Что такое пульсары и квазары. Пульсар, как выяснилось – это нейтронная звезда. Обычно рентгеновские пульсары представляют собой системы, состоящие из двух звёзд (обычной и нейтронной), вращающихся вокруг общего центра.
ЧЕТЫРЕХМЕРНЫЙ ПУЛЬСАР И ОБЕРТОНЫЙ ПУЛЬСАР
- Не черная и не дыра
- Строение пульсаров
- Что представляют собой пульсары?
- Пульсары и нейтронные звезды
- Настоящие выжившие: планеты-пульсары
- Из Википедии — свободной энциклопедии
Значение слова «пульсар»
Инфразвуки имеют низкую частоту 20 Гц и меньше , поэтому человек не способен их услышать, но при помощи аппаратуры их можно перевести в различимые для нас. Звуки в атмосфере имеют природу различных событий гул самолетов, рокот волн, работа кондиционеров, воздушная турбулентность, вибрация проводов на шаре и даже воздействие космических лучей на датчик. Подпишитесь на нас.
Астрономы предполагают, что они образуются в двойных системах, когда изначально более массивный компонент превращается в нейтронную звезду, которая затем раскручивается за счет аккреции вещества из вторичной звезды. Теперь группа астрономов под руководством Маркуса Э. Они исследовали недавно обнаруженный точечный источник радиосигнала обозначенный как G359. В результате команда обнаружила пульсар с периодом вращения 8,39 миллисекунд. Согласно исследованию, PSR J1744-2946 находится на расстоянии около 27 400 световых лет от нас и имеет радиосветимость на уровне 30 миллионов лет назад kpc2.
В свою очередь эти электроны могут порождать столь же экстремальные гамма-кванты, которые в конечном счете и позволяют астрономам обнаруживать эти естественные «пусковые установки» частиц. Статья об этом опубликована в Astrophysical Journal Letters. Это примерно на два порядка выше, чем максимальная энергия частиц на мощнейшем в мире ускорителе, Большом адронном коллайдере, расположенном недалеко от Женевы.
Ещё две особенности пульсаров — очень сильные магнитные поля на поверхности нейтронной звезды порядка 105—1010 Тл и быстрое вращение периоды вращения известных пульсаров заключены в пределах от 1,4 мс до нескольких секунд. Схема, иллюстрирующая образование импульсного излучения пульсара. Излучение заключено в узком конусе, и если ось конуса наклонена к оси вращения нейтронной звезды, то для наблюдателя, луч зрения которого попадает в пределы этого конуса, возникает эффект маяка: он видит один импульс за период вращения. В сильных магнитных полях вблизи поверхности звезды электроны быстро теряют свой поперечный импульс за счёт излучения фотонов и движутся дальше вдоль искривлённых магнитных силовых линий. Возникает излучение кривизны , с которым в основном и связывают радиоизлучение пульсаров. На больших расстояниях от поверхности магнитное поле ослабевает, у электронов формируются заметные питч-углы , и становится возможным включение синхротронного механизма излучения в оптическом, рентгеновском и гамма-диапазонах. Возникающее излучение заключено в узком конусе, и если ось конуса наклонена к оси вращения нейтронной звезды, то для наблюдателя, луч зрения которого попадает в пределы этого конуса, возникает эффект маяка: он видит один импульс за период вращения рис. В случае изолированной нейтронной звезды её вращение — основной источник энергии для всех процессов, протекающих в её магнитосфере. Потеря энергии вращения вызывает его замедление и наблюдаемое увеличение периода между импульсами. Постепенное истощение основного источника энергии приводит к уменьшению светимости пульсара, и он в конце концов становится недоступным для наблюдателей. На диаграмме рис. В англоязычной литературе область «выключившихся» пульсаров называют «кладбищем» англ. Разные модели затухания излучения дают различные уравнения «линии смерти», и на упомянутой диаграмме чёткой границы между активными и потухшими пульсарами нет. Диаграмма, изображающая зависимость скорости замедления вращения пульсара от его периода. Голубым цветом показаны линии одинаковой светимости пульсаров сплошные , одинакового возраста пунктирные и одинаковой индукции поверхностного магнитного поля штрих-пунктирные. Аббревиатуры: SGR — источники мягких повторяющихся гамма-всплесков англ. График из статьи: Kramer M. Перевод и обозначения: БРЭ. Наблюдаемое распределение пульсаров по периодам излучения выявляет существование двух групп. В одной из них сосредоточены объекты с миллисекундными периодами, в другой — с периодами от 0,1 с до нескольких секунд. При этом короткопериодические пульсары никогда не попадут во вторую группу.
