Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF). Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток.
Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики
Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков. Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5. Российские учёные разработали новый материал для термоядерного реактора. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала.
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды
Все подтвердилось, и даже больше. После этого практически все лаборатории мира, связанные с работами по магнитному удержанию плазмы, стали делать токамаки. Сейчас с нашим участием строится первый экспериментальный реактор ITER, в котором мощность термоядерной реакции должна в 10 раз превзойти мощность, затрачиваемую на поддержание реакции. ITER — это тоже токамак. Работы по физике высоких плотностей энергии продолжаются, лидером этого направления у нас был В. Фортов, с которым мы здесь тоже работали. Сегодня мы переживаем новый этап в области термоядерных исследований благодаря новой федеральной программе. Она очень сложна. Существуют проблемы создания такого реактора.
Одна из важнейших — взаимодействие плазмы со стенкой, то есть эрозия стенки. Было предложено несколько способов ее защиты. Кстати, самые активные исследования этой проблемы проводятся здесь на токамаке Т-11М под руководством С. Энергетический термоядерный реактор предполагает, что мощность, выделяемая в процессе интенсивной термоядерной реакции, должна превосходить затрачиваемую на поддержание плазмы не менее чем в десять раз. И тогда на стенку камеры идет очень высокий поток частиц, который ее разрушает. Проблема первой стенки — одна из важнейших для энергетического реактора. Если вы снизите требования к интенсивности реакции, то эти потоки уменьшаются и проблема защиты стенки перестает быть такой острой. Но возникает вопрос: а где мы можем применять эти нейтроны?
Оказывается, мы можем их использовать в целях создания топлива для обычных атомных реакторов. Это так называемые гибридные системы «синтез — деление», и они сейчас здесь очень активно обсуждаются и развиваются. Практическая реализация таких систем важна. Но чего сейчас здесь удалось достичь? Каков сегодня мировой рекорд ее удержания, где он достигнут? Первый токамак со сверхпроводящими магнитными системами был построен в Курчатовском институте. Потом, в силу ряда обстоятельств, эта система не получила развития. Точнее, она получала развитие в токамаке Т-15, который создавался в Курчатовском институте, но из-за слома Советского Союза дело не было доведено до конца.
На Западе и Востоке довели. Надо понимать, что, помимо времени удержания, еще есть требования на плотность, температуру, и вообще для того, чтобы термоядерный реактор работал, необходимо, чтобы тройное произведение — время удержания, плотность и температура — было выше некоторой величины. Длительность удержания разряда в высокотемпературной плазме на китайском токамаке — более 100 с. Требуемые температуры также достигнуты. Реализовать их одновременно в одной установке предполагается в ITER. Сегодня здесь лидеры китайцы. У них разряд в высокотемпературной плазме держится больше сотни секунд. В ITER будет два режима.
Один — режим удержания в течение пяти часов, другой, более короткий — в течение нескольких десятков секунд. Если мы говорим о системах с магнитным удержанием, а только о них мы и должны говорить, все-таки их придется периодически перезаряжать. То есть система работает несколько часов, потом она останавливается, прочищается за час и потом опять работает. В этом смысле коэффициент использования мощности будет высоким. Мы все живем благодаря термоядерной энергетике — не только в смысле зарплаты, а в смысле создания практически не ограниченного топливными ресурсами энергетического источника. Термоядерная реакция — такой источник энергии. Человечество жаждет овладеть такой энергией. В конечном счете человечеству нужно практическое применение.
И первое такое применение будет на гибридных системах. Можно получать топливо, облучая уран и превращая его в изотоп, используемый в атомных реакторах. Можно также облучать торий, которого больше на Земле, чем урана, и из него тоже нарабатывать топливо.
Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного внутрь симметричного взрыва — имплозии — обычной взрывчатки. В 1978 году в письме в Nature физики из ядерного центра в Арзамасе-16 сообщали , что проводили такие эксперименты в 1955 и 1963 годах и достигли успеха — то есть смогли зафиксировать нейтроны, порожденные, по их мнению, термоядерной реакцией в тритиево-дейтериевой мишени.
