Лучше всего к магнитам притягиваются. Таким образом, магниты притягивают только железо из-за взаимодействия их магнитного поля с магнитными моментами электронов в атомах железа. Любой магнит, любого размера, даже самый маленький имеет северный и южный полюса. Корабли не разваливались, но магнит притягивает железо. Это объясняет, почему некоторые магниты притягивают предметы с большей силой, чем другие.
Почему магнит притягивает металл ?
Почему магнит притягивает? Описание, фото и видео - Научно-популярный журнал: «Как и Почему» | Узнайте, почему магнит притягивает железо. Краткое объяснение, почему магнит притягивает железо. Блог магазина Магнитов на Коломенской. |
Какая сила заставляет магнит притягивать, и как её применяют | Хотя два исследователя работали и параллельно, почему-то именно Сагава единолично считается изобретателем неодимового магнита. |
Суть магнита. Почему магниты магнитят. Природа и принцип действия магнитов и электромагнитов. | Почему постоянный магнит притягивает железо? У железа и похожих на него металлов есть особенная черта — связь между соседними атомами такова, что они чувствуют магнитное поле скоординированно. |
Суть магнита. Почему магниты магнитят. Природа и принцип действия магнитов и электромагнитов.
Они притягиваются к магниту достаточно сильно — так, что притяжение ощущается. Дак и я не сомневаюсь что магнит притягивает железки и могу померить параметры этого притяжения. Например, длинный железный гвоздь начинает притягивать к себе другие железные предметы, которых не может притянуть магнит, который намагнитил гвоздь. Причина, по которой железо и другие предметы притягиваются к магнитам, сводится к его электронам и к тому, как они выровнены. это материалы, которые генерируют поле, которое притягивает или отталкивает некоторые другие материалы (например, железо и никель) с определенного расстояния. Это создает силы притяжения между магнитом и железом, что приводит к их притяжению друг к другу.
Похожие вопросы
- Являются ли магниты металлом? Правда, объясненная любителям науки
- Ответы : Почему магнит притягивает железо, а алюминий например нет
- Магнит и магнитное поле: почему притягивается только металл?
- Часто задаваемые вопросы
- Почему магнит притягивает металл ?
- Что такое магнитная сила?
Часто задаваемые вопросы по неодимовым магнитам (FAQ)
Причина, как ни странно в составе фрукта — наряду с железом в незначительном количестве в яблоке содержится много влаги, являющейся диамагнитным веществом. Поэтому магнит его отталкивает. Железа же в яблоках крайне мало и притянуть его даже самым сильным магнитом не удасться.
Другая неподтвержденная гипотеза: минерал назван так в честь региона Магнесия, находившегося в Малой Азии. В этом районе были открыты залежи магнетита. Применение Магниты нашли широкое применение в разных областях деятельности человека. В строительстве используются магнитные фиксаторы или намагниченная вода.
В нефтепереработке магнитные элементы препятствуют образованию отложений на трубопроводах, в медицине используются для производства приборов МРТ. В транспорте нашли применение в качестве запорных устройств, преобразователей и датчиков. Магнетизм, как научное явление, вызывается перемещением электронов. Вещества и предметы состоят из мельчайших атомов, эта физическая единица представляет собой ядро и движущиеся вокруг него электроны. Поскольку электроны имеют отрицательные заряды, то создают магнитные поля. Вращение электрона по часовой стрелке направляет магнитное поле наверх, а вращение против часовой стрелки — вниз.
Реквизировал у сына на время прибор на длинной веревке и назавтра отправился к Порываеву. Встречу Владимир назначил на пруду в Тропаревском парке Москвы. Но эффективность маленькая была. Специальные поисковые магниты появились лет 10 назад.
Сначала китайские, потом наша промышленность освоила их выпуск. Самые популярные — двусторонние с грузоподъемностью 200-300 кг. Особенно спрос на них вырос в последние годы. Русский человек — в душе охотник, добытчик, собиратель. Национальная черта. Кто за грибами охотится, кто - за зверями, птицами, рыбой, кто-то за кладами… Этот ствол сбросили в воду бандиты в лихие 90-е. Вытаскиваю из сумочки агрегат сына. Владимир профессиональным взглядом оценивает: «Мощность 200 кг, для новичка сойдет. У меня — на 300 кг рассчитан. А веревка толстовата.
Далеко не забросишь. Лучше всего брать альпинистские шнуры 6 миллиметров диаметром. Они держат 600 кг, не намокают, не тянутся. Можно далеко закинуть, и руки не режут. Другой конец обязательно надо прикрепить к ограждению, парапету моста, ближайшему дереву, кусту. Некоторые берут с собой колышки, типа, к которым бабки в деревне коз привязывают. На крайний случай — закрепляют на ноге. Иначе магнит может улететь и с концами… А он несколько тысяч стоит. Плюс шнур рублей 500. Владимир выдал мне прорезиненные толстые перчатки.
Техника безопасности! Иначе можно легко порезать руки ржавыми находками. И начинается «рыбалка». Раскручиваю на берегу конец веревки с магнитом, забрасываю, жду немного, чтобы он лег на дно, и медленно тащу назад. Вспомнился вдруг пушкинский Балда. Как стал он на берегу веревку крутить, да конец ее в море мочить. Чтобы веревкой море морщить, и бесовское племя корчить. Бесы-то задолжали попу оброк. Интересно, какой оброк вытащим мы с Порываевым? На пятом забросе тропаревский чертенок прицепил мне к магниту странную монетку.
