Новости вязкость крови от чего зависит

Какая вязкость крови, какие питательны свойства крови, такая и жизнь. На вязкость крови, по мнению специалиста, указывает ее количество при подрезках и ссадинах: если кровь не течет и быстро сворачивается, вязкость слишком высокая. Если ее густота сильно повышается, кровь перестает проникать в мелкие капилляры.

Существуют ли неопасные тромбы?

  • Измерение вязкости цельной крови. Микровискозиметр Lovis 2000 M/ME
  • Плотность и вязкость крови
  • Гематокрит и вязкость
  • Густая кровь: причины, симптомы, диагностика, что делать
  • Густая кровь: причины, симптомы, диагностика, что делать

Какие овощи разжижают кровь и препятствуют образовани тромбов — список из 15 самых эффективных

В пресс-службе медицинского департамента федеральной сети медицинских лабораторий KDL «Вестям Подмосковья» рассказали о необходимых исследованиях крови, о том, от чего зависит густота крови и что можно сделать, чтобы избежать тромбообразования в организме. Лечение начинается с терапии основного заболевания, которое привело к повышенной вязкости крови. Здоровье - 31 мая 2023 - Новости Новосибирска - Кровь влияет на работу всех органов, а ее повышенная вязкость может привести к таким осложнениям.

Что значит “густая кровь” и опасно ли это

Вязкость крови: что это такое, как ее снизить и уменьшить, способы понизить Первые зависят от соотношения количества клеток крови и объема жидкой части, а также стабильности клеточной взвеси в плазме. Показателями реологии крови является вязкость, гематокрит, содержание эритроцитов.
Почему бывает густая кровь? | Статья медицинской лаборатории «Юнилаб» Существуют и факторы риска ишемической болезни сердца, от которых также зависит вязкость крови.
Что происходит с организмом, когда кровь густеет: Три главных симптома - Российская газета Повышенная вязкость крови, из-за которой она становится менее текучей, чаще всего возникает из-за преобладания её форменных элементов над жидкими.
Вязкость крови: анализ, причины повышения, норма Кровь может иметь повышенную вязкость по нескольким причинам, это и нарушение функции печени, приводящее к усилению вязкости плазмы.
Густая кровь: что значит, причины и симптомы – ЭЛ Клиника Вязкость крови зависит от соотношения плазмы и форменных элементов.

Диета при густой крови

Другим признаком синдрома гипервязкости могут быть также осложнения при заборе крови. Диагноз должен ставиться только врачом. Способы терапии Терапия, направленная на снижение вязкости крови, всегда зависит от причины. В острых случаях необходимо разбавлять кровь с помощью капельниц с физиологическим раствором. Дальнейшее лечение симптомов вязкости обычно является симптоматическим, например, путем плазменного обмена. Сепаратор клеток отделяет плазму от клеточных компонентов. Однако обмен плазмой рекомендуется только в чрезвычайных ситуациях, таких как эпилептические припадки, кома или сердечная недостаточность. Чтобы вылечить синдром гипервязкости, нужно лечить основное заболевание. Если препараты не снижают вязкость, требуется попробовать другую терапию. Важно узнать, почему изменились реологические свойства крови. Увеличение вязкости крови осуществляется с помощью специальных препаратов — рекомбинантных или плазменных концентратов фактора VIII.

Определяющий фактор в успешном лечении — своевременно начало терапии. Торговые названия препаратов, которые повысят или снизят вязкость, подскажет врач. Осложнения Синдром гипервязкости вызывает многочисленные жалобы и осложнения в организме. В частности, поражаются органы и области тела с обильным кровообращением. Это может привести к дыхательной недостаточности, которая вызывает приступы паники у многих пациентов. Иногда возникают проблемы с сердцем, так что в худшем случае пациент также может умереть от сердечной недостаточности. Почки также могут быть поражены недостаточностью, при которой человек зависит от диализа или донорской почки. Качество жизни и продолжительность жизни пациента снижаются за счет повышенной вязкости крови. Гипервязкость может уменьшить продолжительность жизни на 5-10 лет. Пациент страдает от общего недомогания и чувствует себя слабым.

Головокружение и тошнота также возникают, и это не является необычным для тех, кто страдает обмороком. Кроме того, чувствительность тела ограничена, и это может привести к потере зрения или слуха. В худшем случае пациент впадает в кому. Читайте также: Почему массаж помогает и при диабете? Поскольку повышенная вязкость крови — не самостоятельное заболевание, лечение обычно проводится каузально. Острые чрезвычайные ситуации могут быть решены с помощью лекарств.

При низких скоростях сдвига малых нагрузках вязкость высокая: эритроциты упакованы стопками и мешают течению, при высоких скоростях сдвига красные тельца вытягиваются вдоль потока, и вязкость минимальна. Для описания течения жидкостей используют разные математические модели: кровь — это неньютоновская жидкость, то есть ее вязкость зависит от скорости сдвига. Кривые напряжения сдвига описываются разными уравнениями. Течение крови описывается моделью Кессона, она обладает пределом текучести то есть чтобы кровь потекла необходимо приложить определенное усилие. Предел текучести зависит от гематокрита Н и от концентрации фибриногена CF : Для измерения вязкости жидкостей используют специальные приборы - вискозиметры: для измерения кинематической вязкости — капиллярные, для динамической — ротационные.

Симптомы тромбофилии проявляются в виде синяков, появляющихся на теле при незначительных травмах и ушибах. Это связано с высокой ломкостью микрососудов. У больных повышается кровоточивость десен. Возникают нарушения в работе кишечника и внутренних органов, ткани которых плохо снабжаются кислородом и полезными веществами. Становятся болезненными и опухают геморроидальные узлы. Высокая свертываемость крови приводит к возникновению тромбозов и варикозов, симптомами которых являются сосудистые звездочки и венозные узлы на ногах. Симптомы высокой вязкости крови чаще всего проявляются при таких заболеваниях как ожирение, сахарный диабет, стрессы, курение, онкологические и аутоиммунные заболевания. Опасность повышенной вязкости крови при беременности В настоящее время врачи все чаще говорят о связи тромбофилии с осложнениями, возникающими при беременности. Повышенная свертываемость крови при беременности может закончиться выкидышем. У беременных женщин склонность к образованию тромбов многократно возрастает. Причем у женщин, имеющих повышенную вязкость крови до зачатия, проблема усугубляется во время вынашивания ребенка. Результатом могут быть различные осложнения: поздний токсикоз, невынашивание, отслоение плаценты, преждевременные роды и даже внутриутробная гибель плода.

