В ядерном реакторе число нейтронов, участвующих в делении ядер, остается неизменным (k=1), реакция протекает стационарно и имеет управляемый характер. Деление атомных ядер — их распад на 2-3 осколка с высвобождением энергии. Как сообщает ToDay News Ufa, в течение 80-ти лет ученые — физики старались выяснить принцип вращения атомных ядер после деления. Атомный взрыв возможен при расщеплении нестабильных атомов (в основном радиоактивные вещества) А более стойкие атомы расщепить почти невозможно, слишком много энергии. Ядерное деление — это реакция, в ходе которой ядро атома расщепляется на два или более меньших ядра, при этом происходит высвобождение энергии.
Оглавление
- Нейтроны — герои реактора
- Нейтроны — герои реактора
- Деление ядра — Википедия
- Открыт механизм вращения осколков деления ядер атомов
- Что такое цепная ядерная реакция
История науки: поленница для мирного атома
Размер Размеры атомов чрезвычайно малы. Так, самый маленький атом — это атом Гелия, его радиус — 32 пикометра. Самый большой атом — атом цезия, имеющий радиус 225 пикометров. Приставка пико означает десять в минус двенадцатой степени! То есть , если 32 метра уменьшить в тысячу миллиардов раз, мы получим размер радиус атома гелия. Ядро и электроны занимают крайне малую часть его объема. Для наглядности, рассмотрим такой пример. Если представить атом в виде олимпийского стадиона в Пекине а можно и не в Пекине, просто представьте себе большой стадион , то ядро этого атома будет представлять собой вишенку, находящуюся в центре поля.
Орбиты электронов при этом находились бы где-то на уровне верхних трибун, а вишня весила бы 30 миллионов тонн.
Лично мне факт их наличия кажется забавным, хоть и логичным. Таблетка - это диоксид урана. Есть и другие виды.
Простой металлический уран не используется, потому что плавится, трескается и т. А теперь самое важное. Что же происходит в реакторе с физической точки зрения? Есть два изотопа урана: 235 и 238.
Да вы и сами же знаете, что 235 делится, а 238 нет, поэтому используют обогащенный уран с большим содержанием именно ядер урана-235. Когда 1 сторонний нейтрон попадёт в ядро урана, ядро распадётся на два случайных осколка. Кинетическая энергия этих осколков нагревает воду, что нам и необходимо. А еще вылетит в среднем 2-3 новых нейтрона, которые будут делить новые ядра урана-235.
И такой процесс будет продолжаться, пока есть необходимая среда. Для наглядности вот вам картинка. Только вот есть проблема. Делений в течении времени всё больше и больше, а мощность все выше и выше.
Как же не взлететь на воздух? Так вот лишние нейтроны нужно убирать из активной зоны. Для этого есть как раз стержни и борная кислота, которые имеют свойство поглощать нейтроны. Необходимо, чтобы сколько новых нейтронов появилось, только старых поглотилось или по другому, в течении времени количество нейтронов должно быть неизменно.
В таком случае реактор будет находится в состоянии, которое называется критика. Его мощность будет постоянна и все будет хорошо. Кстати, еще вопрос на подумать. Какая теоретическая мощность может быть у реактора?
Напишите в комментарии, что думаете. Лично для меня ответ удивителен, но вполне логичен. Теперь вроде все хорошо, только вот нейтрон необязательно может поделить ядро урана, рядом с которым он находится, есть только некая вероятность. И эта вероятность может быть слишком низкая, что не позволит работать реактору.
Почему ядро атома не распадается? В физике существует четыре типа фундаментальных взаимодействий между частицами и телами, которые они составляют. Это сильное, слабое, электромагнитное и гравитационное взаимодействия. Именно благодаря сильному взаимодействию, которое проявляется в масштабах атомных ядер и отвечает за притяжение между нуклонами, атом и является таким «крепким орешком». Не так давно люди поняли, что при расщеплении ядер атомов высвобождается огромная энергия.
Деление тяжелых атомных ядер является источником энергии в ядерных реакторах и ядерном оружии. Ядерный взрыв Итак, друзья, познакомив Вас со структурой и основами строения атома, нам остается только напомнить о том, что наши авторы готовы в любой момент прийти Вам на помощь. Не важно, нужно Вам выполнить диплом по ядерной физике, или самую маленькую контрольную — ситуации бывают разные, но выход есть из любого положения. Подумайте о масштабах Вселенной, закажите работу в Zaochnik и помните — нет поводов для беспокойства.