Иду к Владимиру, он в монетах дока, известный кладоискатель. По берегам обычно немало гастарбайтеров бродит. Рыбу ловят на пропитание…» Вскоре еще одна монетка прицепилась. Наша, пятирублевая. Порываеву бесы подкинули два рубля. И то добыча. Магнит с тремя сомами и пятью рублями. Только сталь, железо, чугун.
Какие физические свойства магнита при этом изменились? Ни какие. Если вы деформировали пружину - то ее физ свойства изменились - она накопила энергию в виде упругой деформации. Магнит же ни каких свойств не изменит если вы удалите от него железку. Добавлено спустя 3 минуты 59 секунд: blindman писал а : При падении шарика с высоты совершается работа? Она берется от того кто милион раз будет поднимать шарик перед броском. Разве энергия не есть мера работы которую нужно произвести, чтобы изменить какое-нибудь поле? Добавлено спустя 39 секунд: avr123. А тут она будет браться от того, кто миллион раз будет отлеплять железку и отпускать новую Добавлено спустя 2 минуты 5 секунд: avr123. Подозреваю, что мы когда убрали железку - в этот момент изменилось магнитное поле, которое, как пружина, опять "взвелось". То есть начальное условие - шарик на земле. По аналогии - если изначально пластина на магните, то энергия возьмется от того, кто ее от магнита отрывает avr123. Ей можно дать возможность двигаться - то есть прекратит препятствовать движению, но не дать энергию. По аналогии - если изначально пластина на магните, то энергия возьмется от того, кто ее от магнита отрывает Да, я выше про это написал - если проводить эксперимент с одной железкой то понятно что на ее удаление тратится столько же энергии сколько вернется при притяжении и эту работу совершает тот кто ее удаляет. А я говорю о разных, пстоянно новых железках которые ни кто не удалял от магнита, а только подносил соершая работу, но когда магнит их подхватывает совершается работа кем?
Глава 34. Магнетизм. Опыт и теория
Внутри куска железа все атомы сгруппированы силовым полем в кристаллическую решетку. Атомы железа асимметричны. Силовые линии магнита, состоящие из электронов малых энергетических полей сот пространства, проходят через пространство внутри куска железа, около ядер атомов железа. Силовые линии магнита сменят ориентацию ядер атомов куска железа на ориентацию ядер атомов магнита. При этом развернут ядра куска железа так, что со стороны северного полюса магнита, где электроны магнита сжаты, ядра атомов куска железа окажутся повернутыми своими легкими сторонами. А со стороны южного полюса — соответственно тяжелыми сторонами. Тем самым возбудив в куске железа магнитные свойства и превратив кусок железа в магнит. Нарушается равновесие сил в силовых линиях магнитных полей. Кусок железа, с ориентацией ядер атомов магнита, окружающим пространством будет подвинут к магниту так, что магнитные линии куска железа будут являться продолжением магнитных линий магнита, образуя как бы общее магнитное поле.
Когда южный полюс магнита и северный полюс магнита находятся достаточно близко, они притягиваются друг к другу. Если те же концы собраны вместе, например, северный полюс на северный полюс, магниты отталкиваются друг от друга. Компас содержит небольшой свободно плавающий магнит, который сидит горизонтально на стержне. Северный полюс магнита компаса указывает в северном направлении, а южный полюс магнита компаса указывает в южном направлении. Компас всегда указывает север и юг, поэтому он используется для целей навигации и ориентации.
Немного теории Чтобы понять, чем уникальны неодимовые магниты и в чём состояла сложность их открытия, начнём с базы: почему постоянный магнит вообще магнитит. Примечание: если вы хорошо знакомы с физикой процесса, смело пропускайте этот раздел: дальше будет поверхностное объяснение на уровне школьной программы. Как мы знаем, ток в проводнике — это направленное движение электронов под действием некоторого электрического поля. При этом движение электронов порождает собственное магнитное поле, что следует из закона Ампера , и более глобально — из уравнений Максвелла. Так работают привычные нам электромагниты: приложили напряжение, и по виткам провода побежал ток, который создаёт магнитное поле больше витков — больше магнитная индукция. Просто напоминаем — направление напряженности магнитного поля определяется по правилу правой руки Если теперь в образовавшееся поле поместить предмет из ферромагнитного материала то есть подверженному намагниченности , то он будет притягиваться к электромагниту. Тут всё понятно. Но что делает материал ферромагнитным? Давайте посмотрим на более микроскопическом уровне. Как мы знаем, атом имеет так называемую планетарное строение по Резерфорду: в центре находится ядро, вокруг которого по орбитам вращаются электроны. По своей сути, вращение электрона — это и есть электрический ток, но очень маленький. В результате электрон движением по орбите создаёт собственное магнитное поле — это называется магнитным дипольным моментом. Он напрямую связан с более общей характеристикой — орбитальным моментом импульса электрона не путать со спином — чисто квантовой величиной , как у любого вращающегося тела. Небольшое отступление: магнитный момент имеет интересное свойство. Как и многое в квантовом мире, он кратен некоторому фундаментальному числу, которое называется магнетоном Бора и выводится через массу электрона, скорость света и постоянную Планка. Для того чтобы магнитный момент проявился и какое-то вещество начало притягиваться, в его атоме должны быть нескомпенсированные электроны. Внешнее магнитное поле как бы развернёт их в одном направлении, что приведёт для всех таких же атомов к появлению общей нескомпенсированной силы — это, и будет нашей намагниченностью. Внешнее и внутреннее магнитные поля будут взаимодействовать, из-за чего возникнет притяжение материала к магниту. В веществах же, не имеющих подобного строения, магнитный момент не проявится вообще дипольный момент равен 0 или будет в сотни тысяч раз слабее, чем у