс химической передачи проходит ряд этапов: синтез медиатора, его накопление, высвобождение, взаимодействие с рецептором и прекращение действия медиатора. Каждый из этих этапов детально охарактеризован, и найдены препараты, которые избирательно усиливают или блокируют конкретный этап. Эти исследования позволили проникнуть в механизм действия психотропных лекарственных средств, а также выявить связь некоторых нервных и психических болезней со специфическими нарушениями синаптических механизмов: Синтез молекул медиатора в нервных окончаниях. Каждый нейрон обычно обладает только таким биохимическим "аппаратом", какой ему нужен для синтеза медиаторов, которые выделяются из всех окончаний его аксона. Молекулы медиатора синтезируются путём соединения предшественников или их изменений в результате ряда ферментативных реакций. Может быть один этап ферментативного катализа ацетилхолин или до трёх этапов адреналин. Аминокислоты синтезируются из глюкозы. Многие этапы синтеза можно блокировать фармакологическими агентами, что лежит в основе действия многих лекарств, влияющих на нервную систему. После выработки молекул медиатора они накапливаются и хранятся в окончании аксона в маленьких мешочках, связанных с мембраной. В одном окончании могут быть тысячи синаптических пузырьков, каждый из которых содержит от 10 тыс. Высвобождение Приход нервного импульса в окончание аксона вызывает высвобождение множества молекул медиатора из окончания в синаптическую щель. Механизм такого выделения остаётся????? Взаимодействие с рецептором. Вышедшие молекулы медиатора быстро проходят через наполненную жидкостью щель между окончанием аксона и мембраной воспринимающего нейрона. Здесь они взаимодействуют со специфическими рецепторами постсинаптической мембраны. Рецепторы фактически представляют собой крупные белковые молекулы, погружённые в полужидкую матрицу клеточной мембраны: части их торчат над и под мембраной подобно айсбергам. Выходящий на поверхность участок рецепторного блока и молекула медиатора имеют одинаковые очертания, они соответствуют друг другу как ключ и замок. Существует 2 основных типа медиаторных рецепторов: быстро действующие — осуществляют передачу, регулируя проницаемость ионной поры, и медленно действующие, которые вызывают образование второго посредника, который в свою очередь опосредует эффекты, производимые медиатором в постсинаптическом нейроне. Окончательное действие Взаимодействие медиатора с его рецептором меняет трёхмерную форму рецепторного белка, инициируя этим определённую последовательность событий. Это взаимодействие может вызвать возбуждение или торможение нейрона, сокращение миоцита, а также образование и выделение гормона клеткой железы. Во всех этих случаях рецептор "переводит сообщение, закодированное в молекулярной структуре медиатора, в специфическую физиологическую реакцию.

Назовите три органа. Слюнные железы — это железы внешней секреции, потому что 1 в их составе имеются дезинфицирующие вещества 2 они смачивают сухую пищу 3 в них содержатся гормоны 4 их секрет выводится по протокам в ротовую полость Лейкоциты, в отличие от других форменных элементов крови, способны 1 сохранять форму своего тела 2 вступать в непрочное соединение с кислородом 3 вступать в непрочное соединение с углекислым газом 4 выходить из капилляров в межклеточное пространство В каком из перечисленных сосудов кровеносной системы наблюдается наиболее высокое давление крови?

Слюнные железы — это железы внешней секреции, потому что 1 в их составе имеются дезинфицирующие вещества 2 они смачивают сухую пищу 3 в них содержатся гормоны 4 их секрет выводится по протокам в ротовую полость Лейкоциты, в отличие от других форменных элементов крови, способны 1 сохранять форму своего тела 2 вступать в непрочное соединение с кислородом 3 вступать в непрочное соединение с углекислым газом 4 выходить из капилляров в межклеточное пространство В каком из перечисленных сосудов кровеносной системы наблюдается наиболее высокое давление крови?

Нейрогуморальная регуляция процессов жизнедеятельности

  • Как устроена периферическая нервная система человека?
  • Строение головного мозга
  • Нервная регуляция
  • ОБНОВЛЕНИЯ

Информация

2294 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки. Если нервная система посылает свои импульсы по нервам, точно к определённым органам, и быстро изменяет их работу, то поступившие в кровь гормоны достигают цели медленнее, но зато они охватывают сразу больше органов и тканей.

ГДЗ по биологии 8 класс Драгомилов | Страница 47

Нервные импульсы поступают непосредственно По нисходящим волокнам нервные импульсы от нейронов головного мозга проводятся вниз – к нижерасположенным сегментам спинного мозга.
Как устроена периферическая нервная система человека? Нервные импульсы поступают непосредственно. Нервный Импульс по аксону. По аксонам нервные импульсы поступают к. Взаимосвязь нейронов.

Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных

2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам. е импульсы поступают непосредственно к железам по. Нервные импульсы поступают непосредственно к мышцам и железам по 1)аксонам вставочных нейронов 2)аксонам двигательных нейронов 3)белому веществу спинного мозга 4)серому веществу спинного мозга. Добавить в избранное 0. Вопрос пользователя. Нервные импульсы поступают непосредственно к железам по. Ответ эксперта. аксонам двигательных нейронов.

Остались вопросы?

Органеллы в нервной клетке те же, что и в других клетках. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет состоит из микрофиламентов и микротрубочек. Его функция: поддержание формы клетки, транспорт органелл и упакованных в мембранные пузырьки веществ например, нейромедиаторов — молекул — передатчиков нервных импульсов. Из специфических органелл присутствует тигроид тельца Ниссля и нейрофибриллы. Тигроид состоит из сильно развитой шероховатой ЭПС с активными рибосомами и аппарата Гольджи; его функция — синтез специфических белков. Выглядит эта структура как «мелкая зернистость и полосатость» в теле и дендритах нейрона отсюда и название. Длительное голодание или стресс приводит к разрушению тигроида и прекращению синтеза специфических белков. Связь нейрона с другими клетками Нейрофибриллы нейрофиламенты состоят из микротрубочек и являются основным структурным компонентом цитоскелета. Их функция — аксональный транспорт перемещение веществ по аксону.

Аксональный транспорт Помимо своей специфической функции в качестве проводника нервных импульсов аксон является каналом для транспорта веществ. Аксональный аксонный транспорт — это перемещение веществ по аксону. Белки, синтезированные в теле клетки, нейромедиаторы и низкомолекулярные соединения перемещаются по аксону вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен также транспорт в обратном направлении. Вирусы и токсины могут проникать в аксон на его периферии и перемещаться по нему. Аксональный транспорт — активный процесс — зависит от энергии АТФ. При снижении уровня АТФ вдвое аксональный транспорт блокируется.

Он обеспечивает неравенство концентрации ионов. Процесс сопровождается затратой энергии. Одной молекулы АТФ хватает на транспорт 2 молекул калия и трех молекул натрия. Калий преобладает в клетках нейрона над натрием и свободно выходит из наружу. Когда на клетку действует раздражитель, возбуждение вызывает возрастание проницаемости мембраны клеток нервов. Ионы получают возможность перемещаться по градиенту концентрации. После чего, поток ионов натрия становится выше, чем калия. Это действие обуславливает потенциал действия. Нервы проводят через себя электрический ток. Ток проходит через тело нейрона к периферическому концу. Так происходит изменение проницаемости. Центральная нервная система Состоит из головного и спинного мозга. Является ведущим центром в организме человека, отвечающим за мышление, координацию движений, психическое состояние и взаимодействие с окружающим миром.