Виды нейтронных звезд
- Что такое нейтронная звезда?
- Маленькие зеленые человечки?
- PSR J1744-2946
- Пульсары и нейтронные звезды
- Раскрыта 10-летняя загадка странного поведения пульсара
Пульсары Волновые модули
Такое повышение скорости вращения по сравнению с другими пульсарами, по мнению ученых, происходит, если возле пульсара находится другая менее плотная звезда. Материя этой звезды перетягивается на пульсар, вызывая ускорение его вращения, по мере чего вокруг пульсара. Пульсары — (англ. pulsars, сокращенно от Pulsating Sources of Radioemission — пульсирующие источники радиоизлучения) слабые источники космического излучения, всплески которого следуют друг за другом с очень медленно изменяющимся периодом. это быстро вращающиеся нейтронные звезды, которые испускают импульсы излучения с регулярными интервалами от секунд до миллисекунд. Ниже мы подробно расскажем, что такое пульсары и с чем их едят. Это одни из самых экзотических объектов во Вселенной, и о них определенно стоит поговорить! Пульсары — нейтронные звезды с мощнейшими магнитными полями — разгоняют заряженные частицы, и прежде всего электроны, до самых экстремальных энергий. Что такое пульсары и как они рождаются. Пульсар – особый тип нейтронных звезд, обладающий специфическими астрономическими свойствами.
Что такое пульсары?
Даже Вела, согласно данным, ранее демонстрировала «скромное» излучение, хотя некоторые теоретические предсказания подразумевали, что она может излучать в диапазоне ТэВ, никто не ожидал увидеть энергию в 20 ТэВ, которую зарегистрировали учёные. Художественная иллюстрация пульсара Вела и его магнитосферы, край которой отмечен ярким диском. Синие дорожки, расходящиеся наружу, представляют собой пути ускоренных частиц. Они производят гамма-излучение вдоль рукавов, вращающихся спирали из-за столкновения с фотонами, испускаемыми в магнитосфере изображены красным. Источник: Science Communication Lab for DESY Единственный другой пульсар, у которого когда-либо было замечено излучение на уровне ТэВ — Крабовидный пульсар, находящийся на расстоянии более 6 000 световых лет от Земли, но даже он был ограничен на пике примерно 1 ТэВ. Но есть ещё одно интересное открытие, которое команда раскрыла о Веле. Они обнаружили, что высокоэнергетические фотоны Велы соответствуют ранее неизвестному спектральному компоненту пульсаров. Спектр пульсара — это диаграмма, представляющая все разные интенсивности света и энергии, излучаемой объектом. Это свойственно не только пульсарам.
В ходе нового исследования ученые обнаружили пульсар с периодом обращения в 8,39 миллисекунд. Объект расположен на расстоянии 27 400 световых лет от Земли. У него также выявили «компаньона» массой не менее 0,05 солнечных масс.
Ученые предположили, что новый объект может быть связан со «Змейкой». Если предположение подтвердится, то это может означать, что пульсары могут быть ответственны за освещение радиоволн в центре галактики, сообщает arXiv.
Они также являются чрезвычайно яркими — превосходят по своей мощности общую силу излучения галактик, которые подобны Млечному Пути. Квазары были обнаружены астрономами как объекты, обладающие большим красным смещением. Согласно одной из распространенных теорий, квазары — это галактики на начальном этапе своего развития, внутри которых находится сверхмассивная черная дыра. Самый яркий пульсар в истории Одним из самых знаменитых таких объектов Вселенной является пульсар в Крабовидной туманности. Данное открытие показывает, что пульсар — это один из самых удивительных объектов во всей Вселенной. Взрыв нейтронной звезды в нынешней Крабовидной туманности был настолько мощным, что это даже не может вписаться в современную теорию астрофизики.