ферромагнетиков — речь идёт о так называемых парамагнетиках. Посмотрите наглядное и простое объяснение: Ещё раз — возможность намагничивания ферромагнитные свойства зависят от атомной структуры, веществ и распределения электронов по орбитам. Например, возьмём всем пришедшее на ум железо Fe : его порядковый номер 26 в таблице Менделеева равен количеству электронов на орбитах. Если не вдаваться в подробности для пытливых — смотри тут , то электроны по его орбиталям s, p, d и f распределяются по энергетическим уровням так, что образуется 4 неспаренных электрона на d-орбитали. Они и наделяют наше вещество способностью намагничиваться. На самом деле, ферромагнитных веществ не так уж много. Итак, с возникновением магнитного притяжения немного разобрались. Но проблема в том, что сами по себе условные железные гвозди после взаимодействия с внешним магнитным полем практически не сохраняют своих магнитных свойств или быстро их теряют. Вообще, у ферромагнетиков есть локальные области с высокой плотностью диполей, ориентированных в одном направлении — так называемые магнитные домены. Но у простого железного гвоздя кристаллическая структура неравномерная, и суммарный эффект намагничивания слишком слабый. Нужно создать чёткую кристаллическую структуру, чтобы магнитные домены были равномерно распределены и сохраняли ориентацию в одну сторону, по оси как бы имели выраженные полюса S и N — хотя это достаточно условная штука. Примечание: подробнее про зависимость магнитных свойств от атомного строения неодимового магнита можно почитать в этой статье. Только в этом случае получится произвести постоянный магнит, подходящий для бытового и промышленного применения. Например, он должен: сохранять высокую остаточную намагниченность Br — другими словами, создавать как можно более мощное магнитное поле; иметь высокую коэрцитивную силу Hc — то есть противостоять попыткам размагничивания внешним электромагнитным полем; сохранять свои свойства при разных внешних воздействиях — например, иметь как можно более высокую температуру точку Кюри , при которой происходит разрушение структуры, и ферромагнетик превращается в парамагнетик. Есть ещё много параметров, но для понимания эти три — основные. Основная диаграмма с характеристиками постоянного магнит — петля гистерезиса. Представляет связь между индукцией B и напряженностью H магнитного поля. Для упрощения: чем форма петли шире и выше, тем лучше Чтобы этого добиться, нужно производить некоторые дополнительные манипуляции с ферромагнитными веществами: создавать из них сплавы, превращать в порошок и спекать, намагничивать очень сильным полем, при высокой температуре и так далее. Проще говоря, подобрать состав и технологию так, чтобы получить идеальную структуру магнитных доменов. Виды постоянных магнитов Перед тем как перейти к истории появления детища Джона Кроата и Масато Сагавы, посмотрим, какие ещё виды постоянных магнитов использовались и используются до сих пор — хотя и значительно уступили свои позиции неодимовым магнитам.
Такими монетами Годунов награждал отличившихся воинов за ратные подвиги. Стоимость монеты — более миллиона рублей. За века золотой «окутала» ржавчина от шкворня, оборотной стороны не видно было. Сейчас она находится в музее истории Москвы. Через несколько забросов - еще один. Порываев как бывший сотрудник спецслужб вынес приговор: «На 99 процентов — от маузера 1934 года. Будем искать сам маузер. У него и магнит мощнее, и веревка длиннее. Честно признаюсь, слова про "сам маузер" я посчитал шуткой. Но каково же было мое удивление, когда минут через двадцать Порываев на самом деле вытянул из пруда «ствол», похожий на карабин. Ржавый, забитый илом, без затвора, деревянный приклад полусгнил. Правда, при ближайшем осмотре марку оружия установить не смогли. Пруд — самое удобное место сбросить оружие, патроны после «мокрого дела». Недаром есть выражение — «концы в воду! Помнишь, на мосту убили Бориса Немцова? Пистолет вскоре нашли неподалеку в Москве-реке. В прошлом году боевые пловцы Росгвардии во время тренировки под Крылатским мостом обнаружили на дне три пистолета - ТТ, Вальтер и Рек Говернмент, магазин от автомата Калашникова, пакет с патронами различного калибра. Об этом пресса писала. Поднятые со дна пистолеты. Тогда фронтовики привозили домой немало боевых трофеев, а потом приходилось от них избавляться. Когда в Нагатинской пойме земснаряды черпали грунт, в отвалах находили пистолеты еще пушкинских времен. А с набережных вдоль оживленных маршрутов общественного транспорта я за одну «рыбалку» поднимал до десятка кошельков. Карманники, орудующие в автобусах, троллейбусах, забирают бумажные ассигнации и спешно избавляются от улик. На монеты и реагирует магнит. Улов на Тропаревском пруду. Подсчитываем «улов». И … большая рыбацкая верша-морда. Обычно их делают из ивовых прутьев, капроновой сетки. Эту браконьеры сотворили из железной сетки. Порываев еле вытащил из ила. Что ж, неплохой оброк выдали нам тропаревские черти, обитающие на дне пруда. Хотя мы «освоили» всего полсотни метров берега. Но ствол уже никуда не годный, без затвора. Патроны тоже старые, непригодные. Могут с ними остановить в метро на рамке, поди докажи, что собирался в полицию сдать. И мы забросили «эхо лихих девяностых» обратно в пруд, подальше, чтоб никто уже не нашел. Владимир Порываев вытащил ржавый "ствол" магнитом и вновь забросил в пруд. И монеты. Остальной железный хлам выбросили в мусорный ящик в парке. Удовольствие получили, полезное дело сделали заодно, дно слегка почистили. После шашлыка разгоряченные алкоголем отдыхающие граждане частенько бросают в воду мангалы, шампуры, посуду… - Владимир, что еще доводилось поднимать из водоемов, колодцев, болот? Ведра, чайники, утюги, подковы, спиннинги, рыбацкие ящики для зимней ловли, ложки для выгребания льда из лунок, пешни, буры, блесны, крючки, зажигалки, солнцезащитные и простые очки в металлической оправе, прочие потеряшки беспечных рыбаков и отдыхающих.