В процессе проведения исследования вязкости крови с помощью вискозиметра нормой является: от 4,3 до 5,4 деления шкалы — если исследованию подвергалась кровь мужчины; от 3,9 деления шкалы до 4,9 — если анализ проводился для женщины. Отклонение от данных показателей в сторону увеличения или уменьшения позволяет говорить о повышенной или пониженной вязкости крови. При отсутствии возможности определения вязкости крови с помощью специального оборудования нередко вывод о данном показателе делается на основании показателей гематокрита. Причины отклонения от нормы вязкости крови Отклонения в параметрах крови не возникают спонтанно. Какие причины провоцируют изменение состава крови и, как следствие, увеличение или уменьшение ее вязкости? Увеличение вязкости крови вызывают: Ферментная недостаточность. Данная особенность организма может носить как врожденный характер, так и быть приобретенным заболеванием. При данной патологии организм человека не продуцирует достаточное количество ферментов в пищеварительном тракте. В результате этого расщепление пищи не происходит в полном объеме, и кровь зашлаковывается продуктами распада. Как следствие — склеивание эритроцитов и недостаточное поступление кислорода в ткани. Низкое качество воды, которую человек пьет. Такая, на первый взгляд, мелочь отрицательно влияет на состав крови, что приводит к повышению вязкости последней. Повышенная нагрузка на печень. Скудное питание, при котором организм не получает достаточного количества витаминов и минеральных элементов, в сочетании с увеличением нагрузки на главный «фильтр» организма приводит к повышению содержания в крови форменных элементов. Отрицательное влияние на печень оказывает, например, длительный прием лекарственных средств, увлечение острыми, копчеными и солеными блюдами, злоупотребление алкоголем. Недостаток жидкости в организме. Обезвоживание может быть спровоцировано, например, интенсивными физическими нагрузками если не потреблять достаточного количества воды , диареей или рвотой. Нехватка жидкости отмечается и при сахарном диабете. Отклонения в работе селезенки также могут нарушить нормальное соотношение клеток крови и плазмы. Несбалансированное питание чрезмерное потребление углеводов, бобовых или злаков. Пониженная вязкость крови может быть спровоцирована: Длительным приемом лекарственных средств, в составе которых присутствует ацетилсалициловая кислота.

Гипервязкость крови и дисфункция эндотелия: клиническая значимость и методы коррекции

Первые зависят от соотношения количества клеток крови и объема жидкой части, а также стабильности клеточной взвеси в плазме. Показателями реологии крови является вязкость, гематокрит, содержание эритроцитов. От качественных показателей крови зависит состояние всего организма, поэтому синдром повышенной вязкости может стать причиной развития тяжёлых, опасных для жизни заболеваний. Вязкость и свёртываемость крови. Склонность к тромбообразованию. это совершенно нормальное явление.

Какие продукты разжижают кровь

Вероятность развития осложнений зависит от причины, которая спровоцировала повышение вязкости крови. Снижение вязкости крови ведет к ускоренному передвижению крови по сосудам. Вязкость крови как свойство этой жидкой ткани кроме вышеназванных внешних факторов зависит от вязкости плазмы, показателя гематокрита (объемной концентрации ее форменных элементов, преимущественно эритроцитов). В пресс-службе медицинского департамента федеральной сети медицинских лабораторий KDL «Вестям Подмосковья» рассказали о необходимых исследованиях крови, о том, от чего зависит густота крови и что можно сделать, чтобы избежать тромбообразования в организме. Показатель вязкости крови говорит о том, сколько прослужат сердце и сосуды. Густая кровь обладает повышенной вязкостью – это становится причиной застоя крови в сосудах, повышает риск тромбообразования.

КАКАЯ вязкость КРОВИ, такая и ЖИЗНЬ

Как следствие — повышение вязкости крови. Сужение просвета приводит к понижению уровня гематокрита, в результате чего вязкость крови становится ниже нормы. Также на степень вязкости влияет протекание организме каких-либо инфекционных процессов. Такого рода нарушения также увеличивают вязкость крови. Как определить вязкость крови Хотя такого критерия как вязкость крови традиционный клинический общий анализ крови не содержит, именно он практически всегда является первым этапом диагностики. Отклонения в его показателях являются поводом для проведения дополнительных исследований, в числе которых: тест на гематокрит определяет долю эритроцитов в объеме цельной крови ; анализ на Д-димер показывает степень активности процессов тромбообразования и тромборазрушения ; коагулограмма анализ на свертываемость крови. При этом для определения вязкости крови существует отдельный анализ. Не стоит путать данное исследование с другими тестами на проверку крови в разрезе тех или иных показателей — анализ на вязкость крови так и называется. Оценить необходимый критерий позволяет специальный прибор — вискозиметр. Принцип исследования базируется на оценке темпа движения крови по отношению к скорости движения воды.

В ходе проведения анализа в одну из пипеток помещается вода, а в другую — биоматериал. Далее обе емкости соединяются, образуя вакуум. Столбцы воды и крови начинают движение, что позволяет сделать выводы о вязкости крови. В процессе проведения исследования вязкости крови с помощью вискозиметра нормой является: от 4,3 до 5,4 деления шкалы — если исследованию подвергалась кровь мужчины; от 3,9 деления шкалы до 4,9 — если анализ проводился для женщины. Отклонение от данных показателей в сторону увеличения или уменьшения позволяет говорить о повышенной или пониженной вязкости крови. При отсутствии возможности определения вязкости крови с помощью специального оборудования нередко вывод о данном показателе делается на основании показателей гематокрита. Причины отклонения от нормы вязкости крови Отклонения в параметрах крови не возникают спонтанно. Какие причины провоцируют изменение состава крови и, как следствие, увеличение или уменьшение ее вязкости? Увеличение вязкости крови вызывают: Ферментная недостаточность.

Данная особенность организма может носить как врожденный характер, так и быть приобретенным заболеванием. При данной патологии организм человека не продуцирует достаточное количество ферментов в пищеварительном тракте.

Таким образом, изменения уровня половых гормонов с возрастом могут способствовать увеличению распространенности анемии и тромбоэмболического инсульта у мужчин с возрастом. Снижение HCT связано с госпитализацией пациентов с сердечной недостаточностью и смертью без сердечно-сосудистых заболеваний. Более высокие уровни HCT связаны с ожирением, риском развития диабета. У больных сахарным диабетом с длительно текущим заболеванием может быть снижен HCT, возможно, из-за диабетической нефропатии, вызывающей дефицит эритропоэтина, или мальабсорбции витамина B12, как побочный эффект длительного лечения метформином. HCT может снижаться, когда размер отдельных эритроцитов уменьшается, независимо от того, уменьшается количество клеток или нет. Однако, анемия может возникать без влияния на гематокрит, поскольку высвобождение ретикулоцитов, которые крупнее зрелых эритроцитов, могут быстро дополнять гематокрит, несмотря на более низкое содержание гемоглобина в них Fair et al.

Гепарин, вводимый в течение длительного времени подкожным путем, постоянно снижает артериальное давление на моделях крыс с гипертонией. Снижение артериального давления сопровождается параллельным снижением гематокрита, что указывает на этиологическую связь между HCT и артериальным давлением. У людей, содержащихся в неволе, низкий гематокрит в глубокой старости отражает старение механизмов обновления эритроцитов. Кривая оседания эритроцитов состоит из трех фаз для каждого времени измерения Kernig J. В первой фазе лаг-фазе эритроциты, диспергированные в плазме, образуя одномерные стопки монет руло. Руло образуют агрегаты, собираясь в двух- или трехмерном пространстве с течением времени, а седиментация поверхности раздела эритроцитов и плазмы происходит после определенной задержки. В это время размер агрегатов увеличивается в соответствии с концентрацией фибриногена или глобулина в плазме и уменьшается по мере увеличения гематокрита HСT. Основной фазой ESR является вторая седиментационная фаза, в которой скорость седиментации становится максимальной и практически постоянной.