В 1054 году н. Взрыв ее наблюдался даже в дневное время, что было засвидетельствовано в исторических хрониках Китая и арабских стран. Интересно, что Европа не заметила этого взрыва — тогда общество было настолько поглощено разбирательствами между папой римским и его легатом, кардиналом Гумбером, что ни один ученый того времени не зафиксировал этого взрыва в своих работах. А несколько веков спустя на месте этого взрыва была обнаружена новая туманность, впоследствии получившая название Крабовидной. Ее первооткрывателю, Уильяму Парсонсу, она почему-то по своей форме напомнила краба. Источником пульсации, если судить более строго, является не сама звезда, а так называемая вторичная плазма, которая образуется в магнитном поле вращающейся с бешеной скоростью звезды. Частота вращения пульсара Крабовидной туманности составляет 30 раз в одну секунду. Открытие, которое не вписывается в рамки современных теорий Но этот пульсар удивителен не только своей яркостью и частотой.
Это число в миллионы раз превосходит то излучение, которое используется в медицинском оборудовании, а также оно в десять раз выше, чем то значение, которое описывается в современной теории гамма-лучей. Мартин Шредер, американский астроном, говорит об этом так: «Если бы всего лишь два года назад вы задали любому астрофизику вопрос о том, может ли быть обнаружено такого рода излучение, вы бы получили однозначное "нет". Такой теории, в которую может уложиться открытый нами факт, попросту не существует». Что такое пульсары и как они образовались: загадка астрономии Благодаря исследованиям пульсара Крабовидной туманности, ученые имеют представление о природе этих загадочных объектов космоса. Теперь можно более-менее четко представлять себе, что такое пульсар. Их возникновение объясняется тем, что на финальной стадии своей эволюции некоторые звезды взрываются и вспыхивают огромнейшим фейерверком — происходит рождение сверхновой звезды. От обычных звезд их отличает мощность вспышки.
В ходе проекта распределённых вычислений Einstein Home на 2016 год найдено 66 пульсаров. В 2015 году учёные из коллаборации космического гамма-телескопа Ферми обнаружили первый гамма-пульсар, лежащий за пределами Млечного Пути.
Он установил новый рекорд светимости среди ранее открытых гамма-пульсаров. В 2016 году в рамках проекта EXTraS англ. Сигналы от пульсаров можно использовать как эталоны времени и ориентиры для спутников [3]. В 2020 году астрономы США и Польши установили, что причиной того, что этот тип нейтронных звёзд действует как радиомаяки, является взаимодействие между электрическими и магнитными полями у поверхности объекта [12]. Номенклатура[ править править код ] Для наименования пульсаров исторически использовалось две системы. В более ранней пульсар обозначался двумя заглавными латинскими буквами и следующими за ними через пробел четырьмя цифрами. Первая буква обозначала группу учёных, открывшую пульсар, вторая буква — P — начальная буква слова Pulsar. Цифры обозначали прямое восхождение пульсара в часах и минутах.
Раскрыта загадка странного поведения пульсара
Тегиколлапсировать в сингулярность, луи стоуэлл что такое астрономия, почему нейтронные звезды называют пульсарами, нейтронная звезда и пульсар в чем разница, полярная звезда это пульсар новая звезда цефеида. Такое повышение скорости вращения по сравнению с другими пульсарами, по мнению ученых, происходит, если возле пульсара находится другая менее плотная звезда. Материя этой звезды перетягивается на пульсар, вызывая ускорение его вращения, по мере чего вокруг пульсара. Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные промежутки времени.
Пульсары и нейтронные звёзды / Звуки пульсаров / Как открыли и что это такое
Что такое Васту. Рассказываем в нашем ролике про пульсары — космические объекты, у которых чрезвычайно высокая скорость осевого вращения. Если мы разместим два пульсара в галактике, и через него пройдёт гравитационная волна, то эти пульсары начнут немного колебаться, и их наблюдаемый период, который нам известен с очень высокой точностью (у некоторых пульсаров с точностью до 10 -13 сек). Вероятно, тем, кто задается вопросом о том, что такое пульсар и каковы последние новости от астрофизиков об этих небесных объектах, будет интересно знать и общее количество открытых на сегодняшний день звезд такого рода. одни из самых странных и экстремальных объектов во вселенной. В этом видео поговорим об их открытии, о том чем они являются, послушаем их звуки и увидим несколько примеров. - 4 июня - 43555211980 - Медиаплатформа МирТесен. Пульсары были открыты в рамках оригинальной исследовательской программы, которая была задумана Хьюишем и выполнялась под его руководством.