Но к тому моменту у ученых появился значительно более удобный, чем раствор нитробензола в тетранитрометане , инструмент — лазер. Лазерный пресс Один из изобретателей лазера Николай Басов в 1964 году вместе с коллегами опубликовал в ЖЭТФ статью , где рассматривал тонкости нагрева плазмы лазерным излучением, а уже через несколько лет рассказал о результатах первых экспериментов с мишенью из дейтерида лития и они увидел нейтроны, что могло свидетельствовать о термоядерной реакции. За океаном в то же время ходили похожие идеи. Например, американский «отец» водородной бомбы Эдвард Теллер в 1957 году обдумывал вариант взорвать термоядерное устройство в трехсотметровой полости в толще гранита для получения энергии. Это заставило его и его сотрудников искать ответы на два вопроса: каким может быть наименьший энергетический выход термоядерной реакции, который бы имел смысл для коммерческого использования, и какого уровня энерговыделения можно добиться, не используя для запуска реакции «ядерный запал».
Эти вопросы через некоторое время привели их к мысли об использовании лазера — как способа концентрации энергии в очень небольшом пространстве, что позволяло бы достичь необходимых давлений и температур в маленьком объеме топлива, горения которого бы не было разрушительным по масштабу. В 1972 году Джон Накколс из Ливерморской национальной лаборатории имени Лоуренса вместе с коллегами опубликовал в Nature статью , где описал главные черты установки для лазерного термоядерного синтеза и даже привел вычисления, касающиеся ее коммерческой эффективности. Главное преимущество лазера, писал Накколс и его соавторы, состоит в том, что он позволяет создать сверхвысокую плотность вещества, необходимую для зажигания термоядерной реакции. Механические средства могут создать давление не более 106 атмосфер, этот предел задается прочностью химических связей. Взрыв химической взрывчатки может создать давление от 106 до 107 в центре имплозивного взрывного устройства.
Но это еще далеко до нужных для инерциального синтеза параметров. Лазерное излучение может довести давление до 108 — 1011 атмосфер и даже выше. Работать это все должно было так: лазерные импульсы, несущие огромную энергию сразу со всех сторон, должны был испарять внешние слои сферической мишени размером в миллиметр, что вызывало бы схлопывание оставшейся части к центру. И там, в момент наибольшего сжатия, возникали бы условия для «зажигания» небольшой части смеси дейтерия и трития в центре мишени — от 2 до 5 процентов общей массы, которые разогревали бы оставшееся тело мишени. Но достичь успеха удалось не сразу.
Любые неравномерности в обжатии мишени разрушали ее задолго до момента схлопывания к нужному размеру и достижения нужной плотности и температуры. Ученые подыскивали способы эффективнее обжимать топливные капсулы. Изначальная концепция нагрева и сжатия капсулы лазерами потребовала бы порядка 100 мегаджоулей, но физики придумали вариант, где разгоняющиеся внешние плотные слои из топливного льда сжимают газовую топливную смесь, разогревая ее ударной волной сжатия — такая концепция требовала уже 2-3 мегаджоуля, в 30 раз меньше! Параллельно ученые в попытке добиться инерциального конфайнмента пробовали и увеличить «массу молотка», то есть энергии, которая «вкачивалась» в мишень за один выстрел начав с единиц килоджоулей, физики к 1980-м пришли к энергиям в десятки, а то и сотню килоджоулей за выстрел , так и поменять саму схему эксперимента. В середине 1970-х годов физики решили поставить между лазерным излучением и мишенью посредника, то есть попробовать метод «непрямого воздействия».
В этом варианте топливная капсула размером в миллиметр подвешивалась в центре небольшого золотого или свинцового сосуда, который получил название хольраум от немецкого Hohlraum, «пустое пространство, полость», термин взят из работ Макса Планка , посвященных излучению абсолютно черного тела. Детали их производства оставались в секрете до 1994 года. Под действием излучения лазера внутренняя поверхность сосуда становилась источником рентгеновского излучения, которое и попадало в мишень, запуская термоядерную реакцию. В рентген должно было превращаться от 70 до 80 процентов энергии лазерного излучения.