На этом этапе ESR можно описать с помощью применения или модификации закона Стокса, который представляет собой уравнение для расчета скорости осаждения одиночной частицы. В третьей фазе упаковки скорость оседания снижается за счет отложения эритроцитов на дне пробирки. Наконец, седиментационное расстояние сходится к значению, соответствующему объемному соотношению клеток крови и плазмы с течением времени. Согласно закону Стокса, скорость осаждения частицы пропорциональна квадрату ее радиуса и разности плотностей между частицей и раствором и является обратной величиной вязкости раствора. Закон Стокса можно скорректировать, включив эффект затрудненного осаждения, который представляет собой влияние восходящего потока на скорость осаждения, определяемую HCT Oka S. Таким образом, оседание эритроцитов представляет собой сложное явление, на которое большое влияние оказывает концентрация белков плазмы и HCT. Даже если врачи знают, что ESR отражает изменения HCT, а также изменения в структуре белка плазмы, они могут только догадываться о взаимосвязи этих показателей. Агрегация и деформируемость эритроцитов варьируются в широких пределах и непредсказуема при органических заболеваниях.

Следовательно, целесообразно предложить врачам, желающим получить простую глобальную оценку реакции белков-реагентов на заболевание, измерение вязкости в плазме, а не измерение ESR, при котором ответы белков-реагентов часто и непредсказуемо усиливаются или затемняются поддающимися количественному определению изменениями эритроцитов. Известно, что гематокрит HCT - глобальный гематологический маркер количества гемоглобина в крови, влияет на активацию BOLD, вызванную решением задачи. Отметим, что отношения внутри MPFC медиальная префронтальная кора , а также зрительные и мозжечковые сети могут моделироваться полом. Одним из потенциальных приложений функциональной визуализации для MPI является картирование вязкости крови in vivo. Гематокрит и стресс Принято считать, что стресс повышает HCT. Однако, в этом плане нет никаких различий между пациентами с расстройствами тревожного спектра и без этой патологии. Адреналин связан со значительным усилением тревоги, учащением пульса и повышением систолического артериального давления, но не с какими-либо изменениями HCT или объема плазмы. Задачи на стресс последовательно вызывают увеличение гематокрита.

Однако, изменения HCT при физической нагрузке достоверны, тогда, как изменения HCT, связанные с психическим и холодовым стрессом, не достоверны. Таким образом, гемоконцентрация при кратковременном интеллектуальном или физическом стрессе является более надежной для абсолютных уровней, чем оценка изменений. Надежность вызванной стрессом гемоконцентрации можетбыть повышена за счет юолее сложных задач на провокацию и повторного отбора проб во время стресса. Если стресс является хроническим, гематокрит может быть уменьшен, потому что количество эритроцитов уменьшается. Определение механизма, с помощью которого психологический стресс вызывает полицитемию, было бы полезно для предотвращения возникновения полицитемии и связанных с ней заболеваний. В нескольких исследованиях были проанализированы изменения уровня HВ и уровня HСТ, артериального давления и частоты сердечных сокращений в сочетании с острым психологическим стрессом, вызванным выполнением умственной арифметики в течение короткого времени При индукции острого стресса клетки продуцируют такие белки, как белки теплового шока и шапероны, что приводит к увеличению PCV и вызывает уменьшение объема плазмы крови острый психологический стресс достоверно вызывает потери объема плазмы в сосудистой сети Гематокрит и ферменты печени Аланин трансаминаза ALТ , также известная как глутамино-пировиноградная трансаминаза, и аспартат аминотрансфераза AST , известная как глутаминовая оксалоуксусная трансаминаза, являются важными ферментами трансаминаз в метаболизме аминокислот. Они наиболее чувствительны и широко используемые к клинической практике ферменты печени, которые указывают на ее повреждение, например, вследствие вирусного гепатита, алкогольной жировой болезни и первичного рака печени. Кроме того, они являются ключевыми ферментами печени и связаны с потреблением углеводов и метаболическим процессом, который превращает пищу в энергию.

В 1985 году международный комитет по стандартизации в гематологии ICSH создал группу экспертов по реологии крови, которая впоследствии выпустила руководство по измерению вязкости крови и деформируемости эритроцитов, а также по таким тестам, как скорость оседания эритроцитов и вязкость плазмы, которые используются для мониторинга острой фазы ответа при заболеваниях, обусловленных процессом воспаления. Реологические свойства крови изучались в течение многих лет, и было четко продемонстрировано, что кровь на подчиняется законам Ньютона. Эта характеристика крови известна как «разжижение при сдвиге», которое является свойством некоторых сложных жидкостей уменьшать свою вязкость по мере увеличения скорости сдвига например, увеличения скорости потока , и этот эффект постоянно наблюдался в крови Merrill E. Реологические методы в настоящее время обладают хорошей чувствительностью и специфичностью при самых разнообразных заболеваниях.

В случае повышения напряжения сдвига, опосредованного через гликокаликс, эндотелий увеличивает выработку оксида азота, вызывающего вазодилатацию и снижение напряжения сдвига. Под действием напряжения сдвига эндотелиоциты существенно усиливают выработку гиалуроновой кислоты в гликокаликсе, что также уменьшает напряжение сдвига. Повреждение гликокаликса нарушает эти механизмы и реакцию эндотелия на напряжение сдвига, что может приводить к развитию тромбоза и атеросклероза [ 4 ]. Более 80 лет назад А.

Крог предложил модель транспорта кислорода в ткани, которая базировалась на процессе диффузии кислорода в направлении условного цилиндра цилиндра Крога , окружающего каждый капилляр. Эта модель продемонстрировала ограничения диффузии и смогла объяснить почему ткани с высоким уровнем потребления кислорода отличаются высокой плотностью капилляров. Также модель Крога показала, что недостаточно просто доставить к органу адекватное количество кислорода, необходимо еще и распределить его в точном соответствии с его потребностями [ 64 ]. Артериолы, которые контролируют сосудистое сопротивление в микрососудистой сети органа, а, следовательно, и приток крови, также отвечают за регуляцию распределения кислорода в пределах тканевого региона. Для обеспечения эффективного контроля, ответ микрососудов на изменяющиеся условия , например, повышенная потребность в кислороде, сниженная доставка кислорода должен быть тесно интегрирован в пределах микрососудистого русла. Клеткам эндотелия принадлежит определяющая роль в интеграции локальных стимулирующих сигналов, эта функция реализуется посредством межклеточной коммуникации в микрососудистом эндотелии [ 126 ] или трансдукцией сигнала в ответ на локальное напряжение сдвига, обусловленное изменениями микрокровотока [ 79 , 80 ]. К примеру, если сосудорасширяющий стимул возникает на уровне капиллярной сети, сосудистый эндотелий способствует проведению сигнала к артериолам, снабжающим эти капилляры, вызывая их дилатацию и тем самым увеличивая приток крови к данному региону. Это было подтверждено другими исследователями на разных органах с использованием различных методических подходов [ 47 , 142 ].