Новый миллисекундный пульсар нашли в Млечном Пути
Это говорит нам о том, что что-то должно притягивать пульсар, и когда мы измеряем это колебание в течение нескольких циклов, мы обнаруживаем, что оно следует регулярной схеме, как будто пульсар движется вокруг центра масс по орбите. Это похоже на нашу Солнечную систему: Юпитер достаточно велик, чтобы заставить Солнце двигаться вокруг центральной точки, известной как барицентр. Таким образом, если бы вы могли измерить данные с Солнца из удаленной точки, вы бы увидели, что оно лишь незначительно колеблется в течение цикла около 12 лет что соответствует длине орбиты Юпитера. Тщательный анализ данных, которые производят эти колебания, позволяет нам узнать о периоде обращения тела и его массе. И еще раз, благодаря чувствительности, которая достигается при измерении импульсов пульсара, мы можем сделать вывод о массах компаньона, которые могут быть меньше, чем у Луны Земли , даже на расстоянии стольких световых лет. Именно это и произошло в 1992 году. Вскоре они поняли, что смотрят на планету, вращающуюся вокруг мертвой звезды.
На самом деле они обнаружили не одну, а две планеты, вращающиеся вокруг пульсара! Они стали первыми планетами, обнаруженными за пределами нашей Солнечной системы, или экзопланетами. Жизнь на планете-пульсаре Орбитальное поле обломков вокруг пульсара с материалами, которые могут медленно сливаться, образуя планеты. Итак, какой будет жизнь на одной из этих планет-пульсаров? Пульсары испускают огромное количество радиации от радиоволн до гамма-лучей — настолько сильное, что жизнь в том виде, в каком мы ее знаем не могла бы выжить. Вы бы тоже жили под постоянным стробоскопическим эффектом излучения… некоторые пульсары вращаются со скоростью сотни раз в секунду, так что это было бы неприятно.
Магнитные поля пульсаров также создают «ветер» из релятивистских частиц, что звучит как самая экстремальная форма пескоструйной обработки в истории Вселенной. В этих условиях атмосфера ни одной планеты не могла сохраниться нетронутой. Кстати говоря, если бы вы подошли слишком близко, и магнитное поле, и их гравитация действительно нанесли бы некоторый ущерб. Так как же в таких экстремальных условиях формируется планета-пульсар? Во-первых, система-прародитель подвергается вспышке сверхновой, что является одним из самых жестоких событий, которые могут произойти в нашей Вселенной. Массивная звезда, буквально взрывающая сама себя.
Планеты-пульсары не могут быть бывшими планетами из этой старой системы, потому что до взрыва сверхновой массивная звезда должна была расшириться до красного гиганта и поглотить внутренние миры. Даже миры, расположенные дальше — когда эта звезда взорвется, внезапное изменение массы вызовет большое изменение гравитации в системе, что приведет к ее дестабилизации и принесет много горя всему, что осталось позади. Так что, возможно, планеты-пульсары выкованы из пепла оставшихся обломков после взрыва сверхновой — измельченных остатков любых бывших планет, смешанных с большим количеством «звездных кишок». Это может быть вариантом, но диск обломков должен двигаться по орбите с постоянной или достаточно высокой скоростью, чтобы избежать его падения обратно на пульсар который все еще имеет довольно сильное локализованное гравитационное поле. Иногда у пульсаров есть звезды-компаньоны, которые со временем сливаются с ними. Во время этого процесса материал компаньона может оставаться на орбите, а после длительных периодов времени от миллионов до миллиардов лет этот обломок может начать сливаться и также становиться маленькими планетами.
В этом сценарии поле обломков должно быть достаточно далеко от пульсара, чтобы его не втянуло внутрь. Другой вариант заключается в том, что пульсар может украсть планету у двойной системы или ее спутника. Когда вторичная звезда и ее планеты сближаются, пульсар выбрасывает звездный объект, но захватывает планетарное тело, принимая его как свое собственное. Добро пожаловать в ад, планетарный друг. И, наконец, планеты-пульсары могут быть всем, что осталось от звезды-компаньона, которая отклонилась слишком близко к пульсару. Все это излучение, этот релятивистский ветер и энергия могут медленно испарять спутник на близкой орбите, пока не останется только его маленькое, похожее на планету ядро.