Процесс расщепления в данном случае будет спонтанным. Без каких-либо внешних воздействий определенное количество атомов урана испустит альфа-частицы, самопроизвольно преобразуясь в торий. Есть показатель, который называется периодом полураспада. Он показывает, за какой промежуток времени от начального числа части останется примерно половина. Для каждого радиоактивного элемента период полураспада свой — от долей секунды для калифорния до сотен тысяч лет для урана и цезия. Но существует и вынужденная радиоактивность.
Если ядра атомов бомбардировать протонами или альфа-частицами ядрами гелия с высокой кинетической энергией, то они могут «расколоться». Механизм превращения, конечно, отличается от того, как разбивается любимая мамина ваза. Однако некая аналогия прослеживается. Энергия атома Пока что мы не ответили на вопрос практического характера: откуда при делении ядра берется энергия. Для начала надо пояснить, что при образовании ядра действуют особые ядерные силы, которые называются сильным взаимодействием. Так как ядро состоит из множества положительных протонов, остается вопрос, как они держатся вместе, ведь электростатические силы должны достаточно сильно отталкивать их друг от друга. Ответ одновременно и прост, и нет: ядро держится за счет очень быстрого обмена между нуклонами особыми частицами — пи-мезонами. Эта связь живет невероятно мало. Как только прекращается обмен пи-мезонами, ядро распадается. Также точно известно, что масса ядра меньше суммы всех составляющих его нуклонов.
Этот феномен получил название дефекта масс. Фактически недостающая масса — это энергия, которая затрачивается на поддержание целостности ядра. Как только от ядра атома отделяется какая-то часть, эта энергия выделяется и на атомных электростанциях преобразуется в тепло. То есть энергия деления ядра — это наглядная демонстрация знаменитой формулы Эйнштейна. Теория и практика Теперь расскажем, как это сугубо теоретическое открытие используется в жизни для получения гигаватт электроэнергии. Во-первых, необходимо отметить, что в управляемых реакциях используется вынужденное деление ядер. Чаще всего это уран или полоний, которые бомбардируется быстрыми нейтронами. Во-вторых, нельзя не понимать, что деление ядер сопровождается созданием новых нейтронов. В результате количество нейтронов в зоне реакции способно нарастать очень быстро. Каждый нейтрон сталкивается с новыми, еще целыми ядрами, расщепляет их, что приводит к росту выделения тепла.
Это и есть цепная реакция деления ядер. Неконтролируемый рост количества нейтронов в реакторе способен привести к взрыву. Именно это и произошло в 1986 году на Чернобыльской АЭС. Поэтому в зоне реакции всегда присутствует вещество, которое поглощает лишние нейтроны, предотвращая катастрофу. Это графит в форме длинных стержней. Скорость деления ядер можно замедлить, погружая стрежни в зону реакции. Уравнение ядерной реакции составляется конкретно для каждого действующего радиоактивного вещества и бомбардирующих его частиц электроны, протоны, альфа-частицы. Уравнение ядерной реакции также показывает, какое вещество получается в результате распада.
Новое в Каталоге Энергетика.RU
- Подписка на дайджест
- Деление атомного ядра
- Видео-стенд "Магия Деления ядра урана" в парке "Патриот"
- Деление ядра атома урана
Разделяя неразделимое
Деление атомных ядер может быть вызвано различными частицами, однако практически наиболее выгодно использовать для этой цели нейтроны. Пределы деления атома: Согласно принципам квантовой механики, есть нижний предел, достигнутый в элементарных частицах, таких как кварки или лептоны. Новости, полученные от Гана, были равносильны атомному взрыву в мозгу Лизы Мейтнер. И если Счётная палата хотела узнать, что творится в большом атомном хозяйстве Кириенко, последний немедленно жаловался на «притеснения» в президентские структуры. входящие в G7, договорились объединиться с целью вытеснить Россию с международного рынка а Смотрите видео онлайн «Деление атома: перспективы международного рынка.
