Новости индекс джини по странам

Индекс Джини численно равен отношению площади фигуры, образованной кривой Лоренца и кривой равенства (залитая область на рис.), к площади треугольника ABC. Не удивлюсь, если в следующем годовом докладе я обнаружу, что по индексу Джини Россия обойдет и Южную Африку, и станет мировым эталоном антисоциального государства. Коэффициент Джини (индекс концентрации доходов) характеризует степень отклонения линии фактического распределения общего объема доходов от линии их равномерного распределения. Показатели индекса Джини в России в 1990-е годы. Индекс Джини – это то же самое, что и коэффициент Джини, только переведенное в проценты.

Список стран по равенству доходов - List of countries by income equality Статья со списком Википедии Мировая карта коэффициентов Джини по странам. На основе данных Всемирного банка за период с 1992 по 2018 год. Это список стран или зависимостей по показателям неравенства доходов , включая коэффициенты Джини.

The cookie is used to store the user consent for the cookies in the category "Analytics". The cookies is used to store the user consent for the cookies in the category "Necessary". The cookie is used to store the user consent for the cookies in the category "Other. The cookie is used to store the user consent for the cookies in the category "Performance".

Sum 66: Aggregates are calculated as the sum of available data for each time period. Sums are not shown if more than one third of the observations in the series are missing. Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period.

Weighted Mean 66: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if missing data account for more than one third of the observations in the series. Weighted Mean 66POP: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if countries with missing data represent more than one third of the total population of your custom group. Note 1: In none of the above methodologies are missing values imputed. Therefore, aggregates for groups of economies should be treated as approximations of unknown totals or average values. Note 2: Aggregation results apply only to your custom-defined groups and do not reflect official World Bank aggregates based on regional and income classification of economies.

Общий рейтинг состоит из множества разных индексов — от стоимости жилья до уровня загрязнения воздуха, от здравоохранения до трафика на дорогах. Рейтинг позволяет оценить страну для возможного переезда с помощью объективных показателей.

Human Development Insights

Ниже этого уровня индекс Джини в России был только в 2005 году (0,409). Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране. Покажите мне индекс джини вашего журнала – и я скажу, насколько азартный вы автор! Индекс Джини – это то же самое, что и коэффициент Джини, только переведенное в проценты.

Коэффициент Джини

Таким образом, когда индекс Джини равен 0, это означает полное равенство, в то время как показатель 100 означает абсолютное неравенство. Коэффициент Джини индекс.

Он используется для анализа неравенства доходов или богатства. Однако на расчеты оказывает влияние большое количество переменных, например, демографическая структура населения. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий.

Такая неравномерность возникает в распределении доходов по группам населения, трудовых ресурсов по регионам страны, активов по кредитным организациям и т. Расчёт коэффициента Джини базируется на использовании кривой концентрации кривая Лоренца. Для её построения необходимо иметь частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют пять групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими.

Коэффициент Джини можно определить как макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны. Более высокие значения индекса представляют большее неравенство в распределении доходов.

Gini inequality index - Country rankings

На оси абсцисс откладываются накопленные частоты объёма совокупности, а на оси ординат — накопленные частоты объёма признака. Полученная кривая и будет характеризовать степень концентрации. Такое распределение отображается прямой, проходящей из нижнего левого угла графика к верхнему правому углу и являющейся линией равномерного распределения. Чем сильнее концентрация изучаемого признака, тем заметнее кривая Лоренца отклоняется вниз от линии равномерного распределения, и наоборот, чем слабее концентрация, тем ближе будет кривая к прямой.

Все дело в распределении благ. Все помнят про «среднюю температура по больнице», и ВВП — это тот статистический показатель, для которого эта аллегория точно подходит. Оценивая ВВП двух стран, когда речь идет о ВВП на душу населения, то есть уровне развития, нельзя не учитывать равномерность распределения доходов в экономике. В противном случае может получиться, что на бумаге страна богаче, а большая часть населения живет в ней беднее, чем в другой, где средняя величина ниже, но распределение более равномерное. Индекс Джини Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов — кривой Лоуренса. Пример кривой Лоренца приведен на изображении ниже.

В идеальной ситуации, то есть ситуации, когда нет неравенства в распределении доходов, эта линия будет биссектрисой, то есть пройдет под углом 45 градусов от начала координат. Индекс Джини представляет собой отношение площади фигуры между упомянутой биссектрисой и кривой Лоренца к площади треугольника, образованного биссектрисой и одной из осей. Достоинства и недостатки индекса Индекс Джини позволяет обобщенно оценить, насколько доходы распределены неравномерно.

Explaining the Gini coefficient Gini coefficients vary from 0 to 1 but are often expressed as percentages. They were created in 1912 by Italian statistician Corrado Gini. The Lorenz curve is used to calculate the Gini coefficient. The vertical axis shows the total wealth or income of the population.

Другие страны сосредотачивают свои усилия на развитии экономического роста, считая его основным фактором для снижения неравенства. Однако независимо от конкретных методов и подходов, важно помнить о необходимости поддержки всех слоев населения и создания равных возможностей для всех.