Во всех этих сценариях жизнь какой мы ее знаем действительно боролась бы за то, чтобы найти способ жить, учитывая интенсивное количество продолжающегося излучения, которое бомбардирует их от пульсара. Спутники пульсаров, подошедшие слишком близко, могут быть уничтожены огромным количеством излучения, излучаемого пульсаром.
Силовое поле и радиоизлучение Источником радиоизлучения пульсаров является их сильное магнитное поле и быстрое вращение. Пульсары вращаются с невероятной скоростью, от нескольких оборотов в секунду до нескольких сотен оборотов в секунду. Благодаря этому вращению, пучки радиоизлучения регулярно направляются в стороны наблюдателя на Земле, создавая впечатление периодически мерцающего света. Наблюдение исследователями Астрономы активно изучают пульсары с помощью радиотелескопов, рентгеновских телескопов и гамма-обсерваторий. Благодаря непрерывному мониторингу и накоплению данных ученые смогли выявить множество интересных закономерностей в поведении пульсаров, их эволюции и взаимодействии с окружающей средой. Исследования пульсаров позволяют ученым расширить знания об эволюции звезд, физике сильных магнитных полей и процессах ускорения заряженных частиц. Практическое применение Кроме фундаментальных научных знаний, пульсары находят практическое применение в навигации космических аппаратов и определении параметров космических объектов.
А почему звезда "умирает": потому что в ядре заканчивается водород для термоядерных реакций. Только эти процессы и были в состоянии противостоять гравитации, которая без них обязательно заставит ядро сжиматься до самого последнего возможного предела. Оно сжимается, а от этого раскаляется, представьте себе, даже гораздо больше, чем от термоядерного синтеза. Поэтому оболочка звезды и раздувается, а в конце концов сбрасывается. От перегрева. Скажем, когда знаменитая "умирающая" Бетельгейзе которая весит 15—17 Солнц наконец попрощается с нами великолепным взрывом сверхновой, то есть сбросит перегретую и раздутую оболочку, её ядро, скорее всего, как раз станет нейтронной звездой. А вот пример уже свершившегося события: тоже очень широко известная Крабовидная туманность — не что иное, как остаток взрыва сверхновой, который произошёл в 1054 году. И в центре этой самой туманности, собственно, наблюдается нейтронная звезда.
Пульсары почти полностью состоят из нейтронов и испускают пучки излучения, которые иногда проносятся через нашу Солнечную систему. Эти пучки излучения, которые испускаются с опредёленной периодичностью, позволяют учёным составить спектры пульсаров. Экстремальность — это ещё одна причина, по которой учёные изучают пространство вокруг пульсаров, чтобы проверить некоторые основные физические концепции. В основном, астрофизики хотят увидеть, сохраняется ли теория общей относительности вокруг пульсаров, потому что эти объекты являются одними из самых сильно гравитационно-интенсивных объектов во Вселенной, а общая теория относительности — это объяснение гравитации самой по себе.
Джаннати-Атай говорит, что эти результаты предоставляют жёсткие ограничения на понимание источника излучения пульсаров. В настоящее время учёными принято считать, что этот источник представляет собой быстро движущиеся электроны, испускаемые и ускоряемые в магнитосфере пульсара, которые затем направляются к периферии объекта. Однако эту модель не объясняют наблюдения команды: чтобы получить излучение с энергиями, такими высокими, как 20 ТэВ, требуется какой-то ещё «множитель». И хотя у исследователей есть некоторые идеи, они намерены полностью разрешить эту головоломку в результате будущих наблюдений.
Пока что последние результаты наблюдений открыли новый путь исследований для учёных, работающих среди звёзд.
Что такое пульсар?
Однако природа пульсаров недолго оставалась загадкой. Все кусочки головоломки уже были на руках у исследователей. Еще в 1934 году, всего через два года после открытия нейтрона, Вальтер Бааде и Фриц Цвикки предположили, что во взрывах сверхновых образуются нейтронные звезды. А незадолго до открытия пульсаров Николай Семенович Кардашев и Франко Пачини показали, что нейтронная звезда должна быстро вращаться и иметь мощное магнитное поле. Опираясь на эти идеи, Томас Голд разгадал природу пульсаров вскоре после их открытия, хотя конкурирующие гипотезы рассматривались еще какое-то время. Открытие пульсаров впервые подтвердило, что нейтронные звезды существует в реальности, а не только в выкладках астрофизиков. За это достижение Хьюиш но почему-то не Белл! Нейтронные звезды — это, так сказать, загробная инкарнация некоторых светил.