Если кислород может перемещаться таким образом из артериол в капилляры, вполне возможно существование кислородного обмена и между капиллярами с различным уровнем кислорода, между артериолами и венулами. Кроме того, количественные оценки микрокровотка продемонстрировали значительную пространственную гетерогенность капиллярной перфузии [ 46 ]. Уникальные реологические свойства эритроцитов, циркулирующих в местах ветвления микрососудов эффект Фареуса и проскальзывание плазмы в точках бифуркации способствуют проявлению достаточно широкого диапазона распределения гематокрита в капиллярах и скоростей движения эритроцитов. Гетерогенность микрососудистого гематокрита, падение сатурации кислорода в прекапиллярной зоне и диффузионный обмен кислорода между микрососудами означают, что кровоток сам по себе не может быть адекватным индикатором адекватной доставки кислорода в ткани [ 46 ]. Это приобретает особое значение в плане регуляции кислородного снабжения, в особенности в условиях патологии и при исследовании доставки кислорода в условиях in vivo. Обмен нутриентов и метаболитов требует наличия проницаемого эндотелиального барьера, контролирующего пассаж биомолекул и жидкости между кровью и интерстициальным пространством. Что касается транспорта кислорода, три типа клеток внутри сосудистой системы гладкомышечные клетки сосудистой стенки, эндотелиоциты и эритроциты выполняют согласованную работу, чтобы обеспечить адекватный транспорт кислорода к месту его потребления [ 21 ]. Соответствие потребности в кислороде и его доставки в скелетные мышцы [ 123 ] и головной мозг [ 51 ] в определенной степени изучено, хотя обсуждение механизмов в основном сосредоточено на регулировании функции кровеносных сосудов, то есть на клетки, составляющие сосудистую стенку: эндотелиоциты и гладкие миоциты.

В последнее время появляется все больше свидетельств того, что эритроциты наряду с транспортной функцией способны выполнять функции детекции гипоксии и локальной регуляции кровотока в соответствии с метаболическими потребностями тканевого микрокрайона, поскольку их свойства зависят от парциального напряжения кислорода. Например, было показано, что свойства эритроцитов претерпевают существенные изменения в ответ на физические нагрузки, которые сказываются на доступности кислорода и на его потреблении тканями [ 42 ]. Гипотеза о том, что эритроциты наряду с эндотелиоцитами и гладкими миоцитами сосудистой стенки выступают в качестве равноправных участников процесса регуляции микрокровотока в соответствии с локальными потребностями тканей выдвинута относительно недавно. Внутриэритроцитарные сигнальные пути регулируют высвобождение кислорода и модифицируют реологические свойства красных клеток крови, а также высвобождение ими вазоактивных соединений в ответ на воздействие специфических лигандов, сигнализирующих о потребности в кислороде посредством активации мембранных рецепторов эритроцитов [ 21 ]. Продолжительность жизни зрелого эритроцита составляет около 120 дней, большую часть из этого времени эритроциты находятся в системе микроциркуляции, где подвергаются значительным биомеханическим и биохимическим стрессовым воздействиям. Уникальная физиология эритроцитов позволяет ему адаптироваться к этим воздействиям и успешно функционировать в сложных условиях циркуляции [ 117 ]. В системной и легочной микроциркуляции эритроциты подвергаются высокоамплитудным деформациям, в результате чего происходят биофизические и биохимические изменения, ведущие к элиминации красных клеток крови из циркуляции ретикулоэндотелиальной системой. Была выдвинута гипотеза о том, что многократные механические воздействия пассаж через микроканалы с применением методов микрофлюидики могут моделировать ускоренное старение.

Эксперименты по искусственной ригидификации эритроцитов свидетельствуют о значительном ухудшении перфузии тканей при снижении деформируемости эритроцитов. В реальных условиях кровотока модификация деформируемости эритроцитов менее значима, поскольку они все же сохраняют некоторую хотя и сниженную способность к деформации и нарушения микрокровотока имеют место лишь в сосудах самого мелкого калибра, более крупные сосуды такие эритроциты проходят. Поэтому кроме видимых overtly реологических нарушений как например, при серповидноклеточной анемии, когда эритроциты необратимо ригидифицированы , можно говорить и о скрытых covertly нарушениях реологии крови, которые не приводят к окклюзии сосудов, но ухудшают перфузию тканей [ 19 ]. Деформируемость эритроцитов может изменяться обратимо, либо необратимо, последнее ведет к эриптозу [ 34 ]. Высказывается мнение, что некоторые воздействия приводят к обратимым изменениям деформируемости эритроцитов, и таким образом включены в физиологическую регуляцию, в то время как другие влияния вызывают необратимые изменения деформируемости красных клеток крови, что выступает в качестве начального этапа эриптоза, то есть программируемой гибели эритроцитов. Например, процесс ригидификации эритроцитов при физических нагрузках — это скорее всего обратимый физиологический механизм, а изменения красных клеток крови в условиях патологии в условиях воспаления, при диабете 2 типа, серповидноклеточной анемии и т. Важную роль в обеспечении деформируемости эритроцитов играют и физико-химические свойства среды, окружающей клетку термические воздействия, рН, осмолярность, белки плазмы крови и оксидативный стресс. Однако на деформируемость эритроцитов и эриптоз способны оказать влияние еще и многие другие факторы.

Это позволяет предположить, что определенные гомеостатические регуляторные циклы адаптируют жесткость эритроцитов к физиологическим условиям с целью оптимизации доставки кислорода в ткани в соответствии с их потребностью. Эритроциты отличаются высокой устойчивостью и обладают способностью к восстановлению, если изменяются условия окружения или прекращается действие стрессорных факторов, однако как в любых физиологических или молекулярных сигнальных путях, наступает точка невозврата, после которой восстановление становится невозможным. Результатом воздействий, которые необратимо повреждают красные клетки крови, становится полная их деструкция и удаление из кровотока. Клиренс ригидных эритроцитов в селезенке — это основной регулятор деформационных свойств эритроцитов [ 34 ]. В основе процесса транспорта кислорода эритроцитами, движущимися в системе микроциркуляции, лежат два базовых механизма — конвекция транспортирующих кислород эритроцитов и диффузия кислорода из красных клеток крови к митохондриям клеток тканей [ 61 ]. Первый компонент кислородного транспорта в ткани определяется потоковыми свойствами эритроцитов в крови флакс , а диффузионная составляющая может быть охарактеризована плотностью функционирующих капилляров [ 27 ]. Уровень активности метаболизма ткани и, соответственно, потребления ею кислорода является основным фактором, определяющим диффузию кислорода из крови в ткань. Действие кислорода как регуляторного фактора может быть как прямым, так и непрямым.

Прямое воздействие осуществляется на сосудистую стенку, которая содержит сенсор кислорода, реагирующий на парциальное напряжение кислорода в периартериолярном пространстве. Непрямое действие реализуется через вторичные метаболиты и пусковым сигналом служит тканевой или конечный капиллярный уровень напряжения кислорода. Сенсоры локализуются в тканевых митохондриях, эндотелии капилляров или стенке венул. В качестве уникального мобильного сенсора кислорода, как показано исследованиями последних лет, способны выступать и эритроциты [ 48 , 74 ]. Поскольку в системе микроциркуляции прямой механизм требует значительного падения периартериолярного напряжения кислорода, в физиологических условиях, по всей видимости, преобладает непрямой механизм регуляции. Кроме основной функции эритрона транспорта кислорода от легких к тканям , в настоящее время доказано его активное участие в регуляции сосудистого тонуса вазорегуляция , что лежит в основе оптимизации регионарного кровотока с целью обеспечения доступности кислорода в легких и его потребления на периферии. В случае недостаточного поступления кислорода регуляция его доставки обеспечивается варьированием кровотока, а не содержанием кислорода, поскольку содержание кислорода относительно фиксированная величина, в то время как показатели кровотока могут изменяться в диапазоне нескольких порядков. Таким образом, объемный кровоток и его распределение — это физиологические параметры, которые наиболее активно регулируются для поддержания соответствия между доставкой кислорода и потребности в нем.