Несколько дней назад исследователям удалось поддерживать плазму при температуре 100 миллионов градусов Цельсия в течение более 40 секунд. Недавно другой группе исследователей удалось сделать плазму более плотной, чем когда-либо, без каких-либо потерь. Чтобы ядерный синтез стал жизнеспособным источником энергии, необходимы десятилетия исследований. Ядерный синтез — естественная реакция в звездах, но его крайне сложно воспроизвести на Земле. Исследователи все еще сталкиваются с рядом технических проблем, чтобы собрать воедино условия, необходимые для контролируемого и экономически эффективного ядерного синтеза. Плотность плазмы — одно из важнейших условий для воспроизведения реакции. Чем плотнее материал, тем большее количество горючих частиц он содержит, что повышает вероятность термоядерного синтеза.
Управляемый термоядерный синтез — теоретически максимально безопасный и минимально воздействующий на окружающую среду — остается голубой мечтой человечества. Задача оказалось сложнее. Нерешенных проблем много. Во-первых, нужно разработать сплавы с конкретными свойствами, совмещающие прочность и пластичность. Пока основной кандидат в конструкционные материалы — вольфрам. Во-вторых, есть вопросы по физике плазмы, ее контролю, безопасному охлаждению, а главное — стабильному удержанию. Бум токамаков Идея создания термоядерного реактора была основана на теплоизоляции высокотемпературной плазмы с использованием электрического поля высокого напряжения. Токамак — тороидальная камера с магнитными катушками, прототип реактора для поддержания контролируемой термоядерной реакции в горячей плазме. Главной задачей JET было подготовить сценарий технических характеристик, близкий к запланированному для постройки международного термоядерного экспериментального реактора ИТЭР. На реакторе JET было достигнуто первое в мире контролируемое выделение мощности синтеза на дейтерий-тритиевой реакции 1991 год , этому же реактору принадлежит мировой рекорд мощности управляемого термоядерного синтеза — 16 МВт 1997 год. При таких колоссальных температурах ядра изотопов водорода сталкиваются и, преодолевая кулоновский барьер, сливаются, образуя ядра атомов гелия. В результате каждого акта такого синтеза должно выделиться 17,6 МэВ энергии. При нагревании топливная смесь приходит в состояние полностью ионизированной плазмы, словно в солнечном ядре, где каждую секунду сгорают тонны водорода, также превращаясь в гелий. Сверхпроводящие тороидальная и полоидальная катушки совместно с центральным соленоидом удерживают плазму внутри вакуумного сосуда реактора. Эти катушки генерируют магнитное поле, которое формирует плазму в тор. В 1950-х годах считалось, что MFE можно достичь относительно легко. Шла настоящая гонка: кто первым создаст подходящую установку. К концу 1950-х годов стало ясно, что турбулентность и нестабильность в плазме — серьезные проблемы. В 1968 году советская команда изобрела токамак, который показал производительность в 10 раз выше, чем альтернативные способы. Курчатова под руководством академика Льва Арцимовича. С тех пор считается наиболее перспективной идея токамаков с магнитным плазменным удержанием. Однако есть и другая концепция термоядерного синтеза — инициирование цепных реакций внутри реактора путем нагревания и сжатия топливной мишени с помощью мощного лазерного излучения так называемый инерционный синтез. Применяются мощные лазеры для того, чтобы зажечь небольшую мишень — ампулу, содержащую топливо, и быстро менее чем за одну миллиардную долю секунды достичь условий термоядерного синтеза. Лазер используется для генерации импульса инфракрасного света, который длится несколько миллиардных долей секунды с миллиардными долями джоуля энергии. У этой технологии есть свои подводные камни. Лазеры с высоким КПД должны интенсивно, а главное — однородно облучать мишени; при этом важны сверхточная фокусировка лазеров, скрупулезное соблюдение размеров мишеней, их строго сферическая форма. Несколько ампул за секунду должны быть загружены в реактор с фиксированным положением по центру — это особенно сложно осуществить, учитывая масштабы реактора. Самая крупная экспериментальная установка, работающая по принципу инерционного синтеза, — это Национальный центр зажигания National Ignition Facility , расположенный в США, в Ливерморской национальной лаборатории им.