Тем не менее, говоря о регуляторных системах человеческого организма, в первую очередь имеют в виду нервную систему. Дело в том, что она первой успевает ответить на изменение ситуации, а ее реакция является самой быстрой и адресной. Для нервной системы характерна точная направленность нервных импульсов, большая скорость проведения информации. Именно работа этой системы служит основой для психической деятельности человека, его мышления, речи, сложных форм поведения. Нервная ткань Основа нервной системы — нервная ткань. Нервная ткань состоит из нервных клеток — нейронов и вспомогательных нейроглиальных клеток, или клеток-спутниц. Вспомогательные клетки располагаются между нейронами и составляют межклеточное вещество нервной ткани. Выполняют опорную, защитную и питательную функции. Нервная ткань Нейрон — основная структурно-функциональная единица нервной ткани. Основные функции нейронов — генерация, проведение и передача нервного импульса — электрического сигнала, передающегося по нервным клеткам. Строение нейрона Нейрон состоит из тела и отростков. Отростки бывают короткими и длинными. Длинные отростки нервных клеток пронизывают организм и обеспечивают связь головного и спинного мозга с любым участком тела. У большинства нейронов длинный отросток имеет оболочку из особого жироподобного вещества миелина. Миелиновая оболочка способствует изоляции нервного волокна. Нервный импульс проводится по такому волокну быстрее, чем по лишенному миелина. По наличию или отсутствию оболочки все отростки делятся на миелинизированные и немиелинизированные. Строение нейрона Миелиновая оболочка имеет белый цвет, что позволило разделить вещество нервной системы на белое и серое. Тела нейронов и их короткие отростки образуют серое вещество мозга, а волокна — белое вещество. Функциональное различие отростков нейронов связано с проведением нервного импульса.

Способность оперировать абстрактными понятиями, выражаемыми словами, служит основой мыслительной деятельности. Язык -это форма существования мысли и ее обмена. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Эта информация доступна зарегистрированным пользователям Оболочки головного мозга. Гематоэнцефалический барьер. Черепно- мозговые нервы Головной мозг защищен не только скелетом головы черепом , но еще оболочками из соединительной ткани твердой, паутинной и мягкой , которые переходят в аналогичные оболочки спинного мозга. Оболочки головного мозга. Твердая оболочка головного мозга одновременно является надкостницей внутренней поверхности костей черепа. Наиболее плотное соединение этой оболочки наблюдаются в районе черепных швов. Здесь проходит большое количество кровеносных сосудов. Твердая мозговая оболочка обладает болевой чувствительностью.

Нервные импульсы поступают непосредственно к железам по

К железам нервные импульсы поступают по нервным нитям. Например: мы видим опасность, мозг анализирует, что это действительно опасность и отправляет импульс в надпочечники, где выделяется адреналин. Знаешь ответ?

На вопросы могут отвечать также любые пользователи, в том числе и педагоги. Консультацию по вопросам и домашним заданиям может получить любой школьник или студент. Нервные импульсы поступают непосредственно к железам по1 аксонам двигательных Сердитые импульсы поступают конкретно к железам по 1.

Во втором задании правильным ответом является и 2 и 3, так как нервные импульсы могут образовываться в аксонных холмиках в телах нейронов. В 11 задании отмечен ответ 2, но правильным является 3, тк червь - образование между полушариями мозжечка, а для коры характерны серое вещество, извилины и борозды. В вопросе B1 не подходит ответ 4, так как внутренними органами управляет вегетативная нервная система, а у вас получается прям как в фильме "Формула любви", по желанию бьется сердце, по желанию не бьется.

Опорожнение желчного пузыря осуществляется на основе условных и безусловных рефлексов. Условнорефлекторное опорожнение желчного пузыря происходит при виде и запахе пищи, разговоре о знакомой и вкусной пище при наличии аппетита.

Безусловнорефлекторное опорожнение желчного пузыря связано с поступлением пищи в ротовую полость, желудок, кишечник. Сфинктер Одди остается открытым в течение всего процесса пищеварения, поэтому желчь продолжает свободно поступать в двенадцатиперстную кишку. Как только последняя порция пищи покидает двенадцатиперстную кишку, сфинктер Одди закрывается. Кишечное пищеварение завершает этап механической и химической обработки пищи. В тонкий кишечник поступает секрет дуоденальных желез, поджелудочной железы и печени. Здесь пищеварительные соки продолжают свое переваривающее действие, так как в тонком кишечнике имеется также щелочная среда. К влиянию этих пищеварительных секретов присоединяется мощное действие кишечного сока. В кишечнике различают полостное и пристеночное, или мембранное, пищеварение. Полостное пищеварение обеспечивает начальный гидролиз пищевых веществ до промежуточных продуктов. Мембранное пищеварение обеспечивает гидролиз промежуточной и заключительной его стадий, а также переход к всасыванию.

Состав, свойства кишечного сока и его значение в пищеварении. У взрослого человека за сутки отделяется 2—3 л кишечного сока слабощелочной реакции. Представителями пептидаз являются лейцина-минопептидаза и аминопептидаза, расщепляющие продукты переваривания белка, образующиеся в желудке и двенадцатиперстной кишке. В кишечном соке содержатся кислая и щелочная фосфатазы, участвующие в переваривании фосфолипидов, липаза, которая действует на нейтральные жиры. В кишечном соке содержатся карбогидразы амилаза, мальтаза, сахараза, лактаза , расщепляющие полисахариды и дисахариды до стадии моносахаров. Специфическим ферментом кишечного сока является энтерокиназа, которая катализирует превращение трипсиногена в трипсин. Регуляция деятельности желез кишечника. За счет нервных воздействий регулируется образование ферментов. В условиях денервации тонкого кишечника наблюдается «разлад» в работе секреторной клетки: сока выделяется много, но он беден ферментами. Кора большого мозга принимает участие в регуляции секреторной активности тонкого кишечника.

Стимулирует секрецию кишечных желез гормон энтерокринин. Этот гормон образуется и выделяется при соприкосновении содержимого кишечника со слизистой оболочкой. Энтерокринин стимулирует отделение главным образом жидкой части сока. Моторная функция тонкого кишечника и ее регуляция. В тонком кишечнике различают перистальтические и неперистальтические движения. Перистальтические сокращения обеспечивают продвижение пищевой кашицы по кишечнику. Этот вид двигательной активности кишечника обусловлен координированным сокращением продольного и циркулярного слоев мышц. При этом происходит сокращение кольцевых мышц верхнего отрезка кишки и выдавливание пищевой кашицы в одновременно расширяющийся за счет сокращения продольных мышц нижний участок. Неперистальтические движения тонкого кишечника представлены сегментирующими сокращениями. К ним относят ритмическую сегментацию и маятникообразные движения.

Ритмические сокращения делят пищевую кашицу на отдельные сегменты, что способствует ее лучшему растиранию и перемешиванию с пищеварительными соками. Маятникообразные движения обусловлены сокращением круговых и продольных мышц кишечника. Маятникообразные движения способствуют тщательному перемешиванию химуса с пищеварительными соками. В регуляции моторной активности тонкого кишечника участвуют нервные и гуморальные механизмы, объединенные в единую регуляторную систему, за счет деятельности которой усиливается или ослабляется моторная функция тонкого кишечника. Нервный механизм. Моторная функция кишечника регулируется интрамуральной и экстрамуральной нервной системой. К интрамуральной нервной системе относят мышечно-кишечное ауэрбаховское , глубокое межмышечное и подслизистое мейсснеровское сплетения. Они обеспечивают возникновение местных рефлекторных реакций, которые возникают при раздражении слизистой оболочки кишечника его содержимым. Экстрамуральная нервная система кишечника представлена блуждающими и чревными нервами. Блуждающие нервы при их возбуждении стимулируют моторную функцию кишечника, чревные тормозят ее.

