В течение четверти века он работал в областях физики плазмы и производства нейтронов, связанных с разработками в области термоядерной энергии.
FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв
На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков. В Саровском ядерном центре создается аналогичная установка для экспериментов, позволяющих работать с управляемым термоядерным синтезом с инерциальным удержанием. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза.
ядерная физика
Институт Ядерной Физики (ИЯФ). Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных.
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика
Физики будут продолжать свои эксперименты, чтобы снова воссоздать самоподдерживающийся термоядерный синтез. Поделиться: Подписывайтесь на «Газету. Ru» в Дзен и Telegram.
Отдельная задача в том, чтобы сжать вещество абсолютно симметрично со всех сторон.
Наконец, даже если в реакторе удастся обеспечить нужную форму и плотность плазмы, потери энергии на это должны быть минимальны, чтобы термоядерная реакция была экономически выгодной. Это критерий Лоусона, который стал одной из главных целей управляемого термоядерного синтеза. Именно на выполнение этого условия нацелены современные экспериментальные мега-проекты термоядерного синтеза. Один реактор на 35 стран В 2010 году на юге Франции развернулась стройка исполинских масштабов.
Здесь на базе исследовательского центра ядерной энергетики «Кадараш» создают международный термоядерный реактор — ITER от латинского «путь». Стоимость токамака ИТЭР оценивается в 20 миллиардов евро. Ни одно государство не может позволить себе запустить подобный проект самостоятельно, поэтому страны объединяют свои силы. Вид с воздуха на установку ИТЭР — международную исследовательскую площадку для изучения свойств плазмы при реализации термоядерного синтеза Вклад стран-участников не денежный, а технический.
Практически у каждой из 35 стран есть собственные термоядерные мини-установки. Работа разделена по секторам будущего реактора, каждая из держав производит свою часть оборудования. Россия — один из главных участников: у наших ученых многолетний опыт использования токамаков. ИТЭР будет весить 23 тысячи тонн некоторые детали столь тяжелы, что пришлось усиливать дороги, ведущие к реактору , а по высоте, более 70 метров, он обгонит Спасскую башню.
Объем плазмы, который надеются получить ученые, — 40 кубометров. Температура в мега-реакторе достигнет головокружительной отметки в 150 миллионов градусов. Чтобы добыть достаточное количество плазмы, магнитное поле в токамаке должно быть в 200 тысяч раз больше земного! Огромные сверхпроводящие магниты будут охлаждаться до экстремальной отметки в минус 269 градусов Цельсия.
Завершить строительство ИТЭР планируют к концу 2025 года, тогда же ученые надеются получить первую плазму. Но запуск реактора не откроет эру управляемого термояда. ИТЭР — это прежде всего экспериментальная установка, призванная доказать, что человечество в принципе способно получать термоядерную энергию в промышленном масштабе. Одна из необходимых особенностей современных токамаков — гигантские размеры.
Чем меньше реактор, тем больше плазмы выделяется в процессе диффузии, и тем менее эффективно он работает. Поэтому о миниатюрных термоядерных реакторах в стиле костюма Железного Человека в ближайшем будущем мечтать не приходится. Однако сократить размеры токамаков может помочь искусственный интеллект ИИ.
При этом существуют два принципиально разных подхода к высвобождению скрытой энергии: Атомная энергетика.
Здесь за основу берется тяжелый элемент как правило, уран или плутоний , который расщепляется на составляющие с выделением энергии. То есть ключевой процесс — распад ядра. Первая в мире атомная электростанция была запущена еще в 1954 году — ей стала Обнинская АЭС в Калужской области. Человечество хорошо освоило расщепление, хотя проблемы пока остаются.
Управляемый термоядерный синтез УТС. В термоядерном синтезе используется обратный принцип: вместо расщепления тяжелых элементов соединяются синтезируются легкие — водород и гелий. Точно такие же процессы протекают в центре звезд. Синтез сопровождается выделением огромного количества энергии, но чтобы он осуществился, требуются уникальные условия.
Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика? Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Ключевая сложность — условия , которые требуется создать, чтобы атомы водорода соединились друг с другом.
Министерство энергетики объявило о «крупном научном прорыве, на достижение которого ушли десятки лет и который откроет путь к прогрессу в национальной безопасности и будущем чистой энергии».