и
Соленоид стабилизирует шнур из плазмы во время работы установки. В феврале Япония доставила последнюю ниобийоловянную катушку тороидального поля. Система шинопроводов, которая собирается из сегментов до 12 м длиной и весом 2—4 т, соединит электросеть с магнитной системой реактора и устройствами быстрого вывода энергии, а также с оборудованием для нагрева плазмы. Оно не имеет аналогов в мире. Эти аппараты обеспечивают защиту сверхпроводниковых катушек магнитной системы в случае перехода сверхпроводника в резистивное близкое к критическому состояние и являются важными компонентами защиты. Четыре уже доставлены на стройплощадку. Проблемы и решения На самой масштабной инновационной стройке мира не обходится без проблем.
При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы. Однако есть у термоядерных реакторов и недостатки. Прежде всего это банальная сложность запуска самоподдерживающейся реакции. Ей нужен глубокий вакуум. Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек.
И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы.
К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии. К тому же период полураспада трития — 12 лет. Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи. До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались.
Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс.
Так что же такое ITER? Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути. Из чего состоит реактор ITER? Токамак — это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс.
Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития. Вакуумная камера, где и обитает плазма. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов.
Сверхпроводящие магниты, которые обуздают плазму. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева.
Один из них — управляемый термоядерный синтез.
Разговоры о нем идут уже не одно десятилетие, и, судя по всему, его использование может начаться совсем скоро, считает автор статьи. Он взял интервью у ряда экспертов, чтобы узнать, способны ли термоядерные реакции обеспечить электроэнергией весь мир. Большинство исследований в этой области сосредоточено на другом подходе — так называемом синтезе с магнитным удержанием.
При нем водородное топливо удерживается на месте мощными магнитами и нагревается настолько, что атомные ядра сливаются. Исторически эти исследования вели крупные государственные лаборатории формата ДЖЭТа или Объединенного европейского токамака в Оксфорде, но в последние годы инвестиции хлынули и в частные компании, которые сулят выработать термоядерную энергию уже в 2030-х. По данным Ассоциации термоядерного синтеза, за год до конца июня компании из этой области привлекли 2,83 миллиарда долларов инвестиций, в результате чего общий объем инвестиций частного сектора на сегодняшний день достиг почти 4,9 миллиарда.
Николас Хоукер, исполнительный директор стартапа First Light Fusion из Оксфорда, чей подход аналогичен Ливерморской национальной лаборатории, назвал это событие прорывным. Статья написана при участии Дэвида Шеппарда и Дерека Брауэра.
Понятно, насколько серьёзными должны быть инженерные решения, обеспечивающие такое соседство. Другой пример связан с необходимостью создания мощных источников высокоэнергичных нейтральных атомов — речь идёт о нескольких мегаваттах мощности при энергии в сотни и даже тысячи килоэлектронвольт в ИТЭРе два таких источника суммарной мощностью 33 МВт должны выдавать потоки МэВных 4 4 частиц в течение часа; ранее таких источников просто не существовало! Во-вторых, это достаточно очевидная проблема длительного поддержания тока. Униполярный электрический ток, наводимый в тороидальной плазме при помощи индуктора, не может существовать вечно с электротехнической точки зрения токамак представляет собой трансформатор с одновитковой вторичной обмоткой — плазмой. Сегодня предложено и экспериментально проверено несколько способов неиндукционного поддержания тока, среди которых уже упомянутая инжекция пучков быстрых нейтральных атомов. Можно использовать и ввод обладающих компонентой импульса в тороидальном направлении электромагнитных волн различного диапазона: электронного циклотронного, нижнегибридного, а также свистового волны-геликоны. Весьма интересен и крайне важен так называемый бутстрэп-эффект bootstrap , заключающийся в формировании анизотропной функции распределения заряженных частиц неоднородной плазмы в магнитной конфигурации токамака эффект связан с тороидальной геометрией токамака и в цилиндре отсутствует.