«Что такое магнит и почему он притягивает железо?» Учёные ответы на детские вопросы...
Например, магнит прямоугольник 20х10х4 мм выдерживает нагрузку на отрыв 4 кг, но при использовании на сдвиг его предельная нагрузка будет равняться 1,8 кг. Для многих применений сила на сдвиг является основной характеристикой неодимового магнита. Сцепная сила зависит от многих факторов. Например, на шероховатой поверхности она несколько ниже, чем на гладкой и ровной поверхности. Чем тоньше металл, на который крепится магнит, тем слабее он будет держаться. Предметы не всегда полностью прилегают к магнитной поверхности, и чем больше площадь их соприкосновения, тем сильнее притяжение.
Но есть и другие факторы, про которые не стоит забывать. Например, не все металлы и сплавы магнитятся одинаково. Если изделие окрашено, имеет полимерное покрытие или ржавчину, то сила сцепления тоже несколько снизится. Также необходимо обращать внимание на класс сплава неодима. Чем больше его порядковый номер, тем выше магнитная энергия.
Если расплавить неодимовый магнит, он, вероятно, превратится в кусок металла, из которого он сделан - неодима, железа и бора. Ферритовые магниты более термостойкие. Неодимовый магнит 14 Как можно заблокировать магнитную силу? Магниты должны потерять свою магнитную силу, если вы подвергнете их воздействию чрезвычайно высоких температур в течение продолжительных периодов времени, например, когда вы бросите их в огонь. Однако есть так называемые диамагнитные вещества, которые ослабляют магнитное поле и в то же время слабо из него выдавливаются. Например: висмут - элемент тяжелого металла белого цвета со слабым розовым отливом.
Он используется для демонстрации диамагнитной левитации. Мю-металл - мягкий ферромагнитный сплав никеля, железа и других элементов. Посмотрите видео о диамагнитной левитации: 15 Что такое антимагнит? До недавнего времени экранировать магнитное поле было невозможно. Только в 2011 году испанские ученые создали первый антимагнит. По своей конструкции антимагнит состоит из нескольких слоев.
Внутренний слой изготовлен из сверхпроводящего материала, который блокирует выход внутреннего магнитного поля, а также предотвращает проникновение внешнего магнитного поля. Остальные примерно десять слоев сделаны из специальных метаматериалов, предотвращающих взаимные помехи или изменения магнитных полей. Чем может быть полезен антимагнит? Его можно использовать, например, у пациентов с кардиостимуляторами или слуховыми имплантатами, чтобы они могли проходить обследование с помощью медицинских устройств, генерирующих сильное магнитное поле. Это также поможет защитить корабли от мин, активируемых магнитом. Есть несколько видов намагничивания.
Один из них - радиальное намагничивание, которое в дальнейшем делится на биполярное и мультиполярное. Биполярный кольцевой магнит имеет один магнитный полюс на внутренней стенке кольца, а другой - на внешней стороне. Радиальные кольца используются, например, в машиностроении, робототехнике, хирургии или при управлении технологическими процессами. Магниты по своей природе твердые, потому что они изготавливаются из твердых материалов. Однако специалисты по производству резиновых уплотнений могут добавлять в силиконовый каучук магнитные частицы, которые в результате могут быть магнитными. Силиконовый каучук остается эластичным и гибким даже при очень низких температурах.
Это используется, например, производителями холодильников и морозильников, которые устанавливают его на двери. Резиновый уплотнитель, заполненный магнитными частицами, хорошо прилегает к плоской и округлой конструкции холодильника, благодаря чему в нее не проникает тепло. Гибкие магниты также входят в состав магнитных игрушек. Вы можете знать магнитный слайм как игрушку для детей. Изучите дом, может быть, вы найдете резиновые магниты где-нибудь еще. Прорезиненные магниты - это классические неодимовые магниты, покрытые тонким слоем резины.
Слой резины предотвращает скольжение и защищает магнит от царапин. Частью магнитной доски для рисования является магнитный карандаш, которым вы рисуете на доске. Как работает магнитный стол? Магнитный стол для детей состоит из ячеек, заполненных белой вязкой эмульсией несжимаемая жидкость с высоким внутренним трением и железных опилок. В месте соприкосновения карандаша с магнитом железные опилки притягиваются к передней поверхности стола - опилки переносятся с задней части стола на лицевую сторону и создают черный рисунок. Вязкая жидкость будет удерживать опилки спереди, даже если вы постучите по столу.
Как удалить нарисованное изображение? Движущаяся магнитная полоса используется для удаления изображения. Вы можете свободно перемещать полосу и удалять только часть рисунка или все изображение. Если не удалить рисунок, он останется на столе несколько лет, пока жидкость не высохнет. Посмотрите, как работает магнитный стол, на видео: 19 Является ли свинец магнитным и что такое диамагнетизм? Свинец Pb - тяжелый металл, известный человечеству с древних времен.