Система обратной связи, ответственная за регуляцию доставки кислорода в тканевые регионы, должна быть способна контролировать и при необходимости регулировать поступление кислорода в ткани на уровне микроциркуляции. Еще три десятилетия назад впервые было продемонстрировано, что в условиях гипоксии и гиперкапнии эритроциты высвобождают АТФ, которая потенциально может выполнять функцию вазодилататора [ 30 ]. Было высказано предположение, что эритроциты, проходя через регионы с низким напряжением кислорода, стимулируют локальную вазодилатацию, увеличивая приток крови к этому региону. АТФ, связываясь с P2y1 и P2y2 пуринорецепторами эндотелия, вызывает расширение сосудов за счет релаксации гладких миоцитов сосудистой стенки вследствие выработки эндотелиоцитами оксида азота, простациклина или эндотелиального гиперполяризующего фактора [ 156 ]. Роль эритроцитов в этом процессе подтверждена экспериментами Dietrich и соавт. Количественная оценка высвобождения АТФ эритроцитами подтвердила, что этот процесс осуществляется достаточно быстро, чтобы быть физиологически значимым [ 57 ]. Впоследствии было доказано, что эритроцит выступает не только в качестве регулятора локального кровотока в соответствии с метаболическими потребностями тканей, но и выполняет роль сенсора гипоксии, поскольку количество высвобождаемого АТФ прямо пропорционально степени деоксигенации гемоглобина и регуляция гликолиза дезоксигемоглобином в эритроцитах выступает в качестве начального этапа сигнального пути высвобождения АТФ [ 72 , 58 , 48 ]. Эритроциты выполняют функцию сенсора кислорода в тканях, контролируя сосудистое сопротивление благодаря кислород-зависимому высвобождению АТФ [ 48 , 73 ].

Еще один из механизмов локальной регуляции регионарного кровотока основан на способности эритроцитов захватывать, депонировать и высвобождать оксид азота в том числе и синтезированный самими эритроцитами в зависимости от степени оксигенации гемоглобина, которая напрямую взаимосвязана с метаболической активностью ткани и потреблением ею кислорода [ 129 ]. Jia L. Кроме того, дезоксигемоглобин может восстанавливать нитриты с образованием NO [ 74 ]. Эритроциты человека сами синтезируют NO ферментативным путем, показано наличие у них активной NO-синтазы эндотелиального типа NOS , которая активируется под действием напряжения сдвига [ 148 ], синтезированный эритроцитами NO высвобождается в интравазальное пространство и оказывает влияние на сосудистый тонус [ 43 ]. Экспериментально продемонстрировано, что высвобождение оксида азота эритроцитами под действием напряжения сдвига, по величине соответствующего реальным условиям кровотока в системе микроциркуляции, способно вызвать дилатацию изолированных мелких брыжеечных артерий крысы [ 21 , 149 ]. Известно, что Hb эритроцитов способен депонировать NO [ 17 ], это было основанием для контраргументов в дискуссии о возможности высвобождения оксида азота эритроцитами. Сродство гемоглобина к NO уменьшается в деоксигенированном состоянии, поэтому высвобождение NO из эритроцитов облегчается при деоксигенации, способствуя регуляции вазомоторной функции сосудов [ 135 ]. Кроме того, было продемонстрировано, что анионный обменник белок полосы III на мембране эритроцитов может способствовать экспорту NO синтезированного эритроцитами или высвобождаемого из S-нитрозогемоглобина [ 107 ].

Стоит отметить, что от степени оксигенации гемоглобина в эритроцитах зависит внутриклеточная передача сигналов [ 20 ], действие гормонов и вазоактивных агентов [ 145 ], ионный транспорт [ 31 ] и деформируемость [ 150 ] эритроцитов. Однако бывают ситуации, когда умеренное повышение этих показателей способствует перфузии тканей и снижению сосудистого периферического сопротивления за счет механостимуляции синтеза NO эндотелием, то есть реологические свойства плазмы и крови влияют на величину просвета сосуда, обеспечивая эффективную микроциркуляцию в тканях [ 91 ]. В работе Salazar Vazquez и соавт. Следует заметить, что таким свойством обладает прирост вязкости, который не выходит за пределы физиологической нормы этого показателя. Это позволило S. Forconi предложить новую гемореологическую парадигму, согласно которой небольшое повышение вязкости крови обладает вазодилататорным эффектом и потенциально улучшает перфузию тканей, вопреки традиционной точке зрения о том, что любое увеличение вязкости крови негативно сказывается на перфузии тканей и может рассматриваться как фактор риска хотя и не самостоятельная патология [ 52 ]. Также большое значение имеет тот факт, что артериолы, резистивные микрососуды, регулирующие кровоток, снабжены сенсорными механизмами, которые контролируют напряжение сдвига на границе сосудистой стенки и регулируют его колебания через изменение активности сократительных элементов стенки сосуда, поддерживая его на постоянном уровне. Хронические нарушения такой регуляции например, в случае патологии приводят к адаптивным изменениям сосудистой стенки и микроангиоархитектоники ангиогенез и ремоделирование сосудов [ 101 , 122 ].

Поскольку воздействие напряжения сдвига на сосудистую стенку передается движущейся по этому сосуду кровью, очевидно, что механика этого взаимодействия будет в значительной степени определяться реологическими свойствами крови. Микрореологические свойства эритроцитов Наряду с вязкостью цельной крови микрореологические свойства эритроцитов вносят определенный вклад в реализацию эффективного микрокровотока [ 33 ]. Эритроциты обладают уникальными механическими свойствами, которые определяют их функционирование в условиях потока. Деформируемость отражает способность к изменению формы под действием внешних сил [ 40 ], это изменение полностью обратимо и при снятии деформирующего воздействия восстановление формы клетки происходит за достаточно короткое время порядка 0. Деформируемость эритроцитов обеспечивает снижение вязкости крови при высоких скоростях сдвига и играет важную роль при пассаже эритроцитов через терминальные сосуды микроциркуляторного русла, диаметр которых сопоставим с размерами клеток крови [ 128 ]. Уникальная форма эритроцитов двояковогнутый диск , отсутствие ядра и органоидов делает возможным вытягивание клетки с более, чем двукратным увеличением линейных размеров без существенного увеличения площади поверхности мембраны [ 99 ]. Считается, что деформируемость определяется вязкостью внутреннего содержимого клетки и вязкоэластическими свойствами мембраны, которые зависят от свойств сети протеинов на внутренней цитоплазматической стороне мембраны [ 100 ].

По мере прогрессирования атеросклероза, холестериновые отложения не только сужают просвет сосудов, но также и приводят к воспалению сосудистой интимы и значительному снижению эластических свойств сосудов. Ригидность сосудов и их неспособность к нормальному растяжению током крови также увеличивают нагрузку на сердце. Формируется, так называемый, порочный круг нарушенного кровообращения.