Спустя 80 лет ученые поняли, как атомные ядра начинают вращаться после деления
Основы строения атома. Просто о сложном | Деление атомных ядер может быть вызвано различными частицами, однако практически наиболее выгодно использовать для этой цели нейтроны. |
Перспективы ядерной энергетики в современном мире / Хабр | Они сообщили о делении атомов пяти различных элементов – алюминия, бора, натрия, бериллия и лития – и полученная энергия более чем в три раза превышала то, что затратили. |
Деление атомного ядра
Так получим ли мы новые мощные атомные ледоколы, новые энергоблоки, плавучую атомную станцию «Академик Ломоносов», космический ядерный двигатель при таком циничном. Но если ядро похоже на жидкую каплю и может дробиться и сливаться, то с чем был связан шок от новости о делении урана? Ядерное деление — это реакция, в ходе которой ядро атома расщепляется на два или более меньших ядра, при этом происходит высвобождение энергии. Сколько воды можно нагреть на 10 °С, если использовать всю энергию, которая выделяется при делении 10 15 атомов урана. В ядерном реакторе число нейтронов, участвующих в делении ядер, остается неизменным (k=1), реакция протекает стационарно и имеет управляемый характер.
Открыт механизм вращения осколков деления ядер атомов
fission of an atom. Деление атома. Недавно в атомной энергетике произошло событие, которое можно сравнить разве что с созданием вечного двигателя: четвертый энергоблок Белоярской АЭС с реактором. уДачные советы. 03:00.
ЯДЕР ДЕЛЕНИЕ
Он будет готовить самостоятельно. Есть одна маленькая проблема: «Если бы у кого-то было так много и попыталось собрать это вместе, они бы убили себя», - сказал Хансен. Подпишитесь на нас в Твиттере llmysteries, а затем присоединяйтесь к нам в facebook, Следите за Натали Вулчовер в Твиттере nattyover. На разделении атомов работают атомные электростанции. И никаких чёрных дыр при этом не возникает.
При разделении атомов образуется тепло, которое нагревает воду, которая закипает и крутит турбину, которая даёт ток в провода. Например, ядро атома урана-235, при попадании в него нейтрона, расщепляется на ядро бария и ядро криптона и еще два или три нейтрона. В результате деления могут возникать и другие продукты реакции: лёгкие ядра в основном альфа-частицы , нейтроны и гамма-кванты.
Вот поиском способа провести самоподдерживающуюся цепную реакцию и занялись Ферми и его коллеги.
Через пару лет они смогли перейти от теоретической проработки к экспериментам. Однако для этого нужно было построить ядерный реактор. Реактор действительно напоминал поленницу лучше не скажешь из брикетов прессованного оксида урана и графитовых блоков. По мере сооружения реактора ученые проводили измерения и отслеживали, насколько близко они подошли к критической массе, необходимой для начала реакции.
Она была достигнута 1 декабря. В итоге реактор содержал 5,4 тонны металлического урана, 45 тонн оксида урана и 360 тонн графита.
Атом вещества разделяется на половинки, которые разводятся в стороны, пока не войдут в соприкосновение со смежными атомами.
Образуется нечто вроде полотна дороги, пролет, соединяющий два столба моста, по которому может быть передана информация. Это возможно благодаря тому, что разделенный таким образом атом продолжает оставаться единым целым на квантовом уровне из-за того, что части атома запутаны на квантовом уровне. Ученые Боннского университета собираются использовать такую технологию для моделирования и создания сложных квантовых систем.
Надо только уметь правильно расположить и соединить эти шестеренки". Чтобы сообщить об ошибке в тексте, выделите ее и нажмите Ctrl.
Важно отметить, что мы могли бы также добиться большего успеха с технологиями возобновляемых источников энергии, такими как солнечная и ветровая энергия, которые с каждым годом становятся все дешевле. Проблемы ядерной энергетики можно разделить на три категории: отходы, риск и стоимость. Вот несколько примеров каждой из них. Напрасные затраты Одно из самых больших общественных опасений по поводу ядерной энергетики в последние десятилетия было о том, что делать с урановым топливом, когда оно настолько забито расщепляющимися продуктами, что больше не может эффективно производить энергию. Эти высокоактивные отходы содержат изотопы, для снижения радиоактивности которых до уровня, примерно соответствующего уровню радиоактивности руды, из которой они были получены, могут потребоваться тысячи лет. В настоящее время в мире хранится более четверти миллиона тонн высокорадиоактивных отходов, ожидающих захоронения или переработки. Это плохо? Хотя хранящиеся ядерные отходы не обязательно представляют непосредственную угрозу, если они хорошо локализованы, вопросы долгосрочного обращения и возможности неправильного обращения и несчастных случаев делают хранение растущей кучи ядерных отходов спорным вопросом.