Расскажем об этом подробнее. Любая звезда сжалась бы в крошечный комок под действием собственной гравитации, если бы не давление, препятствующее сжатию. Причем решающий вклад в это давление вносит вовсе не вещество, а излучение. Звезду в буквальном смысле спасают от смерти силы света — ее собственного света. На протяжении всей жизни звезда «худеет»: массу уносят и звездный ветер, и излучение. Но все же светило до самого конца остается достаточно массивным. И когда термоядерное топливо заканчивается, остаток звезды остается один на один с гравитацией.
Взрыв нейтронной звезды в нынешней Крабовидной туманности был настолько мощным, что это даже не может вписаться в современную теорию астрофизики. В 1054 году н. Взрыв ее наблюдался даже в дневное время, что было засвидетельствовано в исторических хрониках Китая и арабских стран. Интересно, что Европа не заметила этого взрыва — тогда общество было настолько поглощено разбирательствами между папой римским и его легатом, кардиналом Гумбером, что ни один ученый того времени не зафиксировал этого взрыва в своих работах. А несколько веков спустя на месте этого взрыва была обнаружена новая туманность, впоследствии получившая название Крабовидной. Ее первооткрывателю, Уильяму Парсонсу, она почему-то по своей форме напомнила краба. Источником пульсации, если судить более строго, является не сама звезда, а так называемая вторичная плазма, которая образуется в магнитном поле вращающейся с бешеной скоростью звезды. Частота вращения пульсара Крабовидной туманности составляет 30 раз в одну секунду. Открытие, которое не вписывается в рамки современных теорий Но этот пульсар удивителен не только своей яркостью и частотой. Это число в миллионы раз превосходит то излучение, которое используется в медицинском оборудовании, а также оно в десять раз выше, чем то значение, которое описывается в современной теории гамма-лучей.
Мартин Шредер, американский астроном, говорит об этом так: «Если бы всего лишь два года назад вы задали любому астрофизику вопрос о том, может ли быть обнаружено такого рода излучение, вы бы получили однозначное "нет". Такой теории, в которую может уложиться открытый нами факт, попросту не существует». Что такое пульсары и как они образовались: загадка астрономии Благодаря исследованиям пульсара Крабовидной туманности, ученые имеют представление о природе этих загадочных объектов космоса. Теперь можно более-менее четко представлять себе, что такое пульсар. Их возникновение объясняется тем, что на финальной стадии своей эволюции некоторые звезды взрываются и вспыхивают огромнейшим фейерверком — происходит рождение сверхновой звезды. От обычных звезд их отличает мощность вспышки. Всего в нашей Галактике происходит порядка 100 таких вспышек в год. Всего лишь за несколько суток сверхновая звезда увеличивает светимость в несколько миллионов раз. Все без исключения туманности, а также пульсары появляются на месте вспышек сверхновых звезд. Однако наблюдать пульсары можно не во всех остатках этого типа небесных светил.
Это не должно смущать любителей астрономии — ведь пульсар можно наблюдать только в том случае, если он расположен под определенным углом вращения.
Во время этого процесса аккреции пучок излучения исчезал, и пульсар чередовал свое излучение между: "высоким" режимом, характеризующимся излучением рентгеновских лучей, ультрафиолетового и видимого света. Такое поведение всегда восхищало исследователей, и вот теперь причина этих удивительных переходов раскрыта. Франческо Коти Зелати, соавтор исследования и научный сотрудник Института космических наук в Барселоне, пояснил: "Мы обнаружили, что смена режимов происходит в результате сложного взаимодействия между пульсарным ветром — потоком высокоэнергетических частиц, выбрасываемых из самого пульсара, и движущейся к нему материей". Секрет, раскрытый в новом исследовании С помощью моделирования спектральных распределений энергии исследователи показали, что эти вариации мод вызваны изменениями во внутренней области аккреционного диска. В частности, в "низком" режиме вещество, текущее к пульсару, выбрасывается через струю, перпендикулярную диску. По мере приближения к пульсару это вещество попадает под ветер, выходящий из звезды, и нагревается. После этого система переходит в "высокий" режим, испуская рентгеновское, ультрафиолетовое и видимое излучение.