Через полгода ученые-ядерщики закрепили свой успех и подтвердили, что вновь достигли положительной по затратам энергии термоядерной реакции синтеза, хотя точных данных пока не огласили. Как сообщает Reuters, результаты будут обнародованы на пресс-конференции и опубликованы в научных журналах. И все же о достижении экономически выгодного управляемого термоядерного синтеза пока говорить рано. Установка Национального комплекса зажигания использует метод инерционного синтеза, который заключается в облучении изотопов водорода лазерным пучком.
Он создавался как сугубо научный, не имеющий реального коммерческого применения.
«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза
Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times. Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба".
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды
В Саровском ядерном центре создается аналогичная установка для экспериментов, позволяющих работать с управляемым термоядерным синтезом с инерциальным удержанием. Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить. Зачем на самом деле строится самый большой термоядерный реактор. Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии.
Российский инженер рассказала о значении термоядерного прорыва американских ученых
Большие объёмы циркулирующего лития и его проникновение в основную плазму — вот основные трудности на пути реализации этого подхода. Можно ли обеспечить относительно быстрое ламинарное течение тонкого слоя жидкого лития по металлической пластине, полностью поглощаю-щего попадающие в него частицы плазмы так называемый случай нулевого рециклинга? Будет ли при этом автоматически достигаться улучшение удержания плазмы в основном объёме реактора и, как следствие, повышение температуры? Продуктивность этой концепции [ 12 ] и иных возможностей использования лития требует детальной экспериментальной проверки. Дальнейшая экстраполяция этой концепции заключается в полном отказе от стенки, ограждаю-щей плазменный объём. Речь идёт о проработке возможности сооружения магнитного термоядерного реактора в космосе на околоземной орбите.
Такой подход имеет ряд потенциальных преимуществ включая гарантированную реализацию нулевого рециклинга , хотя и представляется труднореализуемым. При этом магнитная конфигурация термоядерного реактора космического базирования может и должна быть предметом оптимизации, в том числе по параметрам таким как вес, присутствие дополнительных систем, простота монтажа и пр. Поэтому реализацию этого направления следовало бы начать с глубокой концептуальной проработки и маломасштабных космических экспериментов. Следует отметить, что идеи космического размещения энергетического реактора обсуждались ещё в 1970-х годах. Целесообразность их рассмотрения в настоящий момент оправдывается качественно иным достигнутым уровнем развития космонавтики, с одной стороны, и прогрессом в термоядерных технологиях и в понимании физики термоядерной плазмы, с другой стороны, что переводит эти идеи из области гипотез в сферу проектов, доступных для воплощения в жизнь за обозримое время, хотя они и не имеют пока достаточно сторонников для серьёзной проработки.
Практически с момента начала работ над УТС высказывались идеи об использовании термоядерных нейтронов для производства делящихся изотопов как основы ядерного топлива для АЭС или боеприпасов. В своих воспоминаниях, относящихся к 1951 г. Так как выделение энергии на один акт реакции при процессе деления гораздо больше, чем при процессе синтеза, экономические и технические возможности такого комбинированного двухступенчатого производства энергии оказываются выше, чем при получении энергии непосредственно в термоядерном реакторе. Сегодня при анализе так называемого гибридного подхода, сочетающего термоядерный источник нейтронов ТИН и окружающий его бланкет с сырьевым материалом или отработавшим ядерным топливом ОЯТ , гибридный реактор рассматривают в двух возможных ипостасях: как наработчик топлива для традиционных реакторов деления, используемых на существующих или планируемых АЭС, и как высокоэффективный дожигатель минорных младших актинидов, накапливающихся в результате работы ядерных реакторов. Реакторы деления, составляющие основу существующей атомной энергетики, будут обеспечены делящимися изотопами, произведёнными в гибридных реакторах.
Существенно, что бланкет гибридного реактора работает в подкритическом режиме с внешним источником нейтронов, что исключает последствия запроектных аварий с изменением мощности реактивностные аварии и с захолаживанием теплоносителя без срабатывания систем защиты. Оценки показывают, что наибольший эффект в продвижении интегрированной синтез—деление технологии топливного цикла реализуется при ориентации на уран-ториевый топливный цикл, к числу преимуществ которого принято относить следующие. Уран-233 — делящийся изотоп, получаемый из природного тория, наиболее привлекателен для реакторов на тепловых нейтронах. Запасы тория-232 в природе в 3—4 раза больше в сравнении с природным ураном. При добыче тория радиационные нагрузки на окружающую среду принципиально меньше по сравнению с аналогичными, существующими при добыче природного урана.