Моторная функция тонкого кишечника стимулируется рефлекторно при возбуждении рецепторов различных отделов желудочно-кишечного тракта. Рефлекторно стимулирует моторную функцию тонкого кишечника акт еды. Гуморальная регуляция моторной функции тонкого кишечника. Стимулирующее влияние на моторную функцию кишечника оказывают биологически активные вещества серотонин, гистамин, брадикинин и др. Тормозят двигательную активность кишечника гормоны мозгового слоя надпочечников — адреналин и норадреналин. Вследствие этого такие эмоциональные состояния организма, как страх, испуг, гнев, злость, ярость и т. Существенное значение в регуляции моторной функции кишечника имеют физико-химические свойства пищи. Грубая пища, содержащая большое количество клетчатки, овощи стимулируют двигательную активность кишечника. Составные части пищеварительных соков — хлористоводородная кислота, желчные кислоты — также усиливают моторную функцию кишечника. При отсутствии пищеварения илеоцекальный сфинктер закрыт.

В результате пищевая кашица небольшими порциями поступает в слепую кишку. Основной функцией проксимальной части толстых кишок является всасывание воды. Роль дистального отдела толстого кишечника состоит в формировании каловых масс и удалении их из организма. Всасывание питательных веществ в толстом кишечнике незначительно. Существенная роль в процессе пищеварения принадлежит микрофлоре — кишечной палочке и бактериям молочнокислого брожения. Бактерии в процессе своей жизнедеятельности выполняют полезные для организма функции. Бактерии молочнокислого брожения образуют молочную кислоту, которая обладает антисептическим свойством. Бактерии синтезируют витамины группы В, витамин К, пантотеновую и амидникотиновую кислоты, лактофлавин.

Нервные импульсы поступают непосредственно к железам по...?

Аксодендрическая связь представлена синапсами двух типов. Один тип — это синапсы с широкой синаптической щелью и сами мембраны более утолщены. Такие синапсы характерны для возбуждающих нейронов. Другие синапсы принадлежат тормозным нейронам. Если аксон одного нейрона контактирует с перикарионом другого постсинаптического нейрона, то такой синапс называется аксосоматическим. Если же аксон одного нейрона контактирует с аксоном другого постсинаптического нейрона, то такой синапс называется аксо-аксональным. Межнейронные синапсы очень многочисленны. На поверхности перикариона и отростков одного пирамидного нейрона в коре больших полушарий головного мозга имеется около 104 синапсов. Рецепторно — нейрональные рецепторно - дендритные синапсы являются синапсами между рецепторными клетками, сходными с нейронами, специализированными эпителиальными, нейроглиальными клетками, с одной стороны, и дендритами чувствительных нейронов — с другой. Примером синапсов такого типа у позвоночных являются синапсы вкусовых сосочков, боковой линии рыб, внутреннего уха, кожи, соединительной ткани. Нейроэффкторные аксоэффекторные синапсы являются контактами между аксоном двигательных эффекторных нейронов и клетками, не принадлежащими к нервной системе.

У человека и млекопитающих хорошо изучены двигательные и секреторные нейроэффекторные синапсы, или эффекторные нервные окончания. Первые представляют собой синаптические соединения между аксоном двигательного нейрона и поперечнополосатыми мышечными волокнами, поперечнополосатыми и гладкомышечными клетками, а вторые — между аксонами двигательного нейрона с секреторными клетками. Существуют многочисленные синапсы между аксоном эфферентного нейрона и другими клетками — жировыми, ресничными и др. Для того чтобы мозг нормально функционировал, потоки нервных сигналов должны находить надлежащие пути среди клеток различных функциональных систем и межрегиональных объединений. Однако до сих пор остается загадкой, каким образом аксоны и дендриты той или иной нервной клетки растут именно в том направлении, чтобы создавались специфические связи, необходимые для ее функционирования. Высокая специфичность структуры мозга имеет важное значение. Общий диапазон связей для большинства нервных клеток, по-видимому, предопределен заранее, причем эта предопределенность касается тех клеточных свойств, которые ученые считают генетически контролируемыми. Набор генов, предназначенных для проявления в развивающейся нервной клетке, каким-то еще до конца не установленным образом определяет как будущий тип каждой нервной клетки, так и принадлежность ее к той или иной сети. Концепция генетической детерминированности приложима и ко всем остальным особенностям данного нейрона, например к используемому им медиатору, к размерам и форме клетки. Как внутриклеточные процессы, так и межнейронные взаимодействия определяются генетической специализацией клетки.

Типы нервных сетей. Существуют три генетически детерминированных типа нервных сетей. Чтобы сделать концепцию генетической детерминации нейронных сетей более понятной, давайте уменьшим их число и представим себе, что наша нервная система состоит всего лишь из 9 клеток см. Это абсурдное упрощение поможет нам проявляется в наличии трех основных типов сетей, которые встречаются повсюду, — иерархические, локальные и дивергентные с одним входом. Иерархические сети. Наиболее распространенный тип межнейронных связей встречаются в главных сенсорных и двигательных путях. В сенсорных системах иерархическая организация носит восходящий характер. В нее включаются различные клеточные уровни, по которым информация поступает в высшие центры — от первичных рецепторов к вторичным вставочным нейронам, затем к третичным и т. Двигательные системы организованы по принципу нисходящей иерархии, где команды «спускаются» от нервной системы к мышцам: клетки, расположенные, фигурально говоря, «наверху», передают информацию специфическим моторным клеткам спинного мозга, а те в свою очередь — определенным группам мышечных клеток. Иерархические системы обеспечивают очень точную передачу информации.

В результате конвергенции когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня или дивергенции когда контакты устанавливаются с большим числом клеток следующего уровня информация фильтруется и происходит усиление сигналов. Но, подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему. Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети. Локальные сети. Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они, по всей видимости, широко распространены во всех мозговых сетях. Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации.

Дивергентные сети с одним входом. В некоторых нервных сетях имеются скопления или слои нейронов, в которых один нейрон образует выходные связи с очень большим числом других клеток в таких сетях дивергенция доведена до крайних пределов. Изучение сетей такого типа начато лишь недавно, и единственные места, где они встречаются насколько нам сейчас известно , — это некоторые части среднего мозга и ствола мозга. Преимущества подобной системы в том, что она может оказывать влияние на множество нейронов сразу и иногда осуществлять связь со всеми иерархическими уровнями, нередко выходя за пределы специфических сенсорных, двигательных и других функциональных объединений. Сфера воздействия таких сетей не ограничена какой-либо системой с определенными функциями. Дивергирующие пути этих сетей иногда называют неспецифическими и поэтому такие сети могут влиять на самые различные уровни и функции. Они играют большую роль в интеграции многих видов деятельности нервной системы. Кроме того, медиаторы, используемые в дивергентных системах с одним входом, — это медиаторы с «условным» действием: их эффект зависит от условий, в которых он осуществляется. Подобные воздействия весьма важны и для интегративных механизмов. Однако дивергентные сети такого типа составляют лишь небольшую часть всех нервных сетей.

Тема 6. Концевые нервные аппараты и их классификация. Рефлекторная дуга и динамическая поляризация нейронов Связь нейронов с различными тканями и органами устанавливается при помощи нервных волокон, которые образуют в них концевые нервные аппараты нервные окончания. Окончания аксонов периферических нервов подразделяют на чувствительные афферентные и двигательные эфферентные. Приспособления, которые воспринимают раздражения, называются рецепторными аппаратами, или чувствительными нервными окончаниями, а нервы, проводящие возбуждение — чувствительными. Реализация нервных импульсов осуществляется эффекторными аппаратами двигательными нервным окончаниями , а проведения возбуждения к ним происходит по двигательным нервам. Концевые нервные аппараты — сложные образования. В их состав входят не только нервные волокна, но и ткани, в которых они оканчиваются. Структура концевых аппаратов разнообразна, меняется в зависимости от условий, в которой они находятся. Эффекторный аппарат хорошо представлен на двигательной бляшке.