Но в 2013 году пульсар внезапно начал переключаться между двумя состояниями: высокоэнергетическим режимом, в котором излучал рентгеновские лучи, яркий видимый и ультрафиолетовый свет, и низкоэнергетическим режимом, характеризующийся более длинными и тусклыми радиоволнами.
Еще более странно, что он переключался между этими режимами каждые несколько секунд. Теперь, после десяти лет наблюдений, исследователи считают, что разобрались в его странном поведении. Иллюстрация пульсара J1023, высасывающего вещество из звезды-компаньона. Корнмессер Поскольку J1023 вращается близко к компаньону, его сильная гравитация начала вытягивать плазму из другой звезды. Эта материя собирается в диске вокруг пульсара, где она быстро перегревается солнечным ветром объекта, переводя систему в высокоэнергетический режим.
Обнаружен новый миллисекундный пульсар из двух нейтронных звезд
Механизм их появления заключается в том, что космические лучи могут врезаться в окружающие фотоны, имеющие относительно низкую энергию, превращая их в высокоэнергетические гамма-лучи. Сами заряженные частицы прихотливо движутся в галактических магнитных полях, под влиянием которых их первоначальная траектория искажается, что не позволяет отыскать их источник, а вот гамма-лучи, невосприимчивые к магнитным полям, дают возможность не только отследить место их собственного происхождения, но и выяснить, где рождаются первоначальные космические лучи. В новом исследовании Эмма де Онья Вильгельми, работающая на Немецком электронном синхротроне DESY в Гамбурге, и ее коллеги из других европейских стран с помощью расчетов показали, что источником экстремальных частиц, зарегистрированных LHAASO, являются турбулентные облака и заряженные частицы, окружающие пульсары.
Каждая звезда имеет ограниченный срок жизни. Звезды рождаются, живут на протяжении какого-то времени обычно несколько миллиардов лет , а затем умирают. Жизненный цикл звезд Жизненный цикл звезд Звезды состоят из газа, который удерживается вместе собственной гравитацией звезды. От того, чтобы коллапсировать в сингулярность звезды удерживает энергия выделяемая в ходе термоядерных реакций внутри звезды. Так наше Солнце например через несколько миллиардов лет сперва вырастет и станет красным гигантом в 250 раз больше своего текущего размера , затем сбросит верхние слои газа, которые образуют планетарную туманность в центре которой будет плотное ядро бывшей звезд — белый карлик. Однако звезды с массой около 10 масс нашего Солнца становятся красными сверхгигантами. Эти сверхгиганты постепенно расширяются и остывают до тех пор пока не наступает момент, когда топливо для термоядерных реакций внутри звезды не закончится.
Тогда нарушается баланс между гравитацией и энергией, который удерживал звезду как единое целое и происходит взрыв. Вещество в нейтронной звезде находится в экстремально сжатом состоянии.
Несколько позже были открыты источники периодического рентгеновского излучения, названные рентгеновскими пульсарами. Как и радио-, рентгеновские пульсары являются сильно замагниченными нейтронными звёздами. В отличие от радиопульсаров, расходующих собственную энергию вращения на излучение, рентгеновские пульсары излучают за счёт аккреции вещества звезды-соседа, заполнившего свою полость Роша и под действием пульсара постепенно превращающегося в белого карлика. Как следствие, масса пульсара медленно растёт, увеличивается его момент инерции и — за счёт передачи орбитального момента системы во вращение пульсара падающим на него веществом — частота вращения, в то время, как радиопульсары, со временем, наоборот, замедляются.
Снимки туманности MSH 15-52, полученные телескопами «Чандра» слева , IXPE в центре и в инфракрасном диапазоне справа В 2001 году американская рентгеновская обсерватория «Чандра» использовалась для наблюдения пульсара PSR B1509-58, в результате чего было обнаружено, что расположенная в его окрестностях туманность MSH 15-52 напоминает человеческую руку. Пульсар находится в основании «ладони» на расстоянии примерно 16 тыс.