Точно так же большинство физических вопросов, казавшихся непреодолимыми на начальном этапе работ по УТС, таких как управление равновесием, многочисленные неустойчивости, аномальные процессы переноса, сегодня решены на практическом уровне. В конечном счёте наиболее принципиальной сегодня можно считать задачу устранения негативного воздействия стенки, ограничивающей разряд, и других взаимодействующих с плазмой элементов. Проблема взаимодействия плазма—стенка для УТС двоякая. С другой стороны, существует обратное влияние на плазму. Выбиваемые из стенки примесные атомы и молекулы поступают и могут накапливаться в плазме, приводя к дополнительным потерям на излучение, диссипации тока и даже деградации разряда. Накопление примесей вблизи стенки продуктов её эрозии увязывают с сокращением длительности разряда. Кроме того, стенка может довольно эффективно абсорбировать изотопы водорода, служащие термоядерным горючим. Отчётливо видно, что для сверхпроводящих систем повышение длительности разряда пока удаётся совмещать только со снижением нагрузки на стенку. Одна из них заключается в использовании жидкого лития как материала с низким зарядовым числом в промежуточном слое между плазмой и стенкой или пластинами дивертора.
При этом возможные функции такого литиевого слоя могут несколько разниться. Литий должен собираться специальными литиесборниками и очищаться от абсорбированных продуктов — но уже вне камеры. Извлечённые изотопы водорода направляются в систему подачи топлива. Кроме того, часть принимаемой литиевым слоем энергии может высвечиваться в виде ультрафиолетового излучения, снижая температуру пристеночной плазмы и способствуя более равномерному распределению тепловой нагрузки по стенке камеры [ 11 ]. Большие объёмы циркулирующего лития и его проникновение в основную плазму — вот основные трудности на пути реализации этого подхода. Можно ли обеспечить относительно быстрое ламинарное течение тонкого слоя жидкого лития по металлической пластине, полностью поглощаю-щего попадающие в него частицы плазмы так называемый случай нулевого рециклинга? Будет ли при этом автоматически достигаться улучшение удержания плазмы в основном объёме реактора и, как следствие, повышение температуры?
#термоядерный синтез
Термоядерный синтез | Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. |
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды - Телеканал "Наука" | Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить. |
О настоящем и будущем термоядерной энергетики | Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times. |
Учёным удалось получить полезную энергию в термоядерной реакции / Хабр | Хорошие новости продолжают поступать в области исследований ядерного синтеза. |
Вестник РАН, 2021, T. 91, № 5, стр. 470-478
Имеются специальные быстродействующие клапаны, через которые поступает топливо. Если на термоядерной электростанции образуется внештатная, аварийная ситуация, то мгновенно закрываются клапаны, топливо прекращает поступать, той энергии, которая накоплена, для взрыва недостаточно, она может только сломать установку, прожечь камеру. Токамаки, конечно, нельзя считать полностью безопасными. Опасность заключается в том, что, когда сливаются ядра легких элементов, в частности, дейтерия и трития, образуется ядро гелия и быстрый нейтрон. Нейтроны поглощаются внешней оболочкой. Какая бы оболочка ни была, она становится радиоактивной. Эту радиоактивную оболочку через 20-30 лет надо менять. Но период полураспада там лет 15-20.
Роботы убирают эту оболочку, заменяют на другую, радиоактивную где-то кладут — не хоронят, а кладут, и через 20 лет ее можно использовать снова. Период полураспада прошел, она становится нерадиоактивной. Снова можно использовать в установке. Это другие элементы. В мире, как уже было сказано, много работающих токамаков, и на каждом стоит своя система управления плазмой, свои алгоритмы управления, каждая команда разрабатывает свои системы. Так происходит потому, что систему управления плазмой нельзя перенести один к одному с одного токамака на другой, из-за того, что токамаки все разные, имеют разные электромагнитные системы. Мы предложили свою классификацию, основанную на анализе литературы.
Изначально аббревиатура «токамак» пришла из Курчатовского института тогда он назывался Институт атомной энергии им. Курчатова , где токамаки и были изобретены, и где в 1954 г. За рубежом тогда уже были установки типа стеллараторы, отличающиеся от токамаков отсутствием в них тороидального тока. На данный момент многие стеллараторы переделаны в токамаки, тем не менее, в некоторых странах они сохраняются, и с их помощью также продолжаются попытки приблизить плазму к термоядерной. Вообще токамаков за всю историю существования, с 1954 г. Но он морально и физически устарел, ему 40 с лишним лет. В Курчатовском институте сооружается современный токамак с вытянутым по вертикали поперечным сечением Т-15, но окончательные сроки вывода данной установки на проектные режимы не определены.