Свинец не магнитный, он диамагнитный. Это означает, что он отталкивается внешним магнитным полем. Диамагнетизм противоположен парамагнетизму. Если вы поднесете к свинцу очень сильный неодимовый магнит, он будет слегка отталкиваться. Еще одно диамагнитное вещество - это также висмут, углерод, золото или медь. Посмотрите видео, чтобы увидеть, как пиролитический графит и висмут реагируют на сильный неодимовый магнит: 20 Обладает ли золото магнитными свойствами?
Золото не ферромагнитно, и магниты его не притягивают. Золото - одно из диамагнитных веществ, которое ослабляет внешнее магнитное поле, и в результате золотые предметы слегка отталкиваются от магнита. Стекло оливкового цвета и в ультрафиолете светится темно-зеленым цветом - оно флуоресцирует. Стеклодувы в Богемии производили урановое стекло в основном во второй половине 19 века, а также в 20 веке. Бум пришел с началом холодной войны, когда уран был легко доступен. Но с его окончанием производство уранового стекла резко упало.
Достаточно чувствительный счетчик Гейгера может обнаруживать небольшую степень излучения в урановом стекле с более высокой долей урана.
При грамотном выборе места для поисковых работ удается обнаружить очень ценные и интересные находки. Хорошо притягиваются царские монеты, которые выпускались на монетном дворе Екатеринбурга.
За это стоит благодарить высокое содержание железа в руде на одном из медных приисков. Кроме того, поисковикам часто попадаются монеты времен Анны Иоанновны — в их составе присутствует никель. Выгодно заказывайте поисковые магниты Двусторонний поисковый магнит F120x2 Интернет-магазин «Мир Магнитов» предлагает вам выбрать поисковый магнит с подходящим усилием отрыва, чтобы успешно решать любые поставленные задачи.
Оформляйте заказ с привлекательными условиями доставки по всей России и в страны СНГ, и отправляйтесь к перспективному месту, чтобы обнаружить различные ценные и интересные объекты.
Ярким примером естественного магнита в природе является минерал магнетит. Искусственные магниты изготавливаются из различных металлов и сплавов железо, сталь, кобальт и т. Их намагничивают в специально созданном сильном магнитном поле.
После воздействия такого поля на металл он еще долгое время сохраняет значительную намагниченность и имеет свое магнитное поле.
Почему магниты имеют свойство притягиваться и отталкиваться? (03.06.2021 г.)
Сама по себе кристаллическая решетка построена таким образом, что в условиях сильных магнитных или электрических полей железо может намагничиваться и притягиваться к другому магниту. Так что такое магнит, и почему он притягивает? Железа же в яблоках крайне мало и притянуть его даже самым сильным магнитом не удасться. Магнит может притягивать чаще всего такой металл как железо. Таким образом, магниты притягивают железо благодаря своим магнитным свойствам и магнитным веществам, которые содержатся внутри магнита.
Какие металлы магнитятся?
2) Почему магнит притягивает только предметы из железа, никеля и кобальта? Причина, по которой железо и другие предметы притягиваются к магнитам, сводится к его электронам и к тому, как они выровнены. Почему иногда магнит притягивает монеты? — современные монеты чаще всего делаются из ферромагнетиков с покрытием.
Какая сила заставляет магнит притягивать, и как её применяют
Неодимовые магниты содержат железо, а это значит, что они подвержены коррозии. Даже элементарная влага из воздуха способна привести со временем к появлению ржавчины, ослаблению мощности, разрушению. 1) Магниты притягивают и захватывают небольшие кусочки железа. Два магнита будут притягиваться друг к другу, если соединить их разноименные полюса (Северный с Южным). В новом выпуске программы обратимся к учебнику физики и выясним, почему магнит обладает свойством притягивать предметы. В этой статье мы разберемся, что такое магнит, как он работает и почему притягивает именно железо.
«Что такое магнит и почему он притягивает железо?» Учёные ответы на детские вопросы...
В быту мы ощущаем магнетизм как притяжение или отталкивание между телами. В физике же под магнетизмом понимается способность тела сохранять остаточную намагниченность то есть свое собственное магнитное поле в отсутствие магнитного поля внешнего. А уже это собственное поле может воздействовать на другие магнитные тела. Две концепции магнетизма Общим свойством большинства магнитных веществ является то, что их магнетизм обусловлен атомами так называемых переходных металлов, содержащих d -электроны индекс d относится к определенному виду симметрии электронных состояний атома. Переходные металлы — это не только железо, кобальт и никель, их несколько десятков. Локализованная вверху внизу картины ферромагнетизма С появлением понятия спина электрона и соответствующего ему магнитного момента были предложены две различные квантово-механические картины магнетизма — локализованная и зонная. Локализованная картина, сформулированная Гейзенбергом, предполагала, что электроны в кристалле не перескакивают с одного атома на соседний, однако между электронами с соседних атомов есть обменное взаимодействие. Это сугубо квантовый эффект, обусловленный разницей энергий параллельного и антипараллельного упорядочения спинов. Зонная картина Стонера, напротив, подразумевала возможность движения электронов, а их взаимодействие в основном осуществлялось в пределах одного атома. На первый взгляд, зонная картина выглядела более применимой к переходным металлам. Но некоторые явления она объяснить не могла, например, закон Кюри — Вейсса, описывающий линейную зависимость обратной восприимчивости от температуры восприимчивость — это отклик системы на слабое внешнее магнитное поле.