Облучение урана-233 в реакторе не сопровождается накоплением трансурановых актинидов, и проблема трансмутации минорных актинидов с целью создания условий экологической приемлемости современного уран-плутониевого цикла практически устраняется. Вместе с тем, хотя возможность использования ториевого цикла была известна и обсуждалась ещё на заре становления ядерной энергетики, исторически сделанный выбор в пользу уран-плутониевого цикла нельзя сбрасывать со счетов, равно как и определённые трудности, связанные с реализацией ториевого цикла.
Но на основе сегодняшних знаний очевидно: энергия взрыва мишени настолько велика, что ее будет трудно удержать в камере разумных размеров.
Кроме того, сами средства, способные инициировать этот взрыв, очень большие. Это прежде всего лазеры, в которых мы преуспели. На них трудилась и трудится замечательная команда, созданная под руководством М.
Пергамента и Н. Другое направление в инерционном удержании — использование мощных электрофизических генераторов для инициации взрыва термоядерной мишени. Помимо исследований в интересах идеи импульсно-периодического термоядерного реактора, электрофизические установки могут создавать сверхмощные пучки заряженных частиц — электронов или ионов, токи с величиной в десятки мегаампер.
С их помощью изучают физику высоких плотностей энергии. Например, с помощью такого устройства, как «Ангара-5-1», вы можете сжимать вещество до очень больших давлений и температур. И здесь возникают новые процессы физики, которые очень важны для понимания многих явлений в природе.
Например, они имеют отношение к астрофизике, к созданию новых веществ. Другая сторона этих импульсных систем — многочисленные возможности применения в плазменных технологиях, в частности в медицине. Но, получив некоторые фундаментальные знания, можно создавать машины небольшого размера практического назначения на основе новых принципов и технологий.
Сейчас начинается новый цикл фундаментального исследования в области онкологии. Одновременно мы начинаем прорабатывать прототип медицинской установки, основанной на принципах так называемой флеш-терапии. В этой работе участвуют ведущие онкологи и биофизики страны.
Кроме того, я понимаю, что нашим медикам нужно предоставить хорошие отечественные аппараты, каких у нас никогда не было. Это такое романтическое желание что-то сделать в этом направлении. Эта машина вызвала определенное волнение в нашей стране, и меня попросили дать наше собственное предложение.
Это предложение было дано — был разработан проект «Ангара». Интересно, что он был создан на других принципах, нежели те, что были заложены американцами. Когда мы это опубликовали, американцы изменили свои принципы и взяли на вооружение наш подход.
Но вы правы, у нас мало кто верил в успех этого проекта. Мы их понимали с самого начала, но не сумели преодолеть в то время консерватизм конструкторов и промышленности. Ну а неверующие по-своему были правы.
Были и не испытанные в полной мере новые физические решения. Считалось, что установка не заработает. Действительно, с нашей стороны выглядело авантюристично.
Но я и еще некоторые другие верили в заложенные решения. Мне прямо говорили, что машина никогда не будет работать. Благодарен нашему научному и административному руководству того времени, согласовавшему начало работы.
Сейчас нас призывают превосходить мировой уровень. Не исключено, хотя и время другое. Она заработала и дала результаты мирового уровня.
Установки, о которых мы говорим и которые видим сейчас, помимо исследовательских, фундаментальных и прикладных направлений имеют еще одно направление, именуемое «спецтематикой». Это не оружие, но это работы ради знаний в оборонной физике, поэтому они поддерживались. Именно поэтому наш институт оказался закрытым и я перестал ездить за рубеж на конференции.
А потом, уже в конце 1980-х гг. Оказалось, что наши результаты по выходному продукту в сотни раз лучше, чем американские. Как всегда в таких случаях, требуется примерно два года, чтобы нас услышали.
Поначалу был определенный уровень недоверия, но потом решили проверить результаты в совместном эксперименте на «Ангаре-5-1». В 1993 г. Сначала в 1992 г.