Он располагается на поперечнополосатом мышечном волокне в виде разветвления осевого цилиндра мякотного нервного волокна которое теряет миелин. По данным электронной микроскопии, для двигательной бляшки характерно отчетливое разграничение нервной и мышечной частей. В гладких мышцах двигательная иннервация осуществляется безмякотными нервными окончаниями. Секреторные окончания эффекторных нейронов представлены аксонами, выступающими в Синаптический контакт с железистыми клетками. Концевые разветвления аксона либо подходят вплотную к секреторной клетке, либо глубоко вдавливаются в нее. Нейролемма аксона и плазмалемма секреторной клетки образуют соответственно пресинаптическую и постсинаптическую мембраны, разделенные узкой синаптической щелью. Холинрецепторы присутствуют также в мембране мышечного волокна вне синапса, но здесь их концентрация на порядок меньше, чем в постсинаптической мембране и обозначаются они как холинрецепторы. Рецепторные аппараты рецепторные нервные окончания. Рецепторные воспринимающие нервные окончания у позвоночных представляют собой концевые аппараты дендритов чувствительных нейронов, тела которых располагаются чаше всего в спинальных ганглиях и их аналогах — черепномозговых чувствительных узлах или в периферических вегетативных ганглиях. В зависимости от того, откуда они воспринимают раздражение, различают экстерорецепторы и интерорецепторы.

Первые воспринимают раздражения из внешней среды, вторые — из внутренних органов. Кроме того, с учетом специфичности раздражителя различают тактильные, холодовые, тепловые, болевые рецепторы, барорецепторы, хеморецепторы, механорецепторы. По морфологическим особенностям рецепторные окончания могут быть свободными, располагающимися между клетками иннервируемой ткани, и несвободными, инкапсулированными заключенными в особые соединительнотканные капсулы. Свободные нервные окончания — наиболее распространенный тип сенсорных рецепторов. Большинство свободных нервных окончаний — механорецепторы. Распространены в прослойках соединительной ткани внутренних органов, а также в соединительнотканной основе кожи. Свободные нервные окончания эпидермиса расположены в базальном и шиповатом слоях. В области кожи с высокой тактильной чувствительностью пальцы рук терминали достигают зернистого слоя. Некоторые окончания в эпидермисе специализированы для регистрации изменений температуры. Свободные нервные окончания имеются и в других органах чувств слуха, равновесия, вкуса , закладывающихся из эктодермы.

В многослойном эпителии локализованы чувствительные осязательные клетки Меркеля, имеющие округлую или удлиненную форму. Они соединены с эпителиоцитами при помощи десмосом и формируют контакт с нервными терминалями. В клетках Меркеля обнаружены пептиды и нейроспецифические вещества, что свидетельствует об их эндокринной функции. Это позволяет рассматривать их как компонент диффузной нейроэндокринной системы. Капсулированные чувствительные нервные окончания построены по единому плану и наблюдаются в соединительной и мышечной тканях. Эти рецепторные нервные окончания имеют соединительнотканные капсулы различного строения. К капсулированным рецепторам мышечной ткани относятся нервно-мышечные веретена и капсулированные кустики. Они являются специфическими рецепторами соматической мускулатуры, воспринимающие ощущение растяжения мышечного волокна. Одним концом они прикреплены к перимизию мышечного волокна, а другим - к сухожилию. В гладкой мускулатуре внутренних органов находятся кустиковидные свободные рецепторные окончания.

Строение инкапсулированных рецепторных окончаний изучены на примере осязательных телец телец Мейсснера и пластинчатых телец телец Фатер - Пачини. Осязательные тельца расположены в сосочковом слое кожи и являются механорецепторами. Тельце имеет удлиненную форму. Внутренняя часть тельца состоит из уплощенных нейроглиальных клеток, окружающих дендрит и образующих вместе внутреннюю колбу тельца. С внешней стороны тельце покрыто соединительнотканной капсулой и образует наружную колбу. В теле человека наиболее распространены пластинчатые тельца, или тельца Фатер — Пачини, которые являются механорецепторами. Они встречаются в глубоких слоях кожи, на брыжейке, в молочной железе, кишечнике, поджелудочной железе, соединительной ткани внутренних органов, около кровеносных сосудов. Тельце имеет овальную форму, и его размеры колеблются в пределах 0,5- 1,0 мм. Внутренняя колба, наружная капсула и терминальное нервное волокно — основные компоненты тельца. Внутренняя колба тельца содержит нейроглиальные клетки.

Вокруг внутренней колбы находится мощная соединительнотканная капсула, состоящая из плоских серповидных соединительнотканных клеток. К тельцу Фатер — Пачини подходит толстое миелинизированное нервное волокно. Внутри наружной капсулы они образуют несколько перехватов Ранвье. Подойдя к внутренней колбе рецептора, нервное волокно теряет миелин и переходит в чувствительную нервную терминаль. Эти тельца воспринимают ощущение давления на органы и внутриорганное давление. К механорецепторам примерно такого же строения относятся луковицеобразные тельца тельца Гольджи — Маццони , которые расположены в концевой части сухожилий на границе с мышцей, а также в связках капсулы суставов. В теле человека встречаются концевые колбы колбы Краузе , которые являются терморецепторами. Они расположены в соединительнотканной основе кожи, слизистых и серозных оболочках. Они также имеют тонкую соединительнотканную капсулу, образующую наружную колбу рецептора. Температурные раздражения воспринимают капсулированные клубочки тельца Руффини — крупные рецепторы веретеновидной формы длиной до 2 мм и диаметром около 150 мкм.

Они располагаются в соединительной ткани кожи и суставов. К группе капсулированных нервных окончаний относятся генитальные тельца тельца Догеля. Они обнаружены в соединительной ткани половых органов, головки полового члена, клитора и других частях тела. По своему строению они напоминают тельца колбы Краузе. Генитальное тельце является механо — и барорецептором, поскольку реагирует на изменение кровяного давления. Из капсулированных механорецепторов кожи птиц наиболее распространены тельца Хербста и тельца Грандри, расположенные в восковице пластинчатоклювых. Тельце Хербста имеют такое же строение, как и тельца Фатер — Пачини. Тельце Грандри мельче телец Хербста и они обладают более тонкой соединительнотканной капсулой. Внутри капсулы находятся две крупные нейроглиальные клетки с крупными овальными ядрами. Таким образом, инкапсулированные рецепторные окончания всегда состоят из разветвлений осевого цилиндра чувствительного нейрона, оканчивающихся на глиальных клетках, окруженных соединительнотканной капсулой.

Рефлекторная дуга. Все тканевые элементы нервной системы образуют нейронные связи, благодаря которым осуществляется рефлекс - ответная реакция организма на различные раздражения, осуществляемая при помощи нервной системы. Рефлекс осуществляется при помощи рефлекторной дуги. Рефлекторная дуга имеет следующие элементы: рецептор, чувствительный нерв, участок ЦНС, двигательный нерв, исполнительный орган. При помощи рефлексов происходит приспособление организма к меняющимся условиям окружающей среды Рис. Различают простые и сложные рефлексы. Простейший рефлекс выполняется на уровне спинного мозга без участия головного мозга. Такой рефлекс осуществляется при участии трех типов нейронов: чувствительного, вставочного и двигательного. Чувствительный нейрон, воспринимающий раздражение, находится у человека и высших животных в спинальных ганглиях, или узлах, расположенных по обеим сторонам спинного мозга. По ходу его задних корешков.