В то же время было совершенно не очевидно, почему картина локализованных электронов, которая, как казалось, не может быть применима к переходным металлам в частности, к железу , гораздо лучше описывает эксперимент. В конце 1950-х — начале 1960-х годов Нэвилл Мотт, а за ним Джон Гуденаф предположили, что часть электронов в железе а именно, электроны, соответствующие так называемым eg -состояниям, их два из пяти возможных d -состояний на атоме характеризуются «непроводящими волновыми функциями», то есть они не перепрыгивают, являются локализованными. Хотя к тому времени концепция перехода электронов из зонного, проводящего состояния в локализованное уже возникла благодаря работам Мотта , предположение Мотта — Гуденафа находилось далеко за гранью существовавших тогда теоретических подходов.
Чтобы гравитация совершила работу предмет нужно поднять - то есть затратить энергие вначале и потом при падении гравитация выдаст туже затраченую на подъем энергию.
С пружиной тоже ясно - сжимаем - затрачиваем, расжимается - отдает энергию. А с магнитом? Вы затратили работу чтобы его поднять к крепежу - эта работа исчезающе мизерна по сравнению с той которую он совершит поднимая десятилетиями железки. Если бы вы удалили железку от магнита а потом он бы ее притянул - тогда было бы понятно как с пружиной.
Вы затратили энергию и получили ее обратно. Вы убрали от магнита железку и больше не используете в опыте. Какие физические свойства магнита при этом изменились? Ни какие.
Если вы деформировали пружину - то ее физ свойства изменились - она накопила энергию в виде упругой деформации. Магнит же ни каких свойств не изменит если вы удалите от него железку. Добавлено спустя 3 минуты 59 секунд: blindman писал а : При падении шарика с высоты совершается работа? Она берется от того кто милион раз будет поднимать шарик перед броском.
Разве энергия не есть мера работы которую нужно произвести, чтобы изменить какое-нибудь поле? Добавлено спустя 39 секунд: avr123.
Попробуйте также, как действует переменный ток. Эти эксперименты покажут вам, что 1 большинство веществ, как, например, медь, стекло, дерево, не поддаются намагничиванию; 2 железо, сталь и некоторые сплавы эти материалы называются магнитными можно намагнитить. Они частично сохраняют свою намагниченность и после выключения тока, или если их вынуть из катушки с током; 3 с помощью катушки, через которую пропущен переменный ток, удается размагнитить намагниченный стержень; 4 тем не менее, используя ту же катушку с переменным током, можно сохранить стержень намагниченным; 5 из некоторых сортов закаленной стали выходят отличные постоянные магниты. Мягкое железо намагничивается лишь на то время, когда через катушку течет электрический ток, а после выключения тока оно почти полностью теряет свои магнитные свойства; 6 электрический ток в полой катушке без всякого железного сердечника сам по себе обладает магнитным действием. Опыт 2.
Подвешенные магнита. Подвесьте к кронштейну стержень на шелковой нити. Заметьте его ориентацию и затем поднесите к его концам другие стержни. Открыть или проверить этот закон не так-то легко. Для этого нужны два изолированных полюса, способных двигаться по направлению друг к другу или друг от друга. Мы не можем воспользоваться для этого двумя обычными магнитами, поскольку каждый из них обязательно имеет оба полюса, и должны прибегнуть к специальным ухищрениям, как, например, взять очень длинные магниты, у которых другие полюсы находятся столь далеко, что уже не играют роли. Мы можем также взять небольшие магниты и проверить, совпадают ли силы взаимодействия с теми, которые предсказываются законом обратных квадратов для всех четырех полюсов.
Тщательные эксперименты, в которых силы взаимодействия измеряются путем уравновешивания или с помощью крутильных весов Кулона , показывают, что они действительно хорошо соответствуют закону обратных квадратов. Хотя здесь мы и не имеем таких совершенных критериев, как, например, отсутствие электрического поля внутри заря- заряженного металлического ящика в электростатике, зато располагаем другими, вполне удовлетворительными косвенными методами. Опыт 3. Постоянные и временные полюсы. Подвесьте на нити брусок из мягкого железа. Вы заметите, что 10 Мягкое железо всегда притягивается обоими полюсами магнита. Погрузите магниты в железные опилки.
Опустите туда и стержень из мягкого железа. Выньте и снова погрузите один конец стержня из мягкого железа в опилки, а к другому его концу поднесите полюс магнита. Дальнейшие опыты показывают, что это явление объясняется временным намагничиванием мягкого железа, причем направление намагничивания обеспечивает притяжение стержня магнитом. Задача 1 Какие экспериментальные факты еще до того, как вы испробовали действие магнита на подвешенный железный стержень, убеждали вас в том, что мягкое железо легко меняет свою намагниченность? Опыт 4. Применение компаса. Закрепите магнит на оси так, чтобы он легко поворачивался в горизонтальной плоскости.
Именно так и действует стрелка компаса! Некоторые из предыдущих экспериментов можно теперь повторить, поднося к магниту компас фиг. Это даст нам возможность использовать компасную стрелку для маркировки полюсов любого магнита индексами N и S. Острие стрелки компаса, которое приблизительно указывает на север, мы зовем северным полюсом N-полюсом и все аналогичные полюсы других магнитов тоже называются северными. Опыт 5. Временное намагничивание мягкого железа. Найдите с помощью компаса северный и южный полюсы длинного магнита и подержите один из его концов около конца бруска из мягкого железа.