Они просили приехать в следующем году со своей диагностикой и проверить наши результаты.
Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". Положительный КПД в токамаках и стеллараторах стабильно получают как бы не с конца 80х; первая экспериментальная термоядерная электростанция строится в Европе с 90х, и начала бы свою работу до 2030, если бы современные европейские элиты не были полными идиотами.
И тогда на стенку камеры идет очень высокий поток частиц, который ее разрушает. Проблема первой стенки — одна из важнейших для энергетического реактора. Если вы снизите требования к интенсивности реакции, то эти потоки уменьшаются и проблема защиты стенки перестает быть такой острой.
Но возникает вопрос: а где мы можем применять эти нейтроны? Оказывается, мы можем их использовать в целях создания топлива для обычных атомных реакторов. Это так называемые гибридные системы «синтез — деление», и они сейчас здесь очень активно обсуждаются и развиваются. Практическая реализация таких систем важна. Но чего сейчас здесь удалось достичь? Каков сегодня мировой рекорд ее удержания, где он достигнут?
Первый токамак со сверхпроводящими магнитными системами был построен в Курчатовском институте. Потом, в силу ряда обстоятельств, эта система не получила развития. Точнее, она получала развитие в токамаке Т-15, который создавался в Курчатовском институте, но из-за слома Советского Союза дело не было доведено до конца. На Западе и Востоке довели. Надо понимать, что, помимо времени удержания, еще есть требования на плотность, температуру, и вообще для того, чтобы термоядерный реактор работал, необходимо, чтобы тройное произведение — время удержания, плотность и температура — было выше некоторой величины. Длительность удержания разряда в высокотемпературной плазме на китайском токамаке — более 100 с.
Требуемые температуры также достигнуты. Реализовать их одновременно в одной установке предполагается в ITER. Сегодня здесь лидеры китайцы. У них разряд в высокотемпературной плазме держится больше сотни секунд. В ITER будет два режима. Один — режим удержания в течение пяти часов, другой, более короткий — в течение нескольких десятков секунд.
Если мы говорим о системах с магнитным удержанием, а только о них мы и должны говорить, все-таки их придется периодически перезаряжать. То есть система работает несколько часов, потом она останавливается, прочищается за час и потом опять работает. В этом смысле коэффициент использования мощности будет высоким. Мы все живем благодаря термоядерной энергетике — не только в смысле зарплаты, а в смысле создания практически не ограниченного топливными ресурсами энергетического источника. Термоядерная реакция — такой источник энергии. Человечество жаждет овладеть такой энергией.
В конечном счете человечеству нужно практическое применение. И первое такое применение будет на гибридных системах. Можно получать топливо, облучая уран и превращая его в изотоп, используемый в атомных реакторах. Можно также облучать торий, которого больше на Земле, чем урана, и из него тоже нарабатывать топливо. Это одно направление. А второе направление, может быть, не менее важное, связано вот с чем.
Радиоактивные отходы получаются даже при энергетике, основанной на быстрых реакторах. Их нужно убирать, организуя так называемую трансмутацию — перевод радиоактивного ядра в спокойное при нейтронном облучении в гибридном реакторе. И термоядерные установки тоже могут использоваться для выжигания радиоактивных отходов. Например, эти отходы сегодня могут быть активно использованы для продуктовой промышленности. Сейчас наш институт НИИТФА поставляет такие установки на внутренний и зарубежный рынки для стерилизации пищевых продуктов. В этих установках пищевые или медицинские продукты, например шприцы, проходят через поле излучения радиоактивных изотопов и в результате оказываются стерилизованными.
Действительно, а можно ли облучать пищевые продукты? Так вот, в соответствии с американскими исследованиями этой идеи — да, можно, если брать определенные дозы. Насколько я понимаю, в космос берут пищу, которая стерилизована именно таким образом. Другое дело, что здесь играет роль еще и экономика. Что дешевле?
FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв
В течение четверти века он работал в областях физики плазмы и производства нейтронов, связанных с разработками в области термоядерной энергии. С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд. Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. На этой неделе на юге Франции началась сборка первого в мире термоядерного реактора. Американцы совершили прорыв в изучении термоядерной энергии.