Углерод также является одним из видов отходов. Хотя процесс деления и преобразования ядерной энергии в электричество относительно свободен от выбросов углерода, общий бюджет углерода, связанный с добычей и переработкой руды, необходимой для деления, и строительством конкретной электростанции, не равен нулю. В течение всего срока службы новая атомная электростанция может выбрасывать в атмосферу примерно 4 г CO2 на каждый киловатт-час произведенной электроэнергии. По некоторым оценкам, этот показатель значительно выше - от 10 до 130 граммов CO2 в отдельных случаях. Таким образом, замена угольных электростанций на атомные позволит ежегодно экономить миллионы тонн СО2, не говоря уже о твердых частицах и других загрязняющих веществах. По тем же причинам экологически чистые возобновляемые источники энергии, такие как ветряные турбины и солнечные батареи, также не имеют нулевых выбросов в силу их производства и установки. Углеродный след солнечных и ветряных электростанций более или менее сопоставим с нижним пределом для атомной энергетики. В целом, атомная энергетика в лучшем случае не содержит столько же углерода, сколько солнечная и ветровая, хотя и связана с непопулярной проблемой отходов. Риск Прошло более трех десятилетий с тех пор, как советская Украина дала миру представление о том, как может выглядеть наихудший сценарий ядерной аварии.
Что такое цепная ядерная реакция и при чём здесь замедлители
Однако он воздержался назвать предприятия и размер пакета акций, сославшись на то, что не может раскрыть информацию до тех пор, пока не заключена сделка. Генеральный директор предприятия Александр Белоусов ознакомил гостей с работой завода по разделению изотопов и деятельностью Международного центра по обогащению урана, созданного на базе АЭХК по инициативе правительств России и Казахстана. Увиденное произвело на Карима Масимова огромное впечатление.
Это рекордное расстояние для такого вида связи. Квантовый интернет становится к нам все ближе. Обсудить Квантовая запутанность - явление, когда две частицы имеют одно и то же состояние, положение и тд.
Однако для этого нужно было построить ядерный реактор. Реактор действительно напоминал поленницу лучше не скажешь из брикетов прессованного оксида урана и графитовых блоков. По мере сооружения реактора ученые проводили измерения и отслеживали, насколько близко они подошли к критической массе, необходимой для начала реакции.
Она была достигнута 1 декабря. В итоге реактор содержал 5,4 тонны металлического урана, 45 тонн оксида урана и 360 тонн графита. Высота «поленницы» составила около шести метров. Ход реакции определялся положением графитовых стержней, поглощающих нейтроны и, следовательно, замедляющих реакцию.
Этот тип реакций применяется не только при создании ядерного оружия.
Рассмотрим, какую ядерную реакцию называют цепной, каковы условия её возникновения, поддержания. Коснёмся темы использования явления человеком. Что такое цепная ядерная реакция Ядерной реакцией называется процесс взаимодействия атомного ядра с элементарной частицей, вследствие которого образуется новое ядро и выделяется вторичная частица -ы , называемая гамма-квантом. Впервые её провёл Эрнест Резерфорд в 1919 году. Вследствие реакции азот 714N превращался в кислород 817O с выделением атома водорода.
Протекают ядерные реакции не только с выделением, но и с поглощением энергии. Цепная ядерная реакция — это последовательность делений атомных ядер, каждое из которых вызывается высвобожденной на предыдущем шаге процесса частицей.
Нашли ошибку или баг? Сообщите нам!
- Деление ядра атома урана
- ЯДЕР ДЕЛЕНИЕ
- Физика атома и ядра (курс лекций)
- Физика атома и ядра (курс лекций)
Деление ядер урана. Цепная ядерная реакция
Эти нейтроны могут инициировать деление уже нескольких ядер – возникает цепная реакция. Сколько воды можно нагреть на 10 °С, если использовать всю энергию, которая выделяется при делении 10 15 атомов урана. Передавая при столкновениях с атомами среды топливной композиции свою кинетическую энергию, осколки деления тем самым повышают температуру в ней. Новости, полученные от Гана, были равносильны атомному взрыву в мозгу Лизы Мейтнер.