Но параметры плазмы на этой установке относительно высокие, они составляют конкуренцию зарубежным установкам аналогичного типа... Нашей команде сейчас требуется в минимальном объеме всего 10 млн руб. Нам вообще ничего не нужно, кроме аппаратуры реального времени, и еще некоторый объем средств на зарплату и командировки, чтобы молодые люди не уходили в коммерческие компании. И мы тогда можем идти по намеченному пути. В заключение можно отметить тот факт, что первая атомная электростанция была введена в эксплуатацию в городе Обнинск в 1954 году, а пуск первого токамака произведен также в 1954 году в ИАЭ им. Но это была экспериментальная установка и все последующие, включая ITER, — также экспериментальные установки типа токамак. Беседу вела Ирина Татевосян 2018 год Тем временем в Китае 30.
Он может стать первым реактором ядерного синтеза, генерирующим достаточно энергии для производства электричества. По словам одного из ведущих ученых, Китай сможет производить электроэнергию с помощью предлагаемого "искусственного солнца" уже через десять лет, если проект получит окончательное одобрение правительства. Строительство реактора ядерного синтеза может быть завершено к началу 2030х годов, если официальный Пекин даст добро, сказал профессор Сонг Юнтао сотрудникам средств массовой информации на конференции по контролю за выбросами углерода в Пекине в воскресенье. Китайский испытательный реактор Fusion Engineering Технология термоядерного синтеза, также известная как искусственное солнце, может обеспечить бесконечный запас чистой энергии, имитируя процесс ядерного синтеза на солнце, хотя технические сложности значительны, и попытки международного сообщества разработать данную технологию столкнулись с трудностями и растущими затратами. Руководство страны попросило ученых провести подготовительные работы по созданию Китайского испытательного реактора термоядерного синтеза CFETR , включая проектирование и строительство крупного испытательного центра в городе Хэфэй. Но Сонг, директор Института физики плазмы в Хэфэе, сообщил Beijing News, что окончательное разрешение еще не получено. Цель этого проекта заключается в том, чтобы CFETR стал первой установкой, вырабатывающей электроэнергию за счет тепла термоядерного синтеза.
Для этого необходимо контролировать работу экстремально горячего газа - водорода, температура которого в реакторе должна достигать 100 миллионов градусов Цельсия 180 миллионов по Фаренгейту или даже превышать их.
Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент. Чтобы добиться эффекта "зажигания", команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча. В этих условиях атомы водорода подверглись слиянию, выделяя 1,3 мегаджоулей энергии за 100 триллионных долей секунды, что составляет 10 квадриллионов ватт мощности. Интенсивная среда, создаваемая направленными внутрь ударными волнами, создала самоподдерживающуюся реакцию ядерного синтеза.
Реакцию запускали с помощью 192 лазеров, которые нагревали хольраумы — небольшие золотые цилиндры, внутри которых находится капсула со смесью изотопов водорода, трития и дейтерия. Лазеры подали 2,05 мегаджоуля энергии на внутреннюю стенку цилиндра, которая переизлучала ее в виде теплового рентгеновского излучения, вызвавшего взрыв внешней оболочки капсулы, направленный внутрь. Как зародился комплекс National Ignition Facility В 1960-х годах группа ученых из LLNL выдвинула гипотезу о том, что лазеры можно использовать для индукции термоядерного синтеза в лабораторных условиях. Эта революционная идея привела к появлению термоядерного синтеза с инерционным удержанием топлива, положив начало более чем 60-летним исследованиям и разработкам. В конце концов был создан комплекс NIF размером со спортивный стадион, где лазеры используются для создания температур и давлений, подобных тем, что возникают в ядрах звезд и планет-гигантов, а также внутри ядерных взрывов Ударные волны от взрыва заставляют дейтериево-тритиевое топливо сжиматься до давления в сотни гигабар, что создает в его центре горячую точку с температурой около 10 миллионов кельвинов. В таких условиях экстремальная температура, сравнимая с температурой звезд, приводит к тому, что изотопы водорода начинают сливаться с образованием ядер гелия, высвобождая дополнительную энергию и создавая каскад термоядерных реакций. Термоядерные реакции синтеза производят альфа-частицы, энергия которых нагревает все остальное топливо. Исследователи классифицирует ее как воспламенение англ. Ignition — самоподдерживающую реакцию термоядерного синтеза, при которой выделяется больше энергии, чем тратится на ее поддержание.