Здесь расположены чувствительные униполярные нейроны, от них отходит отросток, который разветвляется на 2 отростка. Один из этих отростков более длинный, направляется по спинномозговому нерву на периферию, где заканчивается чувствительным концевым аппаратом, воспринимающим раздражение. Другой более короткий отросток входит в спинной мозг и служит его проводником возбуждения от чувствительного концевого аппарата. В белом веществе этот центральный отросток разветвляется. Одна ветвь направляется вверх, а другая — вниз. Пройдя некоторое расстояние, обе ветви входят в серое вещество и заканчиваются на телах нейронов, называемых вставочными связывающими, промежуточными. Вставочные нейроны — небольшие мультиполярные клетки с короткими дендритами. Их единственный нейрит проникает в белое вещество, где разделяется на две ветви, одна из которых направляется вверх, а другая — вниз. В выше- и нижележащих отделах спинного мозга они опять заходят в серое вещество и вступают в контакт с двигательными, или моторными, нейронами. Этот тип связующих нейронов характеризуется тем, что их отростки не выходят за пределы спинного мозга и объединяет только его отделы.

Кроме таких клеток, в задних рогах и в средней части серого вещества имеется и другой тип связующих нейронов. Их восходящий отросток отличается значительной длиной и поэтому достигает стволовой части головного мозга. Связующие клетки представляют второй тип нейронов, принимающих участие в осуществлении рефлекса. В них происходит трансформация чувствительного импульса в двигательный. Дальнейший путь этого импульса связан с проводящими волокнами связующих нейронов и наличием в спинном мозге двигательных нейронов. На теле этих нервных клеток оканчиваются отростки вставочных нейронов. Двигательные моторные нейроны расположены в передних рогах серого вещества спинного мозга отдельными группами. Эти — самые крупные клетки спинного мозга. Они являются мультиполярными и отличаются сильно разветвленными дендритами.

Регуляция желчеобразовательной и желчевыделительной функций печени. Блуждающие и правый диафрагмальный нервы при их возбуждении усиливают выработку желчи печеночными клетками, симпатические нервы ее тормозят. На образование желчи оказывают влияние и рефлекторные воздействия, идущие со стороны интерорецепторов желудка, тонкого и толстого кишечника и других внутренних органов. Отделение желчи усиливается во время еды в результате рефлекторного влияния на все секреторные процессы, осуществляемые в желудочно-кишечном тракте. Желчегонным эффектом обладают молоко, мясо, хлеб. У жиров это действие выражено в большей степени, чем у белков и углеводов. Наибольшее количество желчи выделяется при смешанном питании. Механизмы опорожнения желчного пузыря. Под влиянием блуждающих нервов сокращается мускулатура желчного пузыря и одновременно с этим расслабляется сфинктер печеночно-поджелудочной ампулы сфинктер Одди , что приводит к поступлению желчи в двенадцатиперстную кишку. Под влиянием симпатических нервов наблюдается расслабление мускулатуры желчного пузыря, повышение тонуса сфинктера и его закрытие. Опорожнение желчного пузыря осуществляется на основе условных и безусловных рефлексов. Условнорефлекторное опорожнение желчного пузыря происходит при виде и запахе пищи, разговоре о знакомой и вкусной пище при наличии аппетита. Безусловнорефлекторное опорожнение желчного пузыря связано с поступлением пищи в ротовую полость, желудок, кишечник. Сфинктер Одди остается открытым в течение всего процесса пищеварения, поэтому желчь продолжает свободно поступать в двенадцатиперстную кишку. Как только последняя порция пищи покидает двенадцатиперстную кишку, сфинктер Одди закрывается. Кишечное пищеварение завершает этап механической и химической обработки пищи. В тонкий кишечник поступает секрет дуоденальных желез, поджелудочной железы и печени. Здесь пищеварительные соки продолжают свое переваривающее действие, так как в тонком кишечнике имеется также щелочная среда. К влиянию этих пищеварительных секретов присоединяется мощное действие кишечного сока. В кишечнике различают полостное и пристеночное, или мембранное, пищеварение. Полостное пищеварение обеспечивает начальный гидролиз пищевых веществ до промежуточных продуктов. Мембранное пищеварение обеспечивает гидролиз промежуточной и заключительной его стадий, а также переход к всасыванию. Состав, свойства кишечного сока и его значение в пищеварении. У взрослого человека за сутки отделяется 2—3 л кишечного сока слабощелочной реакции. Представителями пептидаз являются лейцина-минопептидаза и аминопептидаза, расщепляющие продукты переваривания белка, образующиеся в желудке и двенадцатиперстной кишке. В кишечном соке содержатся кислая и щелочная фосфатазы, участвующие в переваривании фосфолипидов, липаза, которая действует на нейтральные жиры. В кишечном соке содержатся карбогидразы амилаза, мальтаза, сахараза, лактаза , расщепляющие полисахариды и дисахариды до стадии моносахаров. Специфическим ферментом кишечного сока является энтерокиназа, которая катализирует превращение трипсиногена в трипсин. Регуляция деятельности желез кишечника. За счет нервных воздействий регулируется образование ферментов. В условиях денервации тонкого кишечника наблюдается «разлад» в работе секреторной клетки: сока выделяется много, но он беден ферментами. Кора большого мозга принимает участие в регуляции секреторной активности тонкого кишечника. Стимулирует секрецию кишечных желез гормон энтерокринин. Этот гормон образуется и выделяется при соприкосновении содержимого кишечника со слизистой оболочкой. Энтерокринин стимулирует отделение главным образом жидкой части сока. Моторная функция тонкого кишечника и ее регуляция. В тонком кишечнике различают перистальтические и неперистальтические движения. Перистальтические сокращения обеспечивают продвижение пищевой кашицы по кишечнику. Этот вид двигательной активности кишечника обусловлен координированным сокращением продольного и циркулярного слоев мышц. При этом происходит сокращение кольцевых мышц верхнего отрезка кишки и выдавливание пищевой кашицы в одновременно расширяющийся за счет сокращения продольных мышц нижний участок. Неперистальтические движения тонкого кишечника представлены сегментирующими сокращениями. К ним относят ритмическую сегментацию и маятникообразные движения. Ритмические сокращения делят пищевую кашицу на отдельные сегменты, что способствует ее лучшему растиранию и перемешиванию с пищеварительными соками. Маятникообразные движения обусловлены сокращением круговых и продольных мышц кишечника. Маятникообразные движения способствуют тщательному перемешиванию химуса с пищеварительными соками. В регуляции моторной активности тонкого кишечника участвуют нервные и гуморальные механизмы, объединенные в единую регуляторную систему, за счет деятельности которой усиливается или ослабляется моторная функция тонкого кишечника. Нервный механизм. Моторная функция кишечника регулируется интрамуральной и экстрамуральной нервной системой. К интрамуральной нервной системе относят мышечно-кишечное ауэрбаховское , глубокое межмышечное и подслизистое мейсснеровское сплетения. Они обеспечивают возникновение местных рефлекторных реакций, которые возникают при раздражении слизистой оболочки кишечника его содержимым. Экстрамуральная нервная система кишечника представлена блуждающими и чревными нервами. Блуждающие нервы при их возбуждении стимулируют моторную функцию кишечника, чревные тормозят ее. Моторная функция тонкого кишечника стимулируется рефлекторно при возбуждении рецепторов различных отделов желудочно-кишечного тракта. Рефлекторно стимулирует моторную функцию тонкого кишечника акт еды. Гуморальная регуляция моторной функции тонкого кишечника. Стимулирующее влияние на моторную функцию кишечника оказывают биологически активные вещества серотонин, гистамин, брадикинин и др. Тормозят двигательную активность кишечника гормоны мозгового слоя надпочечников — адреналин и норадреналин. Вследствие этого такие эмоциональные состояния организма, как страх, испуг, гнев, злость, ярость и т. Существенное значение в регуляции моторной функции кишечника имеют физико-химические свойства пищи. Грубая пища, содержащая большое количество клетчатки, овощи стимулируют двигательную активность кишечника.