Густая кровь способствует развитию атеросклероза, а атеросклероз способствует дальнейшему увеличению вязкости крови. Компенсаторное увеличение силы сердечных сокращений, требуемое для «проталкивания» густой и вязкой крови по неэластичным сосудам, приводит к быстрому истощению миокарда и развитию сердечной недостаточности. Снижение сердечного выброса при сердечной недостаточности приводит к прогрессированию нарушения микроциркуляции и ишемии органов и тканей. Также, усиливается образование тромбов и возрастает риск развития инфаркта, инсульта, тромбоэмболии, ишемии нижних конечностей. Сгущение крови, микротромбообразования и ишемия на фоне сердечной недостаточности способствуют формированию хронической почечной недостаточности.

Густая кровь: что значит, причины и симптомы

Показатели крови новорождённого в значительной степени отличаются от аналогичных данных у детей старшего возраста. Переживать по этому поводу не следует, пройдет несколько дней и эти цифры пойдут на убыль. Густая кровь у новорождённого не является отклонением от нормы. Просто ребёнок рос и развивался в кардинально иной среде, а сейчас он попал в новый мир. Его организму требуется время, чтобы приспособиться к изменившимся окружающим условиям, например, научиться дышать по-другому. Кстати, именно это гемоглобин, который носит название фетального, становится причиной развития желтушки новорождённых. Иные показатели крови, в том числе, вязкость и уровень гемоглобина, приравняются к аналогичным значениям у взрослого человека. Симптомы густой крови Густая кровь не является самостоятельным заболеванием. Повышение её вязкости лишь указывает на наличие той или иной патологии в организме.

Привести к сгущению крови могут множественные обстоятельства. Поэтому так важно определить истинную причину, приведшую к повышению вязкости крови. Симптомы данного состояния будут напрямую зависеть от них. Иногда человек даже не подозревает, что кровь в его организме слишком густая. Так как симптомы этого нарушения развиваются лишь в тяжёлых случаях: когда появляются проблемы с нормальным течением крови, в сосудах образуются тромбы и пр. Заподозрить сгущение крови можно лишь по таким косвенным признакам, как: Онемение конечностей, покалывание в различных участках тела. Хроническая усталость и слабость. Если сгущение крови случается на фоне обезвоживания организма или при гипоксии, то после ликвидации этих состояний, самочувствие человека придет в норму.

Осложнения и последствия Если кровь обладает повышенной вязкостью, то это может привести к серьёзным проблемам со здоровьем. К возможным последствиям относят: Формирование тромбов, которые чаще всего закупоривают сосуды небольшого диаметра, нарушая нормальный ток крови в них. Иногда тромбы способны образовываться в магистральных сосудах и даже в головном мозге. В этом случае последствия для организма могут быть весьма плачевными, вплоть до летального исхода на фоне инсульта или инфаркта. Если у человека кровь сгущается на фоне уменьшения уровня тромбоцитов, что сопровождается нарушением кровообращения, то последствием данной ситуации может являться усиление кровоточивости.

Людям старшего возраста, когда количество эритроцитов и уровень гемоглобина становятся выше в силу возрастных изменений, потому и назначаются препараты, содержащие аспирин.

При этом некоторые пробуют корригировать эти показатели питанием, применением трав, разжижающих кровь , или других народных средств. А многие просто говорят, что «польза красного вина, очевидна и видна». Этот факт часто берут на вооружение люди, которым подобное лекарство всегда «грело душу». Впрочем, хочется несколько разочаровать любителей. Не сомневаясь в пользе красного вина в очень небольших дозах до 50 граммов в день , нужно предостеречь от чрезмерного употребления, поскольку это все-таки алкогольный напиток. Кроме этого, следует заметить, что лечебными свойствами обладает качественное виноградное вино, а не дешевое одурманивающее «пойло», именуемое «чернилом» или другими словами, ярко выражающими суть.

Что касается диеты, то таковая существует. В домашних условиях диету можно значительно расширить и разнообразить, включив в рацион питания: Виноград, клюкву, крыжовник, смородину красную и белую, вишню и черешню, клубнику и чернику; Яблоки, персики, лимоны и апельсины; Свеклу, томаты, огурцы; Корицу, имбирь, перец чили, чеснок и сельдерей; Морепродукты морская капуста, рыба ; Кофе, какао, горький шоколад. Конечно, перечислить все полезные продукты питания не представляется возможным, их много и некоторые из них для русских просторов не свойственны, однако даже этот перечень способен изменить состояние крови в лучшую сторону. Как всегда, разжижать кровь можно попробовать, используя целебные свойства растений. Говорят, что заменить широко применяемый аспирин, может донник желтый, собранный в период цветения, а затем высушенный. А если смешать его с другими травами, разжижающими кровь, то результат может превзойти все ожидания.

Таким образов, в равных долях можно взять: Цветы клевера лугового; Плоды красного боярышника; Корневище валерианы лекарственной. К полученному сбору добавить донник желтый, мелиссу и кипрей узколистный.

Употребляйте не менее полутора литров жидкости в день.

Предпочтительнее зеленый чай, либо травяные чаи, свежевыжатые соки из овощей и фруктов, чистая вода. Настоятельно рекомендован натуральный сок из красного винограда, просто кишащий биофлавоноидами. Для сердечнососудистой системы это эликсир жизни.

Для поддержания нормальной вязкости крови в пище должно быть сбалансированное количество белков, жиров, углеводов, витаминов, макро — и микроэлементов. Главным поставщиком белка необходимо назначить рыбу, лучше морскую, а также яйца, молочные продукты. Дважды в неделю в меню должно присутствовать мясо, которое совсем недавно являлось принадлежностью курицы или индейки.

Употребление животного белка следует, по возможности ограничить, если вы боретесь за снижение густоты крови. Симптомы густой крови Густая кровь не является самостоятельным заболеванием. Повышение ее вязкости лишь указывает на наличие той или иной патологии в организме.

Привести к сгущению крови могут множественные обстоятельства. Поэтому так важно определить истинную причину, приведшую к повышению вязкости крови.

Уровень активности метаболизма ткани и, соответственно, потребления ею кислорода является основным фактором, определяющим диффузию кислорода из крови в ткань. Действие кислорода как регуляторного фактора может быть как прямым, так и непрямым. Прямое воздействие осуществляется на сосудистую стенку, которая содержит сенсор кислорода, реагирующий на парциальное напряжение кислорода в периартериолярном пространстве.

Непрямое действие реализуется через вторичные метаболиты и пусковым сигналом служит тканевой или конечный капиллярный уровень напряжения кислорода. Сенсоры локализуются в тканевых митохондриях, эндотелии капилляров или стенке венул. В качестве уникального мобильного сенсора кислорода, как показано исследованиями последних лет, способны выступать и эритроциты [ 48 , 74 ]. Поскольку в системе микроциркуляции прямой механизм требует значительного падения периартериолярного напряжения кислорода, в физиологических условиях, по всей видимости, преобладает непрямой механизм регуляции. Кроме основной функции эритрона транспорта кислорода от легких к тканям , в настоящее время доказано его активное участие в регуляции сосудистого тонуса вазорегуляция , что лежит в основе оптимизации регионарного кровотока с целью обеспечения доступности кислорода в легких и его потребления на периферии.