Открыт механизм вращения осколков деления ядер атомов
Маленькие тайны жизни спрашивают ученых-ядерщиков, можно ли и как это сделать. Шведский человек по имени Ричард Хандл был арестован в конце июля за «попытку разделить атомы на своей кухне», как утверждают несколько СМИ. Согласно блогу Хэндла, 31-летний любитель химии получил образцы радия, америция и урана и пытался установить на своей печи импровизированный ядерный реактор. Хэндл, видимо, не знал, что его работа "Сделай сам" была незаконной. Его не поймали, пока он не отправил вопрос в радиационное управление Швеции, и ему ответили в форме полицейского визита. Пытливые умы хотят знать: как он получил эти химикаты?
И если бы Ричард Хэндл оставил наедине со своими собственными устройствами, он мог разделить атомы на своей кухне? Кент Хансен, почетный профессор ядерной науки и техники в Массачусетском технологическом институте, так не считает.
Как устроена атомная электростанция Заставляют атомы в ядерном топливе делиться. Когда нейтрон сталкивается с атомным ядром, это вызывает деление атома, сопровождаясь высвобождением энергии и дополнительных нейтронов. Распространяют реакции. Высвобожденные нейтроны сталкиваются с другими атомами и вызывают их деление. Это порождает дополнительные нейтроны, которые вызывают деление других атомов, и так далее. Благодаря этому энергия в ядерных реакторах высвобождается постоянно. Как графитовые стержни замедляют нейтроны В ядерных реакциях нейтроны высвобождаются с высокой скоростью.
Причина — в сильной связи протонов и нейтронов внутри ядра. При ядерной реакции значительная часть этой связанной энергии освобождается, и атомы движутся с огромной скоростью. В результате другие атомы не успевают захватить их и не могут продолжить цепную реакцию. Поэтому новые реакции случаются редко и с недостаточным уровнем энергии или тепла. При этом нейтроны с высокой скоростью в процессе деления высвобождают энергию. Это приводит к большим колебаниям температуры и нарушает стабильность условий внутри реактора. Это ставит производство электричества под вопрос. Наука научилась контролировать скорость нейтронов с помощью графитовых стержней. Эти элементы используют в ядерных реакторах, чтобы управлять ядерными реакциями.
Их изготавливают из графита, формы углерода, и называют замедлителями. Как водитель автомобиля регулирует скорость, чтобы избежать аварии, так и графитовые стержни управляют скоростью ядерной реакции. Они замедляют быстрые нейтроны. Процесс начинается с прямого взаимодействия. Нейтроны из первичной атомной реакции сталкиваются с ядрами углерода в графите.
Это основное топливо для атомных реакторов. То есть к 92 протонам урана добавляется разное количество нейтронов. Такой большой атом нестабилен и может развалиться. Это называется радиоактивным распадом. Как работает АЭС? В основе этой реакции лежит деление атомов нейтронами. После расщепления одного атома появляются новые нейтроны, которые и дальше разбивают атомы. Количество нейтронов постоянно растет, атомов делится все больше, растет температура. Охлаждая реактор, вода нагревается и превращается в пар. Пар раскручивает турбину, которая вырабатывает электричество. Если не остановить процесс деления атомов, энергии будет слишком много, и произойдет взрыв. В реакторе есть стержни управления, которые поглощают нейтроны и тормозят реакцию. Его загружают в реактор в специальных картриджах, которые называются тепловыделяющими сборками. В одном реакторе их количество может доходить до нескольких сотен. Топливные сборки доставляют на специальных платформах и загружают краном. Что произойдет, если перестать загружать уран в атомный реактор? А если не охлаждать реактор?