Проверьте, что на каждом конце бруска образуются полюсы. Поверните магнит другой стороной и снова исследуйте железный брусок. Какие полюсы возникли у бруска в том и другом случае? Магнитные поля Мы говорим, что магнит всюду вокруг себя создает магнитное поле, аналогично тому, как электрические заряды создают электрические поля. Линии, вдоль которых двигался бы маленький пробный северный полюс, мы называем магнитными силовыми линиями. Если же возможность получить свободный полюс кажется вам сомнительной, то под ними можно подразумевать линии, вдоль которых ориентируется крошечная компасная стрелка. Оба этих определения эквивалентны: магнитное поле, которое притягивает северный полюс стрелки в направлении вдоль силовой линии, отталкивает ее южный полюс в обратном направлении, заставляя стрелку повернуться вдоль линии.
Напряженность магнитного поля мы могли бы по аналогии с напряженностью электрического поля определить как результирующую силу, действующую на единичный пробный полюс со стороны всех расположенных поблизости магнитов. Однако вводить такое определение нет необходимости. Картину расположения магнитных силовых линий можно воспроизвести, исходя из закона обратных квадратов точно таким же путем, как и для электрических полей. Поэтому большинство рассуждений, касавшихся характера распределения электрического поля, применимо и здесь. Нужно только не забывать о том, что у нас нет таких идеальных проводников магнетизма, какими являются металлы для электричества. И хотя конфигурации силовых линий обоих полей бывают сходными, магнитное поле по своей природе совершенно отлично от электрического. Это два различных силовых поля, и одно из них относится к тем физическим объектам, которые мы называем магнитами, а другое создается обычными электрическими зарядами.
Опыт 6. Магнитные поля. Чтобы лучше познакомиться с природой магнитного поля и расположением магнитных силовых линий, проведите опыты с компасной стрелкой. Как бы ни была помещена стрелка, она устанавливается в направлении магнитного поля. Положите магнит и рядом с ним небольшой компас на лист бумаги. Перемещайте компас в направлении, указываемом его стрелкой. При этом ваш компас будет двигаться вдоль магнитной силовой линии.
Отмечайте путь компаса на бумаге. Для этого поставьте карандашом точку прямо против острия компасной стрелки. Передвиньте компас дальше, так, чтобы точка осталась позади. Поставьте следующую точку и т. После этого начните снова и наметьте вторую линию, идущую из другой начальной точки, и продолжайте так до тех пор, пока вы не получите полную картину распределения линий. Вычерчивание карты магнитного поля с помощью компаса. Приблизьте небольшой компас к северному полюсу магнита и поставьте точку у северного полюса компасной стрелки.
Перемещайте компас в направлении, указываемом стрелкой до тех пор, пока точка не окажется сзади ее южного полюса. Снова поставьте точку впереди северного полюса стрелки и т. Возможно, что некоторые линии вам будет удобно начинать от края листа. Вместо компаса можно воспользоваться железными опилками, которые ведут себя как небольшие компасные стрелки, соединяясь в цепочки, идущие вдоль силовых линий. Опилкам труднее поворачиваться, поэтому помогите им выстроиться, легонько постучав по листу бумаги. Сделайте натурные зарисовки силовых линий для различных расположений магнитов. Железные опилки указывают расположение силовых линий.
Помните, что несколько расходящихся в разные стороны линий дают лучшее представление об общей конфигурации поля, чем их густое скопление фиг. На фиг. Сделайте аналогичные карты для различных расположений магнитов, показанных на фиг. Размер каждой карты должен быть с ладонь руки или больше. Советуем вам при составлении карты пользоваться пунктирными линиями. Помните, что небольшое число основных линий лучше передает общую картину, чем густое скопление. Примеры конфигураций магнитного поля.
Примеры расположения магнитов для составления карт магнитного поля. Интерпретация карт магнитного поля Составляя карты различных магнитных полей, мы видим, что они могут кое-что рассказать нам о силах, которые действуют на магниты, создающие эти поля. Силовые линии кажутся похожими на упругие натянутые трубки, которые пытаются сокращаться в продольном направлении, одновременно расталкивая друг друга и выгибаясь в сторону, как если бы они были заполнены жидкостью. Конфигурация линий между северным и южным полюсами напоминает протянутые навстречу щупальца, что говорит о притяжении; между двумя северными полюсами линии сплюснуты и наталкиваются друг на друга, как буфера, что свидетельствует о силах отталкивания. В более сложных случаях можно заметить, что силовые линии как бы растягивают и изгибают магнит. По мере приближения к полюсу силовые линии сходятся все более тесно. Мы уже знаем, что у полюсов магнитное поле становится сильнее закон обратных квадратов.
Так что сгущение силовых линий идет рука об руку с ростом напряженности поля. Если детально исследовать самые различные конфигурации силовых линий, то обнаружится, что чем больше сгущаются линии, тем сильнее становится поле. Таким образом, картина силовых линий может дать нам представление о напряженности поля. В более серьезных курсах магнетизма эта идея преломляется в некоторый способ численного определения напряженности магнитного поля по густоте силовых линий. Полезно выработать привычку представлять себе магнитные силовые линии как агенты, посредством которых магниты притягивают и отталкивают друг друга, так как это представление приложимо и к магнитным силам, с которыми электрические токи взаимодействуют с другими токами и магнитами. Таким образом, карты магнитных полей дают нам в руки способ наглядного изображения действия электрических моторов, амперметров и т. Электрическое поле имеет совсем другую природу, однако конфигурация силовых линий этого поля также может сказать о его напряженности.