От наружной среды внутреннее пространство нейрона отделено клеточной мембраной, которая является плохим изолятором и допускает некоторую утечку ионов в обоих направлениях. Если бы мембрана была проницаема только для ионов калия, разность потенциалов на ней могла бы достигать величин, определяемой уравнением Нернста 1 для калиевого электрода. По данным различных авторов, эта величина соответствует 70-75 мВ. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки. Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну. Эксперимент с двумя электродами, введенными в одиночное волокно аксона кальмара, позволил вплотную подойти к вопросу о природе энергии, необходимой для изменения знака потенциала на мембране. Один электрод служит для пропускания тока, другой — для измерения разности потенциалов на мембране. Показано, что если ток течет через мембрану внутрь волокна, то разность потенциалов увеличивается, и возбуждения нет. Ток, направленный наружу, также не вызывает возбуждения. Однако, генератор срабатывает каждый раз, когда напряжение на мембране уменьшается ниже определенной величины, которую принято называть порогом возбуждения. Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ. Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы. В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания — места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ. Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса. Сама же мембрана является непроницаемой для АХ. При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП. Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего».

Вирусы и токсины могут проникать в аксон на его периферии и перемещаться по нему. Аксональный транспорт — активный процесс — зависит от энергии АТФ. При снижении уровня АТФ вдвое аксональный транспорт блокируется. Различают антероградный от тела нейрона и ретроградный к телу нейрона аксонный транспорт. Выделяют два вида отростков: короткие ветвящиеся дендриты и один длинный не ветвящийся аксон. Дендриты ветвятся дихотомически надвое , аксоны же дают коллатерали боковые ответвления. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки. У большинства аксонов миелиновая оболочка имеется. Миелиновая оболочка Миелиновая оболочка — электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. В периферической нервной системе миелиновую оболочку аксонов образуют шванновские клетки несколько шванновских клеток на один аксон. В ЦНС один олигодендроцит образует миелиновую оболочку нескольким нервным клеткам. Образование миелиновой оболочки в ЦНС Цитоплазма шванновской клетки вытесняется из пространства между спиральными витками и остается только на внутренней и наружной поверхностях миелиновой оболочки, в результате чего миелиновая оболочка представляет собой, по сути, множество слоев клеточной мембраны. Такое высокое содержание липидов отличает миелин от других биологических мембран. Миелин прерывается только в области перехватов Ранвье, которые встречаются через правильные промежутки длиной примерно 1 мм расстояние между перехватами Ранвье прямо пропорционально толщине аксона. В связи с тем что ионные токи не могут проходить сквозь миелин, вход и выход ионов осуществляется лишь в области перехватов.

Нервные импульсы поступают непосредственно

Как устроена периферическая нервная система человека? По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам.
Нервные импульсы поступают непосредственно к железам по 1) аксонам… Рецептор преобразует раздражение в нервный импульс, который достигает тела нервной клетки.
Нервные импульсы поступают непосредственно к железам по... - проведение нервного импульса в ЦНС.
Задание 15 ОГЭ по биологии с ответами, ФИПИ: организм человека Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель.
Тест «Нервная система» — 4ЕГЭ Б) Передача нервных импульсов от внутренних органов в мозг.

Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных

2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. Войти Регистрация. Биология. Нервные импульсы поступают непосредственно. По какому нейрону нервные импульсы поступают из ЦНС к рабочему органу? Нервные импульсы, поступающие из мозга, преобразуется гипоталамусом в эндокринные стимулы. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. 1. Нервные импульсы поступают непосредственно к железам по.

Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных

Надпочечники состоят из двух самостоятельных желез внутренней секреции — коры и мозгового вещества, объединенных в единый орган. Кора и мозговое вещество имеют разное происхождение, разный клеточный состав и разные функции. Корковое вещество надпочечника делят на три зоны, связанные с синтезом определенных гормонов. Наиболее поверхностный и тонкий слой коры выделяется как клубочковая зона.

Средний слой называется пучковой зоной. Внутренний слой, примыкающий к мозговому веществу, образует сетчатую зону. Мозговое вещество, расположенное в надпочечнике центрально, состоит из хромаффинных клеток.

Клетки мозгового вещества секретируют два родственных гормона — адреналин и норадреналин, которые объединяют под названием катехоламинов. Возрастные особенности. Толщина и структура надпочечника изменяется с возрастом.

У новорожденного кора надпочечника состоит из двух частей: из зародышевой коры и тонкого слоя истинной коры. После рождения надпочечники уменьшаются. Рост надпочечников ускоряется в период полового созревания.

К старости развиваются атрофические процессы. Строение, функции гормонов. Мозговой слой надпочечника вырабатывает адреналин и норадреналин.

Секреция адреналина осуществляется светло-окрашиваемыми клетками, а норадреналина — темно-окрашиваемыми клетками. Человек, у которого норадреналина продуцируется мало, ведет себя в экстренных ситуациях подобно кролику — у него сильно выражено чувство страха, а человек, у которого продукция норадреналина выше, ведет себя как лев теория «кролика и льва». Метаболизм катехоламинов происходит с помощью ферментов.

Выделяемые в кровь адреналин и норадреналин, разрушаются быстро — время полужизни 30 секунд. У адреналина и норадреналина обнаружены физиологические эффекты, как у симпатической нервной системы: активация деятельности сердца, расслабление гладких мышц бронхов и т. Катехоламины принимают участие в активации продукции тепла, в регуляции секреции многих гормонов.

За счет взаимодействия адреналина с бета-адренорецепторами повышается продукция глюкагона, ренина, гастрина, паратгормона, кальцитонина, инсулина, тиреоидных гормонов. При взаимодействии катехоламинов с бета-адренорецепторами угнетается выработка инсулина. Во всех этих зонах продуцируются стероидные гормоны, источником для которых служит холестерин.

В клубочковой зоне продуцируются минералокортикоиды, в пучковой — глюкокортикоиды, а в сетчатой — андрогены и эстрогены, т. К группе минералокортикоидов относятся: альдостерон, дезоксикортикостерон, 18-оксикортнкостерон, 18-оксидезоксикортикостерон. Основной представитель минералокортикоидов — альдостерон.

Механизм действия альдостерона связан с активацией синтеза белка, участвующего в реабсорбции ионов натрия. Место действия клетки-мишени — это эпителий дистальных канальцев почки, в которых за счет взаимодействия альдостерона с рецепторами повышается продукция мРНК и рРНК и активируется синтез белка — переносчика натрия. В результате - почечный эпителий усиливает процесс обратного всасывания натрия из первичной мочи в интерстициальную ткань, а оттуда — в кровь.

Механизм активного транспорта натрия из первичной мочи в интерстиций сопряжен с противоположным процессом — удалением ионов калия из крови в конечную мочу. Альдостерон является натрийсберегающим, а также калийуретическим гормоном. За счет задержки в организме ионов натрия и воды альдостерон способствует повышению уровня АД.

Альдостерон влияет на процессы реабсорбции натрия в слюнных железах. При обильном потоотделении альдостерон способствует сохранению натрия в организме, препятствует его потере не только с мочой, но и с потом. Калий же, с потом удаляется при действии альдостерона.

В сетчатой зоне надпочечника секретируются в небольшом количестве мужские половые гормоны, близкие по строению к гормонам — андрогенам, а также эстрогены и прогестерон. Наиболее сильный физиологический эффект принадлежит кортизолу. Гормоны вызывают активацию глюконеогенеза — образование глюкозы из аминокислот и жирных кислот.