В случае недостаточного поступления кислорода регуляция его доставки обеспечивается варьированием кровотока, а не содержанием кислорода, поскольку содержание кислорода относительно фиксированная величина, в то время как показатели кровотока могут изменяться в диапазоне нескольких порядков. Таким образом, объемный кровоток и его распределение — это физиологические параметры, которые наиболее активно регулируются для поддержания соответствия между доставкой кислорода и потребности в нем. Система обратной связи, ответственная за регуляцию доставки кислорода в тканевые регионы, должна быть способна контролировать и при необходимости регулировать поступление кислорода в ткани на уровне микроциркуляции. Еще три десятилетия назад впервые было продемонстрировано, что в условиях гипоксии и гиперкапнии эритроциты высвобождают АТФ, которая потенциально может выполнять функцию вазодилататора [ 30 ]. Было высказано предположение, что эритроциты, проходя через регионы с низким напряжением кислорода, стимулируют локальную вазодилатацию, увеличивая приток крови к этому региону.

АТФ, связываясь с P2y1 и P2y2 пуринорецепторами эндотелия, вызывает расширение сосудов за счет релаксации гладких миоцитов сосудистой стенки вследствие выработки эндотелиоцитами оксида азота, простациклина или эндотелиального гиперполяризующего фактора [ 156 ]. Роль эритроцитов в этом процессе подтверждена экспериментами Dietrich и соавт. Количественная оценка высвобождения АТФ эритроцитами подтвердила, что этот процесс осуществляется достаточно быстро, чтобы быть физиологически значимым [ 57 ]. Впоследствии было доказано, что эритроцит выступает не только в качестве регулятора локального кровотока в соответствии с метаболическими потребностями тканей, но и выполняет роль сенсора гипоксии, поскольку количество высвобождаемого АТФ прямо пропорционально степени деоксигенации гемоглобина и регуляция гликолиза дезоксигемоглобином в эритроцитах выступает в качестве начального этапа сигнального пути высвобождения АТФ [ 72 , 58 , 48 ]. Эритроциты выполняют функцию сенсора кислорода в тканях, контролируя сосудистое сопротивление благодаря кислород-зависимому высвобождению АТФ [ 48 , 73 ].

Еще один из механизмов локальной регуляции регионарного кровотока основан на способности эритроцитов захватывать, депонировать и высвобождать оксид азота в том числе и синтезированный самими эритроцитами в зависимости от степени оксигенации гемоглобина, которая напрямую взаимосвязана с метаболической активностью ткани и потреблением ею кислорода [ 129 ]. Jia L. Кроме того, дезоксигемоглобин может восстанавливать нитриты с образованием NO [ 74 ]. Эритроциты человека сами синтезируют NO ферментативным путем, показано наличие у них активной NO-синтазы эндотелиального типа NOS , которая активируется под действием напряжения сдвига [ 148 ], синтезированный эритроцитами NO высвобождается в интравазальное пространство и оказывает влияние на сосудистый тонус [ 43 ]. Экспериментально продемонстрировано, что высвобождение оксида азота эритроцитами под действием напряжения сдвига, по величине соответствующего реальным условиям кровотока в системе микроциркуляции, способно вызвать дилатацию изолированных мелких брыжеечных артерий крысы [ 21 , 149 ].

Известно, что Hb эритроцитов способен депонировать NO [ 17 ], это было основанием для контраргументов в дискуссии о возможности высвобождения оксида азота эритроцитами. Сродство гемоглобина к NO уменьшается в деоксигенированном состоянии, поэтому высвобождение NO из эритроцитов облегчается при деоксигенации, способствуя регуляции вазомоторной функции сосудов [ 135 ]. Кроме того, было продемонстрировано, что анионный обменник белок полосы III на мембране эритроцитов может способствовать экспорту NO синтезированного эритроцитами или высвобождаемого из S-нитрозогемоглобина [ 107 ]. Стоит отметить, что от степени оксигенации гемоглобина в эритроцитах зависит внутриклеточная передача сигналов [ 20 ], действие гормонов и вазоактивных агентов [ 145 ], ионный транспорт [ 31 ] и деформируемость [ 150 ] эритроцитов. Однако бывают ситуации, когда умеренное повышение этих показателей способствует перфузии тканей и снижению сосудистого периферического сопротивления за счет механостимуляции синтеза NO эндотелием, то есть реологические свойства плазмы и крови влияют на величину просвета сосуда, обеспечивая эффективную микроциркуляцию в тканях [ 91 ].

В работе Salazar Vazquez и соавт. Следует заметить, что таким свойством обладает прирост вязкости, который не выходит за пределы физиологической нормы этого показателя. Это позволило S. Forconi предложить новую гемореологическую парадигму, согласно которой небольшое повышение вязкости крови обладает вазодилататорным эффектом и потенциально улучшает перфузию тканей, вопреки традиционной точке зрения о том, что любое увеличение вязкости крови негативно сказывается на перфузии тканей и может рассматриваться как фактор риска хотя и не самостоятельная патология [ 52 ]. Также большое значение имеет тот факт, что артериолы, резистивные микрососуды, регулирующие кровоток, снабжены сенсорными механизмами, которые контролируют напряжение сдвига на границе сосудистой стенки и регулируют его колебания через изменение активности сократительных элементов стенки сосуда, поддерживая его на постоянном уровне.

Хронические нарушения такой регуляции например, в случае патологии приводят к адаптивным изменениям сосудистой стенки и микроангиоархитектоники ангиогенез и ремоделирование сосудов [ 101 , 122 ]. Поскольку воздействие напряжения сдвига на сосудистую стенку передается движущейся по этому сосуду кровью, очевидно, что механика этого взаимодействия будет в значительной степени определяться реологическими свойствами крови. Микрореологические свойства эритроцитов Наряду с вязкостью цельной крови микрореологические свойства эритроцитов вносят определенный вклад в реализацию эффективного микрокровотока [ 33 ]. Эритроциты обладают уникальными механическими свойствами, которые определяют их функционирование в условиях потока. Деформируемость отражает способность к изменению формы под действием внешних сил [ 40 ], это изменение полностью обратимо и при снятии деформирующего воздействия восстановление формы клетки происходит за достаточно короткое время порядка 0.

Деформируемость эритроцитов обеспечивает снижение вязкости крови при высоких скоростях сдвига и играет важную роль при пассаже эритроцитов через терминальные сосуды микроциркуляторного русла, диаметр которых сопоставим с размерами клеток крови [ 128 ]. Уникальная форма эритроцитов двояковогнутый диск , отсутствие ядра и органоидов делает возможным вытягивание клетки с более, чем двукратным увеличением линейных размеров без существенного увеличения площади поверхности мембраны [ 99 ]. Считается, что деформируемость определяется вязкостью внутреннего содержимого клетки и вязкоэластическими свойствами мембраны, которые зависят от свойств сети протеинов на внутренней цитоплазматической стороне мембраны [ 100 ]. Модификация функциональных свойств эритроцитов возможна и под воздействием вазоактивных соединений, поскольку на мембране эритроцита имеются рецепторы к целому ряду таких соединений [ 131 , 34 ] и комплекс внутриклеточных сигнальных путей [ 21 , 108 ]. Кроме влияния вазоактивных агентов, участие эритроцитов в модуляции микрокровотока и сосудистого тонуса реализуется посредством жидкостно-механического взаимодействия с сосудистой стенкой [ 25 , 26 , 159 ] и высвобождением ими вазоактивных агентов АТФ [ 48 ] и оксида азота NO [ 73 , 148 ].