Организации по всему миру также играют важную роль в борьбе с неравенством путем проведения исследований, разработки программ социальной помощи и активного воздействия на формирование политики. Как распределена неравенность по странам мира Распределение неравенства может зависеть от многих факторов, включая экономическую политику государства, социальные и культурные причины, уровень развития и другие факторы. Поэтому место страны в рейтинге по индексу Джини может служить показателем того, насколько равномерным и справедливым является распределение дохода в этой стране. Международные организации, такие как Всемирный банк и Организация экономического сотрудничества и развития, регулярно публикуют данные о распределении неравенства по странам мира. Это позволяет проводить сравнительный анализ и вычислять индекс Джини для различных стран и регионов. Наиболее неравномерное распределение дохода чаще всего наблюдается в развивающихся странах, где большая часть населения живет в нищете или близко к ней. Однако, есть исключения, такие как некоторые развитые страны с высоким уровнем неравенства.

Список стран по равенству доходов - List of countries by income equality

Так как индекс Джини используется для оценки равномерности распределения доходов, этот показатель является важным для анализа темпов экономического развития. В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос до 0,403 против 0,395 годом ранее, следует из доклада Росстата о социально-экономическом положении .pdf). Показатели индекса Джини в России в 1990-е годы. Индекс Джини, или коэффициент Джини, – это показатель распределения доходов среди населения, разработанный итальянским статистиком Коррадо Джини в 1912 году.

Коэффициент Джини (индекс концентрации доходов)

Индекс Джини по странам: коэффициент концентрации доходов. Среднее значение индекса Джини в ЕС–287 в 2018 году составило 29,9%, что на 0,1 п.п. ниже уровня 2008 года. Тем не менее, в рассматриваемый период социальное неравенство в странах группы ЕС–13 снизилось, а в странах ЕС–15, наоборот, выросло. GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes.

Рейтинг стран по индексу джини 2023

Однако на расчеты оказывает влияние большое количество переменных, например, демографическая структура населения. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. К ним относятся замедление роста ВВП, снижение мобильности доходов, увеличение долга домохозяйств, политическая поляризация и более высокий уровень бедности.

Мировая карта коэффициентов Джини по странам.

На основе данных Всемирного банка за период с 1992 по 2018 год. Коэффициент Джини - это число от 0 до 1, где 0 соответствует полному равенству где у всех одинаковый доход , а 1 соответствует полному неравенству когда один человек имеет весь доход, а все остальные не имеют дохода.

Sum: Aggregates are calculated as the sum of available data for each time period.

Sum 66: Aggregates are calculated as the sum of available data for each time period. Sums are not shown if more than one third of the observations in the series are missing. Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period.

Weighted Mean 66: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if missing data account for more than one third of the observations in the series. Weighted Mean 66POP: Aggregates are calculated as weighted averages of available data for each time period.

No aggregate is shown if countries with missing data represent more than one third of the total population of your custom group. Note 1: In none of the above methodologies are missing values imputed. Therefore, aggregates for groups of economies should be treated as approximations of unknown totals or average values.

С одной стороны, в условиях антироссийских санкций политические факторы обеспечат устойчивое экономическое развитие, но с другой — замедлят экономический рост в рыночных условиях. Ранжирование стран по НДФЛ НДФЛ исчисляется в процентах от совокупного дохода физических лиц за вычетом необлагаемого минимума и других льгот, документально подтвержденных в соответствии с действующим законодательством. Порядок взимания подоходного налога в каждой стране индивидуален и зависит от уровня доходов и шкалы налогообложения табл. Следует подчеркнуть, что в большинстве развитых стран действует прогрессивная ставка подоходного налога. В целях привлечения иностранных инвестиций и состоятельных граждан ряд стран предлагают специальные налоговые режимы для новых налоговых резидентов, которые могут быть длительными как в Швейцарии, Великобритании, Мальте или ограниченными во времени как в Канаде и Португалии. Следовательно, на уровне НДФЛ, основного прямого налога на доходы физических лиц, возникает препятствие для реализации Российской Федерации партнерских отношений с мировыми лидерами экономического роста.

Единая ставка налогообложения ограничивает возможности для пополнения российского государственного бюджета, в том числе основных более 1 трлн руб. Ожидаемый в 2018 г. Прогнозируемый объем ВВП — 97,462 трлн руб. Более чем в два раза будут сокращены программы поддержки малого бизнеса, комплексного развития моногородов и электронного здравоохранения. В Российской Федерации наблюдается снижение темпов роста НДФЛ, что обусловлено ухудшением общеэкономической конъюнктуры и сокращением численности работающего населения, значительной долей неформальной занятости, а также сосредоточенностью большей части занятого населения в сфере оптовой и розничной торговли, которая подвержена высокому риску сокрытия доходов1. Снижение поступлений в государственный бюджет вернет российское правительство к вопросу введения прогрессивной шкалы НДФЛ.