Одновременно в других органах и тканях, в скелетных мышцах глюкокортикоиды тормозят синтез белков, чтобы создать депо аминокислот, необходимых для глюконеогенеза. Главный эффект глюкокортикоидов — мобилизация энергетических ресурсов организма. Это свойство используется для снятия воспалительных реакций - после проведения операции на глазу по поводу катаракты больному рекомендуется ежедневно вводить глазные капли, содержащие глюкокортикоиды кортизон, гидрокортизон.

Под влиянием глюкокортикоидов снижается продукция антител, уменьшается активность Т-киллеров, снижается интенсивность иммунологического надзора, снижается гиперчувствительность и сенсибилизация организма. Все это позволяет рассматривать глюкокортикоиды как активные иммунодепрессанты. Это свойство глюкокортикоидов широко используется в клинической практике для купирования аутоиммунных процессов, для снижения иммунной защиты организма хозяина.

Это свойство глюкокортикоидов лежит в основе язвы желудка и 12перстной кишки, нарушение микроциркуляции в сосудах миокарда и как следствие — развитие аритмий, нарушение физиологического состояния кожных покровов — экземы, псориаз. Эти явления наблюдаются в условиях повышенного содержания эндогенных глюкокортикоидов или в условиях длительного введения глюкокортикоидов с лечебной целью. При высоких концентрациях глюкокортикоиды вызывают задержку натрия и воды в организме.

В скелетных мышцах наблюдается мышечная слабость. Регуляция продукции глюкокортикоидов осуществляется за счет двух гормонов — кортиколиберина и АКТГ. Изменение концентрации глюкокортикоидов как гипо-, так и гиперфункции приводит к серьёзным нарушениям в организме.

Поджелудочная железа. У взрослого человека форма, размеры и вес железы варьируют в широких пределах. Поджелудочная железа дважды изгибается, огибая позвоночник.

В железе различают головку, тело и хвост. Между головкой и телом имеется сужение — шейка; у нижней полуокружности головки - крючкообразный отросток. Длина железы - 14-22 см, поперечник головки — 3,5-6,0 см, толщина тела — 1,5-2,5 см, длина хвоста — до 6 см.

Вес железы — 73 - 96 г. Поджелудочная железа расположена забрюшинно, позади желудка. Железа находится над малой кривизной, лежит впереди позвоночника, покрывая аорту в виде поперечного валика.

Головка поджелудочной железы выполняет подкову 12перстной кишки, а ее тело и хвост, перекинутые через нижнюю полую вену, позвоночный столб и аорту, простираются к селезенке на уровне I—III поясничных позвонков. В теле железы дифференцируют передневерхнюю, передненижнюю и заднюю поверхности. Проекция тела на переднюю брюшную стенку находится посередине между мечевидным отростком и пупком.

Хвостовая часть поджелудочной железы проходит над левой почкой. Позади головки расположены нижняя полая и воротная вены, сосуды правой почки; сосуды левой почки несколько прикрыты телом и хвостовой частью железы. В 12перстную кишку впадает добавочный панкреатический проток.

Вдоль всей железы располагается главный панкреатический проток. Он идет центрально. Длина протока - 14 до 19 см, диаметр в области тела — от 1,4 до 2,6 мм, в области головки до места слияния с общим желчным протоком — от 3,0-3,6 мм.

На всем протяжении главный проток принимает от 22 до 74 протоков первого порядка. Добавочный панкреатический проток расположен в головке железы. Он формируется из междольковых протоков нижней половины головки и крючкообразного отростка.

Добавочный проток не имеет самостоятельного выхода в кишку. Передняя поверхность поджелудочной железы покрыта тонким листком брюшины. Фиксация поджелудочной железы осуществляется четырьмя связками, представляющими собой складки брюшины.

По гистологическому строению поджелудочная железа представляет собой сложную трубчато-альвеолярную железу. Железистая ткань состоит из долек неправильной формы, клетки которых вырабатывают панкреатический сок, и из скопления особых клеток округлой формы — островков Лангерганса, продуцирующих гормоны. Железистые клетки имеют коническую форму, содержат ядро, которое делит клетку на две части: широкую базальную и коническую апикальную.

После выделения секрета апикальная зона резко уменьшается, вся клетка также уменьшается в объеме и хорошо отграничивается от соседних клеток. Физиология поджелудочной железы Поджелудочная железа является железой внешней и внутренней секреции; она продуцирует панкреатический сок, играющий значительную роль в процессе пищеварения и обмена. В сутки железа выделяет 1000-4000 мл панкреатического сока; он имеет щелочную реакцию рН 8,71-8,98.

В его состав входят ферменты, расщепляющие белки, жиры и углеводы, а также вода, электролиты и гидрокарбонат. Удельный вес панкреатического сока колеблется в зависимости от концентрации. Механизм панкреатической секреции — нейрогуморальный.

Нервная система оказывает на железу прямое и опосредованное действие. Активизировать секрецию, по И. Павлову 1902 , удается путем стимуляции блуждающих нервов прямое действие.

Опосредованное влияние нервной системы осуществляется через механизмы регуляции высвобождения гастрина. Парасимпатическая нервная система стимулирует, а симпатическая угнетает деятельность железы. Отчетливое повышение секреции ферментов вызывают метахолин, ацетилхолин.

При раздражении волокон симпатической нервной системы наблюдается резкое сужение кровеносных сосудов железы, что сопровождается снижением ее экзокринной функции. Эндокринная функция поджелудочной железы связана с деятельностью островков Лангерганса, клетки которых выделяют в кровь инсулин бета-клетки , глюкагон альфа-клетки , соматостатин дельта-клетки. Инсулин — белковый гормон.

Образуется из проинсулина под влиянием протеаз. Превращение проинсулина в активный гормон инсулин происходит в бета-клетках. Всасывание углеводов с последующей гипергликемией - стимул для его выделения.

Проявлением его отсутствия - повышение уровня сахара в крови. Регуляция секреции инсулина осуществляется симпатической и парасимпатической нервной системой, а также под влиянием полипептидов, вырабатывающихся в ЖКТ. Инсулин — анаболик с широким спектром действия.

Его роль — повышение синтеза углеводов, жиров и белков; стимулирует метаболизм глюкозы, увеличивает проникновение для глюкозы клеток миокарда, скелетных мышц, что способствует большому току глюкозы внутрь клетки. Инсулин снижает уровень глюкозы в крови, стимулирует синтез гликогена в печени, влияет на обмен жиров. При недостатке инсулина или изменения его активности содержание глюкозы в крови резко возрастает, что может привести к сахарному диабету.

Глюкагон — полипептид, выделяется в период голодания. Может вырабатываться и в кишечнике в виде энтероглюкагона. Способствует поступлению в кровь глюкозы из запасов гликогена в печени, глюкогенезу в печени.

Регуляция секреции глюкагона осуществляется при помощи рецепторов глюкозы в гипоталамусе, которые определяют снижение уровня глюкозы в крови. В эту цепь взаимодействий включаются гормон роста, соматостатин, энтероглюкагон, симпатическая нервная система. Основной эффект глюкагона — усиление метаболизма в печени, расщепление гликогена до глюкозы и выделение её в кровь.

Глюкагон — синергист адреналина. Высокий уровень глюкагона в крови вызывает развитие гипогликемических состояний. Половые железы.

Половые железы семенники у мужчин, яичники у женщин относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормонов, которые поступают в кровь. Яичко у мужчин и яичники у женщин кроме половых клеток вырабатывают и выделяют в кровь половые гормоны, под влиянием которых происходит формирование вторичных половых признаков. Мужские половые гормоны — андрогены образуются в интерстициальных клетках семенников, располагаются в рыхлой соединительной ткани между извитыми семенными канальцами, рядом с кровеносными и лимфатическими сосудами.