Духова «Событие, важное не только для мировой науки, для человечества — это термоядерный синтез с положительным выходом энергии. Американский "Национальный комплекс зажигания" National Ignition Facility, NIF в Ливерморской национальной лаборатории воспроизвел так называемый инерционный управляемый термоядерный синтез, предусматривающий облучение крошечной порции водородной плазмы самым большим в мире лазером». Вот когда появится первая ТЯ электростанция на 100 гвт, тогда и будет порыв. А так, просто болтовня! Гоблин даже про него говорил. Ну как английские ученые прямо...
Термоядерный синтез
Чтобы добиться эффекта "зажигания", команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча. В этих условиях атомы водорода подверглись слиянию, выделяя 1,3 мегаджоулей энергии за 100 триллионных долей секунды, что составляет 10 квадриллионов ватт мощности. Интенсивная среда, создаваемая направленными внутрь ударными волнами, создала самоподдерживающуюся реакцию ядерного синтеза. Однако за год ученые так и не смогли повторить эксперимент.
Выход превысил 1,3 мегаджоуля. Это серьезный шаг вперед. Хотя пока еще нельзя говорить, что NIF может устойчиво производить энергию. Установка, созданная Helion Energy — реактор Trenta — использует другой принцип. Плазма разогревается в двух источниках, и ее потоки сталкиваются в камере сгорания. В ней достигаются условия, при которых начинается термоядерный синтез и выделяется энергия. Trenta создает те же 100 миллионов градусов, что и NIF.
Но эти «градусы» много дешевле. Сейчас «перезарядка» реактора занимает 10 минут, но усовершенствованная установка должна «стрелять» каждую секунду. При такой «скорострельности» она может выдавать энергию непрерывно. Может так случиться, что небольшой коммерческий проект Helion Energy первым достигнет энергетической самоокупаемости термоядерной установки, опередив и государственные, и международные программы.
Эксперименты, которые в дальнейшем будут проводиться на ИТЭР, дополнят этот перечень. В программах термоядерных исследований всех технологически развитых стран в качестве горючего сегодня рассматривается дейтерий-тритиевая смесь. Планируется, что полномасштабная реализация процессов горения термоядерной плазмы в ИТЭР будет достигнута во второй половине 2030-х гг. Но потребуется еще около 15 лет, чтобы построить термоядерный реактор ДЕМО , где будет генерироваться электрическая и тепловая энергия» Институт ядерной физики им. Порт-плаг одновременно служит и «окном» в горячую область, так как является носителем многочисленных диагностических устройств, и «пробкой» на пути потока нейтронов, генерируемых в плазме. В защитных модулях порт-плагов разместят диагностические системы, поставляющие информацию о состоянии вещества на центральный пульт. В 2019 г. Интеграционная площадка для сборки порт-плагов уже готовится. Это будет «чистое» помещение, где содержание пыли, микроорганизмов, аэрозольных частиц и химических паров будет постоянно контролироваться и поддерживаться на определенном уровне. Поэтому все работы должны быть закончены уже к 2023 г. И сейчас у института горячее время, а через год станет еще горячее. К примеру, итоговый вариант экваториального порт-плага, за производство которого взялся ИЯФ, разительно отличался от первоначального. Уже в процессе работы стало очевидно, что придется искать новые материалы и технологии. Так, для работы над проектом в институте освоили технологию глубокого сверления. В классическом варианте вращается деталь, а сверло неподвижно. А для того, чтобы убрать стружку, которая забивает полость сверления, в сквозное отверстие самого сверла пускают охлаждающую жидкость под большим давлением. Но если деталь большая и неподвижная, как в нашем случае, то вращаться должно сверло, и направить жидкость в полость сверления гораздо сложнее. Подобной технологии в ИЯФ не было, поэтому институт купил и модернизировал под свои нужды соответствующее оборудование. Теперь мы можем сверлить на два метра с двух сторон с хорошей точностью. Одна из особенностей этого материала — тщательно контролируемый химический состав, обеспечивающий нужный уровень примесей и легирующих элементов. Пока сделан полномасштабный опытный образец элемента диагностического защитного модуля, другими словами, верхняя крышка. Работа ведется, можно сказать, по методу последовательного приближения: сначала создается макет, а затем по результатам испытаний происходит корректировка проекта вплоть до стадии прототипирования и постановки на производство.