Было замечено, что деформируемость эритроцитов оказывает влияние на индуцированное гипоксией высвобождение АТФ: снижение деформируемости способствует уменьшению высвобождения АТФ, а рост деформируемости синхронизирован со стимуляцией этого процесса [ 111 ]. Посредством продукции оксида азота самими эритроцитами или клетками эндотелия под влиянием пристеночного напряжения сдвига, деформация эритроцитов может оказывать влияние на такие жизненно важные функции, как распределение крови, ангиогенез, митохондриальное дыхание и биогенез, потребление глюкозы, кальциевый гомеостаз и контрактильные свойства мышц. Таким образом, все эти функции находятся под регуляторным влиянием реологии крови [ 33 ]. Все попадающие в кровь биологически активные соединения контактируют с эритроцитами и могут оказывать влияние на их функциональные свойства. На сегодняшний день описано влияние более 30-ти различных факторов на микрореологические свойства и функции эритроцитов, есть все основания полагать, что в реальности это количество значительно больше [ 34 ].

В последнее время получены сведения о влиянии на реологические свойства эритроцитов таких соединений, влияние которых ранее не рассматривалось, но регуляторная роль которых в системе кровообращения становится все более очевидной, например, молекул газомедиаторов и циркулирующих в крови липидов. Известно, что циркулирующие в крови липиды связаны с неблагоприятными изменениями реологических свойств эритроцитов. Повышенный уровень липопротеинов низкой плотности или триглицеридов ассоциирован с ухудшением деформируемости эритроцитов, а липопротеины высокой плотности находятся в прямой взаимосвязи с деформируемостью [ 113 ]. Важнейший регулятор энергетического обмена гормон лептин, синтезируемый адипоцитами жировой ткани, улучшает деформируемость эритроцитов через NO-цГМФ-зависимый механизм [ 143 ], но в то же время повышает агрегацию эритроцитов [ 62 ]. Представлены данные о том, что лептин способен вызывать дилатацию сосудов как посредством NO-зависимых, так и NO-независимых механизмов [ 87 ].

В физиологических условиях лептин вызывает эндотелий-зависимую вазорелакцсацию стимулируя NO и эндотелиальный гиперполяризующий фактор. В то время как у практически здоровых лиц эффект лептина ведет преимущественно к вазодилатации, у пациентов с метаболическим синдромом гиперлептинемия постепенно дисрегулирует контроль кровяного давления посредством ухудшения эндотелиальной функции. По мере развития метаболического синдрома вклад эндотелиального гиперполяризующего фактора в гемодинамический эффект лептина становится неэффективным. Резистентность к вазодилатационному влиянию лептина может вносить вклад в развитие артериальной гипертонии [ 29 ]. Изучение влияния газомедиаторов на микрореологические свойства эритроцитов предпринято относительно недавно.

Газомедиаторы — малые липидорастворимые молекулы газов NO, CO, H2S , которые не требуют сложного каскада передачи сигнала для реализации своего регуляторного влияния, они способны легко проникать через клеточную мембрану и непосредственно реализовывать свою биологическую функцию, взаимодействуя с клеточными компонентами [ 102 ]. Благоприятное влияние NO на микрореологические свойства эритроцитов показано Baskurt O. Муравьев А. Эффект оксида азота и сероводорода на деформируемость и агрегатные свойства эритроцитов зависит от уровня обеспеченности кислородом и более выражен у лиц с высокими показателями максимального потребления кислорода [ 3 , 8 ]. Продемонстрировано положительное влияние оксида азота на микрореологические свойства эритроцитов и показатели свертывания крови [ 141 ].

Классическая триада Рудольфа Вирхова, обозначившая ключевые факторы тромбообразования, включает в себя нарушение целостности сосудистой стенки в первую очередь ее эндотелиального слоя , изменения состава и свойств самой крови и скорости кровотока. Если первые два фактора интенсивно изучались и здесь достигнуты определенные успехи, то исследованию влияния условий течения крови на процесс тромбообразования уделялось недостаточно внимания. Первые исследования в этой области были предприняты в 70-гг. Начальным этапом свертывания крови является первичный тромбоцитарно-сосудистый гемостаз, который играет важную роль как в физиологических условиях, так и при патологии. Нестимулированные тромбоциты циркулируют в виде гладких дискоидных клеток с незначительной метаболической активностью.

Такие тромбоциты не вступают в физиологически значимое взаимодействие с другими форменными элементами периферической крови или монослоем эндотелиальных клеток, выстилающим эндоваскулярное пространство. Физиологическая активация тромбоцитов начинается тогда, когда поврежден сосудистый эндотелий и обнажен субэндотелиальный внеклеточный матрикс. При этом происходит быстрая адгезия тромбоцитов к обнаженному субэндотелиальному экстрацеллюлярному матриксу в целях остановки кровотечения и репарации поврежденных тканей. На следующих этапах первичного гемостаза происходят активация и агрегация тромбоцитов с формированием тромбоцитарной пробки [ 86 ]. В условиях in vivo и адгезия, и агрегация тромбоцитов включает переход от движения в потоке к фиксации на поверхности.

В случае адгезии поверхность, к которой прикрепляются тромбоциты, это сосудистая стенка либо окружающие ткани, адгезивными субстратами выступает эндогенный матрикс или мембранные протеины и протеогликаны со связанными компонентами плазмы. В случае агрегации поверхностью является мембрана соседних тромбоцитов, которые уже иммобилизованы в месте формирования тромба и предоставляют мебраносвязанные субстраты, перемещенные из внутренних мест хранения в процессе активации или извлеченные из плазмы. Таким образом, и на процесс адгезии, и на процесс агрегации тромбоцитов оказывают влияние условия течения крови, то есть ее реология [ 49 , 69 ]. Однако использование агрегатометрии тромбоцитов in vitro не позволяет учитывать влияние кровотока, важной переменной, существенно повышающей сложность процесса агрегации тромбоцитов. В агрегометре тромбоциты объединяются в агрегаты в условиях низкосдвигового не ламинарного течения, такие экспериментальные условия не способны адекватно моделировать когезию тромбоцитов на тромбогенной поверхности в реальных условиях циркуляции.

Условия течения крови или ее реологические свойства в месте повреждения сосудистой стенки оказывают существенное влияние на адгезию и агрегацию тромбоцитов. В условиях циркуляции in vivo тромбоциты подвергаются воздействию разных гемодинамических условий: от относительно медленного течения в венулах и крупных венах средние пристеночные скорости сдвига составляют порядка 500 с—1 до мелких артериол, где скорости сдвига могут достигать 5000 с—1. В стенозированных артериях скорости сдвига увеличиваются до 40 000 с—1 [ 118 ]. Тромбоциты обладают уникальной способностью формировать прочные адгезионные контакты при любых сдвиговых условиях течения имеющих место in vivo с последующим формированием тромбоцитарной пробки и в конечном итоге тромба даже при высоких скоростях сдвига [ 59 ]. Стойкая адгезия тромбоцитов включает следующие процессы: прикрепление, роллинг, активацию и адгезию.

Похожие новости:

Оцените статью
Добавить комментарий