Интерстициальные эндокриноциты яичка выделяют мужской половой гормон тестостерон. Различают два вида андрогенов — тестостерон и андростерон. Андрогены стимулируют рост и развитие полового аппарата, мужских половых признаков и появление половых рефлексов.

Контролируют процесс созревания сперматозоидов, способствуют сохранению их двигательной активности, проявлению полового инстинкта и половых поведенческих реакций, увеличивают образование белка, особенно в мышцах, уменьшают содержание жира в организме. При недостаточном количестве андрогена в организме нарушаются процессы торможения в коре больших полушарий. Женские половые железы — яичники.

Женские половые гормоны образуются в яичниках. Яичники вырабатывают половые гормоны — эстроген, гонадотропин, прогестерон. Место образования эстрогена фолликулина и гонадотропина — зернистый слой созревающих фолликулов, а также интерстициальные клетки яичника.

Эстрогены стимулируют рост матки, влагалища, труб, вызывают разрастание эндометрия, способствуют развитию вторичных женских половых признаков, проявлению половых рефлексов, усиливают сократительную способность матки, повышают ее чувствительность к окситоцину, стимулируют рост и развитие молочных желез. Прогестерон обеспечивает процесс нормального протекания беременности, способствует разрастанию слизистой эндометрия, имплантации оплодотворенной яйцеклетки в эндометрий, тормозит сократительную способность матки, уменьшает ее чувствительность к окситоцину, тормозит созревание и овуляцию фолликула за счет угнетения образования лютропина гипофиза. Гонадотропин угнетает рост и развитие половых клеток.

Под влиянием фолликулостимулирующего и лютеинизирующего гормонов гипофиза происходит рост фолликулов и активизация интерстициальных клеток. Лютеинизирующий гормон вызывает овуляцию и образование жёлтого тела, клетки которого вырабатывают гормон яичника прогестерон. Образование половых гормонов находится под влиянием гонадотропных гормонов гипофиза и пролактина.

У мужчин гонадотропный гормон способствует созреванию сперматозоидов, у женщин — росту и развитию фолликула. Лютропин определяет выработку женских и мужских половых гормонов, овуляцию и образование желтого тела. Пролактин стимулирует выработку прогестерона.

Нервная система принимает участие в регуляции активности половых желез за счет образования в гипофизе гонадотропных гормонов. ЦНС регулирует протекание полового акта.

Тигроид состоит из сильно развитой шероховатой ЭПС с активными рибосомами и аппарата Гольджи; его функция — синтез специфических белков.

Выглядит эта структура как «мелкая зернистость и полосатость» в теле и дендритах нейрона отсюда и название. Длительное голодание или стресс приводит к разрушению тигроида и прекращению синтеза специфических белков. Связь нейрона с другими клетками Нейрофибриллы нейрофиламенты состоят из микротрубочек и являются основным структурным компонентом цитоскелета.

Их функция — аксональный транспорт перемещение веществ по аксону. Аксональный транспорт Помимо своей специфической функции в качестве проводника нервных импульсов аксон является каналом для транспорта веществ. Аксональный аксонный транспорт — это перемещение веществ по аксону.

Белки, синтезированные в теле клетки, нейромедиаторы и низкомолекулярные соединения перемещаются по аксону вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен также транспорт в обратном направлении. Вирусы и токсины могут проникать в аксон на его периферии и перемещаться по нему.

Аксональный транспорт — активный процесс — зависит от энергии АТФ. При снижении уровня АТФ вдвое аксональный транспорт блокируется. Различают антероградный от тела нейрона и ретроградный к телу нейрона аксонный транспорт.

Выделяют два вида отростков: короткие ветвящиеся дендриты и один длинный не ветвящийся аксон. Дендриты ветвятся дихотомически надвое , аксоны же дают коллатерали боковые ответвления. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки.

Именно через них происходит руководство гипофизом. Нервные импульсы, поступающие из мозга, преобразуется гипоталамусом в эндокринные стимулы. Они усиливаются или ослабляются под воздействием гуморальных сигналов, которые, в свою очередь, поступают в гипоталамус из желез, находящихся в его подчинении. Вопрос Как нервная система регулирует работу эндокринной системы? Ответ: Эндокринная и нервная системы с их регулирующими и интегрирующими функциями являются отдельными, но параллельно действующими системами.

Нейроны выделяют свои химические передатчики — медиаторы — в синаптическую щель для регуляции активности других нейронов. Эндокринные клетки секретируют свои химические передатчики — гормоны — в кровь, которая разносит их ко всем клеткам, имеющим специфические рецепторы. Некоторые вещества действуют в обеих системах; они могут быть и гормонами то есть Продуктами эндокринных желез , и медиаторами продуктами определенных нейронов. Такую двоякую роль выполняют норадреналин, соматостатин, вазопрессин и окситоцин, а также передатчики диффузной нервной системы кишечника, например холецистокинин и вазоактивный кишечный полипептид. Пример: Нейроны гипоталамуса вырабатывают кортиколиберин, который попадает в переднюю долю гипофиза через систему воротного кровообращения. Нейроны гипофиза в ответ на это выделяют кортикотропин актг , стимулирующий секрецию кортикостероидов — адреналина или норадреналина — корой надпочечников.

Уровень кортикостероидов в крови, действуя как сигнал обратной связи, заставляет гипофиз или центральную нервную систему в целом продолжать или приостанавливать этот процесс. Вопрос Как эндокринная система влияет на развитие головного мозга? Ответ: Большое влияние на становление и развитие головного мозга оказывает щитовидная железа и ее гормоны. При недостатке этих гормонов гипотиреозе развивается заболевание кретинизм. Больные этой болезнью страдают умственной и физической отсталостью. Вопрос Каковы функции гипофиза и щитовидной железы?

Ответ: гипофиз — это железа внутренней секреции непосредственно связанная с мозгом. Гипофиз вырабатывает гормон роста воздействующий на рибосомы клеток, которые вырабатывают клеточные белки. В результате клетки быстрее растут и делятся. Гормоны гипофиза и их функции обеспечивают важнейшее одно явление во всяком живом развитом организме — гомеостаз. Гипофиз регулирует работу щитовидной, паращитовидной, надпочечниковой железы, контролирует состояние водно — солевого баланса. Функция щитовидной железы — это выработка гормонов, которые поддерживают нормальный обмен веществ во всем организме.

Функции гормонов щитовидной железы следующие: — повышают интенсивность окислительных реакций в клетках; — оказывают влияние на процессы, происходящие в митохондриях, клеточной мембране; — поддерживают гормональную возбудимость основных нервных центров; — участвуют в нормальном функционировании сердечной мышцы; — обеспечивают функционирование иммунной системы: стимулируют образование т — лимфоцитов, ответственных за борьбу с инфекцией. Вопрос Раскройте роль гормонов в обмене веществ, росте и развитии организма. Ответ: Гормоны регулируют обмен веществ, рост и развитие организма, поддерживают постоянство внутренней среды, обеспечивают приспособление организма к работе различной интенсивности. Например: при избыточном действии гормона роста в детском возрасте развивается гигантизм, при недостатке этого гормона прекращается рост тела.

Рецептор, кондуктор и эфферентный нейрон Простая рефлекторная дуга состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью например, кожей , а другой с помощью своего нейрита оканчивается в мышце или железе. При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении центрипетально к рефлекторному центру, где находится соединение синапс обоих нейронов.

Здесь возбуждение переходит на другой нейрон и идет уже центробежно центрифугально к мышце или железе. В результате происходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный. Кроме простой трехчленной рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору. У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов И. Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов.

Рецептор восприниматель , трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным центростремительным, или рецепторным нейроном, распространяющим начавшееся возбуждение нервный импульс к центру; с этого явления начинается анализ И. Кондуктор проводник , вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» И.

Похожие новости:

Оцените статью
Добавить комментарий