Полное число антинейтрино может быть частично связано с мощностью действующего геореактора и частично — с естественным распадом различных нестабильных ядер в недрах Земли. Из данных KamLAND следует, что полная плотность потока геонейтрино составляет примерно 16 млн частиц в секунду на кв. Это соответствует источнику тепла, порождаемого ядерными реакциями, мощностью от 24 до 60 ТВт. Первое из двух чисел оказалось близким к величине «избыточного» тепла, излучаемого Землей, о котором шла речь выше. И многие специалисты склоняются к мнению, что это объяснение наиболее правдоподобно. Энергетические спектры нейтрино, образующихся при делении разных ядер, отличаются. Русов с коллегами выполнили компьютерное моделирование и определили спектральные составляющие геонейтрино от различных внутренних источников — урана-238, тория-232, плутония-239. Суммарную мощность геореактора они оценили в 30 ТВт. Результаты этой работы также свидетельствуют в пользу импульсного режима размножения. Этой темой активно занимаются и геологи, и химики, и физики, и математики. Так, в Институте геологии и минералогии СО РАН разработана модель термохимического плюма — канала, заполненного магматическим расплавом, который простирается из земных недр до поверхности Н. Добрецов, А. Кирдяшкин, А. Кирдяшкин, 2001, 2004. Данные по удельным расходам излияния магм мантийных плюмов за последние 150 млн лет, а также их корреляция с инверсиями магнитного поля Земли Larson, Olson, 1991 подтверждают наш тезис, что плюмы зарождаются на ядро-мантийной границе. Плюм формируется при обязательном наличии теплового потока из жидкого ядра. Изучение тепло- и массообмена на подошве термохимического плюма и взаимодействия канала плюма со свободными конвективными течениями в мантии приводит к заключению, что источник тепла действительно расположен в ядре, как и предполагают авторы гипотезы глубинного геореактора. Что касается изотопного состава гелия, то повышенное содержание гелия-3, обнаруженное в плюмах, указывает на то, что в ядре Земли идут какие-то процессы, связанные с ядерными превращениями. Но, к сожалению, мы очень мало знаем о том, что происходило в начальный момент формирования планеты, и существовал ли, как считают авторы, «океан магмы». Поэтому вопрос о скоплениях актиноидов в ядре еще предстоит разрешить. Причиной же климатических изменений, о которых упоминают авторы статьи, на мой взгляд, не могут быть колебания температуры в ядре Земли. Ведь глубинные температурные флуктуации передаются на поверхность мантийными конвективными течениями примерно через 100 млн лет, а плюмы могут донести эти изменения за 1—5 млн лет. За это время флуктуации с периодом всего 100 тыс. В любом случае модель природного ядерного реактора на границе внутреннего и внешнего ядра интересна геологам уже тем, что не противоречит имеющимся знаниям в области геодинамики и фактам плюмового магматизма. Безусловно, предложенная гипотеза подлежит дальнейшей разработке, и достоверность ее должны подтвердить новые геологические, геофизические и геохимические данные о планете Земля. Кирдяшкин, д. Для решения этой и других задач предполагается создать глобальную сеть детекторов. Подобный опыт у международного научного сообщества уже есть: в 2005 г. Таким образом, в ближайшее десятилетие планируется зарегистрировать геонейтрино в нескольких точках земного шара. Объединение данных разных детекторов позволит наконец установить точное месторасположение источников этих частиц внутри нашей планеты и даст еще один довод «за» или «против» гипотезы «ядерной топки» Земли. Вместо послесловия Известно, что на атомной электростанции может произойти взрыв, если не регулировать ход цепной реакции в реакторе. Есть веские основания полагать, что в далеком прошлом по разным причинам — внутренним или внешним, например при столкновении с астероидом, — медленные ядерные реакции в недрах Земли могли трансформироваться во взрывные. Если бы взорвался весь уран Земли, событие было бы эквивалентно взрыву тротила в количестве, сравнимом с массой планеты! И Земля перестала бы существовать. Однако даже теоретически трудно представить механизм, по которому бы земной уран мог сконцентрироваться и одновременно прореагировать. Но взрыва даже нескольких процентов актиноидов вполне достаточно, чтобы отделить от Земли фрагмент размером с Луну. Ведь большие тела Солнечной системы образовались из одного протопланетного облака, поэтому и содержание радиоактивных элементов в них может быть схожим. Все планеты, вероятно, прошли стадию гравитационного разделения вещества по плотности, в результате которого тяжелые актиноиды могли сконцентрироваться в их недрах. Катастрофические ядерные события хорошо объясняют ряд так называемых нерегулярностей в Солнечной системе, казалось бы, ничем между собой не связанных. Среди них аномально большая масса спутника Земли — Луны, малая масса Марса, обратное суточное вращение Венеры, множество хаотично движущихся астероидов и комет... Не исключено, что исследования нашего «домашнего» земного реактора заставят нас по-новому взглянуть и на вопросы эволюции планет. Литература Анисичкин В. Анисичкин В. Митрофанов В. Овчинников В. Anisichkin V. Araki T.