Все благодаря новой термоядерной установке токамак, аналогов которой в мире нет. Она первая за последние 20 лет. А запустили ее в рамках Года науки в Курчатовском институте. Размеры компактные, но мощность запредельная. И перспективы для энергетики тоже. Когда мы ее полностью нагреем — 100 миллионов градусов», — сообщил научный руководитель комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт» Петр Хвостенко. Температура в 10 раз больше, чем в центре Солнца, и задачи космического масштаба — запустить термоядерные реакции, которые происходят в недрах звезд. Звезда по имени токамак — рукотворное Солнце на поверхности на Земле. Эта установка дает надежду на светлое будущее — термоядерный синтез может обеспечить человечество чистой энергией на тысячелетия вперед. И запуск российской установки — большой шаг на этом пути.
Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался.
Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не. Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза. На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс.
Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс. Хорошие новости продолжают поступать в области исследований ядерного синтеза. Институт Ядерной Физики (ИЯФ). Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз.
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды
Самый тугоплавкий металл — вольфрам, однако его теплопроводности для эффективного охлаждения стенки недостаточно. Медь обладает очень высокой теплопроводностью, но её нельзя применять для стенок реактора из-за легкоплавкости — металл просто атомизируется при взаимодействии с плазмой и попадёт внутрь реактора, что ухудшит качество плазмы. Также по теме Российский токамак с реакторными технологиями ТRТ находится на стадии разработки эскизного проекта, концепция будущего термоядерного... Однако учёные придумали, как объединить свойства обоих металлов в одной конструкции. Этот слой будет принимать на себя основную атаку — и плазмы, и химически активного лития», — объяснил RT кандидат химических наук, заведующий лабораторией гетерогенного синтеза тугоплавких соединений ИФХЭ РАН Владимир Душик. Созданное таким методом вольфрамовое покрытие не имеет пор, что является важным преимуществом — это исключает риск взаимодействия медной подложки с агрессивной средой.
В Китае прототип промышленной термоядерной электростанции был продемонстрирован пару лет назад. Что же касается той новости, которую вы пересказываете сейчас, то это типичная армия Венка, которая вот-вот придет и спасет Берлин;.
Владимир Губайловский Схема установки Trenta. Helion energy Самый экологичный способ получения ядерной энергии — это термоядерный синтез.
Но он начинается при температуре и давлении, примерно таких, как в недрах Солнца. Создать такие условия на Земле совсем непросто, но есть надежда, что все получится Самый знаменитый проект получения термоядерной энергии — это международный проект ИТЭР. Россия принимает в нем самое активное участие. Это — огромная установка, чья стоимость сегодня оценивается в 22 млрд евро. Чтобы запустить процесс на ИТЭР, плазму надо разогреть в токамаке — огромной полой баранке, где высокотемпературную плазму «держат на весу» мощные сверхпроводящие магниты. Это позволит проводить первые операции по разогреву плазмы. В 2035 году реактор должен выйти на полную мощность и будет производить больше энергии, чем потребляет. Но это еще не скоро. Например, лазерным излучением.
Волна термоядерных реакций превращает дейтериево-тритиевое топливо в высокоэнергетический гелий и нейтроны, которые можно улавливать для выработки тепла и электричества. Хотя подход Z-пинч тестировался еще в 1950-х, исследователи столкнулись с проблемой быстрого угасания плазмы. Zap заявляет, что решила ее с помощью стабилизации сдвигового потока — инновации, которая теоретически может продлить срок жизни Z-пинч плазмы почти до бесконечности. Однако выбранное Zap топливо — тритий, безумно дорогое.
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды
все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Китайский термоядерный реактор поставил рекорд в ядерной энергетике. В течение четверти века он работал в областях физики плазмы и производства нейтронов, связанных с разработками в области термоядерной энергии. Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». В течение четверти века он работал в областях физики плазмы и производства нейтронов, связанных с разработками в области термоядерной энергии.