Для сохранения социальной направленности налоговой политики необходимо установление прогрессивной шкалы НДФЛ с дифференцированными ставками и механизмом предоставления налоговых вычетов по НДФЛ, в том числе семейного налогообложения доходов граждан2 с учетом дополнительной информации о налоговых парах, основанных на их совместном доходе, включении дивидендов, процентного дохода и вычета иждивенцев из налоговой базы [16]. Следует особо выделить США и Китай, где применяется прогрессивная шкала подоходного налога, с доходами государственного бюджета в 2017 г. При этом с единой ставкой налогообложения Российская Федерация население — 146 880 432 чел. США, отстает даже от Мексики — 292,8 млрд долл. США и Швеции население более 10 млн чел. Например, в Российской Федерации средняя номинальная начисленная заработная плата на март 2018 г.

США по курсу 1 долл. Минимальной суммой дохода в Германии признается 646 евро больше 46 тыс. США более 57 тыс. США в день, 247 долл. США в месяц более 16 тыс. Тем самым в развитых странах поддерживается уровень потребления.

В Российской Федерации действие единой ставки НДФЛ не только снижает возможности населения к потреблению, но и не обременяет государство оказанием помощи малоимущим гражданам, минимальный прожиточный уровень на дееспособных граждан в месяц составляет 10,7 тыс. Следовательно, действующая в Российской Федерации единая ставка НДФЛ при активном снижении доходов населения приводит к уменьшению потребления.

Gini Ranking 2023

Наибольший вклад в неравенство даёт расслоение между городскими и сельскими районами. Что правительство Китая думает о неравенстве? На государственном уровне неравенство считается серьёзной проблемой. По данным Pew Research, среди самих китайцев проблема неравенства находится на третьем месте после коррупции и экологии.

Официальная оценка неравенства от китайского правительства заметно ниже — индекс Джини 46,7 в 2016 году. Более того, в 2008 году на волне кризиса неравенство в Китае впервые за 30 лет перестало расти и даже снизилось с высшей официальной отметки индекса Джини в 49,1. И как Китай борется с неравенством?

В Китае существует минимальная зарплата. В Пекине она составляет примерно 20 000 рублей, а почасовая ставка — 220 рублей, в Шанхае — 23 000 рублей в месяц и 200 рублей в час, в Лхасе Тибет — 14 000 рублей в месяц и 130 рублей в час. Регионы по закону обязаны увеличивать минимальную зарплату хотя бы раз в два года.

При этом 500 млн китайцев получают базовую пенсию в 125 юаней 1250 рублей.

Так образуется специфическая «ловушка бедности», которая не позволяет обществу полноценно развиваться. Передовые страны, которые входят в рейтинги самых лучших по разным показателям, стараются устранить это негативное явление. Так, например, в Норвегии, за последние 15 лет коэффициент Джини стремится вниз — он уменьшился с 0,4 до 0,2, то есть в 2 раза. Обобщая, в случае этой скандинавской страны можно утверждать, что количество бедных здесь снизилось вдвое. И такая картина наблюдается во многих развитых странах. А вот бедные и медленно развивающиеся страны, к сожалению, демонстрируют обратную тенденцию. Естественно, чтобы отслеживать этот параметр, нужно найти это число и контролировать его изменение ежегодно. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей.

Другой фактор, способствующий неравенству, — это различия в доступе к образованию и здравоохранению. Богатые и густонаселенные города предлагают лучшие условия образования и более качественное здравоохранение, в то время как сельские районы мало получают подобные преимущества. Все эти факторы вместе создают негативную ситуацию, в которой бедные слои населения Китая оказываются обделенными и оставленными без возможности участвовать в экономическом прогрессе страны. Растущее неравенство может привести к социальным и политическим протестам, а также оказать отрицательное влияние на экономическую стабильность и устойчивость Китая в будущем. Индия: ухудшение ситуации Справедливо отметить, что Индия является одной из наиболее неравенственных стран в мире. И несмотря на ее экономический рост и модернизацию в последние десятилетия, проблема неравенства продолжает оставаться актуальной. Значительная часть населения Индии остается живиться на крайне низкие доходы, не обладая адекватными средствами к существованию. Увеличение индекса джини в Индии может иметь серьезные социальные и экономические последствия. Большое неравенство может привести к социальной напряженности, бедности и нестабильности в стране. Кроме того, оно может препятствовать экономическому росту и развитию, поскольку бедный слой населения не имеет возможностей для доступа к образованию, здравоохранению и другим основным услугам. Адресация данной проблемы требует системных изменений и активных усилий со стороны правительства и других заинтересованных сторон. Организация социальных программ, повышение качества образования, создание равных возможностей для всех слоев населения должны стать приоритетными задачами для социально-экономического развития Индии. Бразилия: стремительное развитие неравенства Бразилия, крупнейшая страна Латинской Америки, известна своей смешанной экономикой и богатыми природными ресурсами. Однако, несмотря на растущую экономику и улучшение жизненного уровня некоторых граждан, страна страдает от высокой степени социального неравенства.

И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге.

Похожие новости:

Оцените статью
Добавить комментарий