Дополнительно этот объект изучили при помощи телескопа IXPE — наблюдение производилось около 17 дней, и это был самый продолжительный период наблюдения для обсерватории, запущенной в декабре 2021 года. Производящие космические лучи заряженные частицы движутся вдоль магнитного поля, определяя основную форму туманности подобно костям в руке человека», — рассказал глава группы исследователей Роджер Романи Roger Romani из Стэнфордского университета в Калифорнии. IXPE помог собрать информацию об ориентации электрического поля рентгеновских лучей, которая определяется магнитным полем источника рентгеновского излучения — о рентгеновской поляризации. В обширных областях MSH 15-52 степень поляризации чрезвычайно высока — здесь она достигает теоретического максимума. Чтобы выйти на эти показатели показателей, магнитное поле должно быть прямым и однородным, а значит, турбулентность здесь невысока. Наиболее интересным фрагментом MSH 15-52 является струя, направленная к «запястью» в нижней области снимка. IXPE показал, что поляризация в начальном фрагменте струи низкая — здесь высокая турбулентность со сложными, запутанными магнитными полями. К концу струи линии магнитного поля выпрямляются, становятся всё более однородными, а поляризация сильно возрастает.
Это значит, что в турбулентных областях вблизи пульсара частицы получают прирост энергии и свободно движутся там, где магнитное поле однородно: вдоль «запястья», отстоящего «большого» и прочих пальцев. Схожие схемы IXPE обнаружил и в других туманностях пульсаров, а значит, они могут оказаться распространёнными в подобных объектах. Астрономам удалось «услышать» низкочастотные гравитационные волны — слабую рябь ткани Вселенной, вызванную движением сверхмассивных объектов, которые растягивают и сжимают пространство. Визуализация гравитационных волн, производимых сверхмассивными чёрными дырами. Источник изображения: nanograv. В 2015 году эксперимент LIGO помог обнаружить гравитационные волны и доказать правоту Эйнштейна, но до сих пор они фиксировались лишь на высоких частотах. То были отдельные быстрые «щебетания», которые происходят только в определённые моменты, например, когда друг с другом сталкиваются относительно небольшие чёрные дыры и мёртвые звезды. В последнем исследовательском проекте учёные пытались обнаружить гравитационные волны на гораздо более низких наногерцовых частотах — периоды этой медленной ряби могут составлять годы и даже десятилетия.
Исходит она, вероятно, из самых больших объектов Вселенной — сверхмассивных чёрных дыр массой в миллиарды солнечных. Но есть и другие «подозреваемые»: космические струны, фазовые изменения Вселенной, быстрое расширение пространства после Большого Взрыва. Возможно, и сам Большой Взрыв, но длина гравитационной волны от него была бы размером во Вселенную, и для неё потребовался бы детектор сравнимых масштабов.
Загадки космоса: что такое пульсары
это космический источник радио, оптического, рентгеновского, гамма – излучений, приходящих на Землю в виде периодических всплесков (импульсов). По мнению исследователей, их открытие поможет проектам, основанным на периодичности сияния пульсаров, таким как исследования гравитационных волн, где пульсары используются в качестве космических часов. В ее центральной зоне находится быстровращающаяся нейтронная звезда-пульсар, которая инжектирует в окружающее вещество релятивистские потоки заряженных частиц, что приводит к возникновению ударной волны в виде внутренней кольцеобразной структуры.
Могут ли пульсары служить передатчиками инопланетных посланий?
13 июля 2022 Александр Садов ответил: Радиопульсары — одно из наблюдательных проявлений нейтронных звезд — источники пульсирующего радиоизлучения с периодами от нескольких миллисекунд до секунд. В видео можно услышать, как звучит пульсар, магнитосфера Ганимеда (луна Юпитера), полярное сияние на Земле, Солнце, магнитосфера Юпитера, межзвездное пространство и даже черная дыра. это быстро вращающиеся нейтронные звезды, которые испускают импульсы излучения с регулярными интервалами от секунд до миллисекунд. IXPE — первая обсерватория, которая сможет изучать поляризованное рентгеновское излучение от чёрных дыр, нейтронных звёзд и пульсаров. Станислав: Мы много рассказываем про пульсары, но так и не рассказали, что такое пульсар. Пульсар образуется в результате взрыва сверхновой — это как один из вариантов.