Можно представить себе, что радиоволны бегут вдоль комбинации силовых линий электрического и магнитного полей наподобие колебаний туго натянутых веревок. Этот пример дает ощущение того, что силовые линии электрического и магнитного полей вполне реальны. Конечно, не следует забывать, что в действительности существуют не силовые линии, а сами поля. Магнитное поле Земли Если воспользоваться компасом, чтобы построить карту окружающего нас магнитного поля, то мы получим ряд параллельных линий, идущих приблизительно с севера на юг. Подвешенный на нити намагниченный стержень, представляющий собой гигантскую компасную стрелку, повернется в том же направлении. Эти линии говорят о существовании магнитного поля, которое, разумеется, останется и после того, как мы уберем все наши магниты. Обследовав всю поверхность Земли, мы увидим, что линии сходятся на севере Канады, а также в некоторой области в Австралии.
Почти повсюду эти линии идут не горизонтально, а наклонены к земной поверхности[67]. Их направление указывает на то, что Земля похожа на огромный магнит с магнитной осью, слегка повернутой относительно географической оси вращения фиг. Именно это слабое земное магнитное поле используется для навигации с помощью компаса, несмотря на то, что стальные корабли обладают собственным магнитным полем, которое частично имеет переменный характер, что сильно затрудняет навигационное дело. Эквивалентный магнит для внешнего магнитного поля Земли. Северный полюс стрелки компаса указывает на север Канады. Следовательно, там должен находиться южный магнитный полюс Земли. Этот полюс, однако, называют Северным магнитным полюсом.
Если это будет вас затруднять, то избегайте таких сокращений, как «северный полюс», и называйте все полюсы их полными именами, т. Это избавит от путаницы. Когда же вы полностью уясните себе этот вопрос, вам, возможно, снова захочется вернуться ради экономии времени к сокращенным наименованиям. Магнитное поле Земли на значительных пространствах однородно, т. Поэтому с его помощью можно провести очень важный опыт — проверить равноправность северного и южного полюсов магнита. Положим магнит на пробку и пустим его плавать в воду. Земное магнитное поле повернет магнит в направлении N-S.
Будет ли оно также перемещать его в каком-либо определенном направлении, например на север? Если северный и южный полюсы плавающего магнита обладают равной силой хотя создаваемые ими поля противоположны по направлению , можно ожидать, что магнитное поле Земли будет притягивать их одинаково. Под действием такого притяжения магнит повернется вокруг своей оси, но не будет двигаться по поверхности воды ни на север, ни в каком-либо другом направлении. Если же полюсы плавающего магнита неодинаковы, то можно ожидать, что магнитное поле Земли будет действовать на них с различной силой и заставит магнит перемещаться в некотором направлении. Проведите этот важный опыт сами. Хотя земное магнитное поле довольно слабое, оно способно заметно искривить путь электронного пучка. В следующих разделах мы увидим, как магнитное поле может выталкивать проводник с электрическим током, действуя подобно катапульте.
Потоки заряженных частиц космического излучения, приходящие из мирового пространства, также заворачиваются земным магнитным полем. Это позволяет использовать Землю во многих современных экспериментах с космическими лучами как гигантский анализирующий магнит. Как намагничивают магниты В современной практике намагничивание магнитов производится с помощью электрического тока. Для этого ток пропускается не через намагничиваемый металлический брусок, а через намотанную вокруг него проволочную катушку. Магнитное поле внутри длинной цилиндрической катушки соленоида однородно, а напряженность его легко менять, регулируя ток. Поэтому такая катушка чрезвычайно удобна для опытов по намагничиванию. Если мы поместим стальной брусок внутрь соленоида и подадим в катушку ток, то увидим, что при включенном токе брусок намагничивается.
После выключения тока брусок по-прежнему остается магнитом, хотя и несколько более слабым. Для намагничивания бруска достаточно пропускать ток через катушку в течение всего лишь доли секунды. Существует несколько материалов, пригодных для получения таких «постоянных магнитов». Для этой цели подходит большинство сортов закаленной стали. Еще лучше специальные стали, содержащие вольфрам или кобальт. Некоторые новые сплавы, в состав которых входит алюминий, например «алнико», позволяют создавать еще более сильные магниты, однако требуют больших полей для намагничивания. Все эти материалы также можно намагнитить, помещая их на короткое время в магнитное поле.
Обращение магнитного поля путем перемены направления тока в катушке меняет и направление намагничивания. Как размагничивают магниты Намагниченный стальной брусок можно полностью размагнитить, помещая его внутрь катушки, через которую пропущен переменный ток, и затем медленно вынимая оттуда. Другой способ — постепенно уменьшать силу переменного тока до нуля с помощью реостата. Временное намагничивание мягкого железа Пытаясь намагнитить кусок мягкого железа, т. Если ток выключить, брусок почти полностью потеряет магнитные свойства. Мягкое железо оказывается прекрасным материалом для временного намагничивания, поэтому оно используется для изготовления сердечников электромагнитов в электромоторах и других электромагнитных устройствах. Мы можем временно намагнитить брусок из мягкого железа, поднося к нему магнит.
Если N-полюс магнита находится около конца А бруска АВ, то стрелка компаса покажет, что брусок приобрел магнитные свойства, причем его южный полюс оказывается в А, т.
Это линии распределения магнитного поля. Этот принцип визуализации магнитных полей используется в промышленной дефеткоскопии. Так называется метод магнитного контроля за состоянием труб на нефтегазовых станциях и теплосетях. По изменению направления этих линий можно судить о состоянии контролируемого объекта, есть трещины или нет. Сегодня все чаще в дефектоскопии используется роботы с начинкой из электромагнитов. Робота закрепляют на трубе. С помощью колесиков он легко передвигается по ней в заданном направлении.
Создаваемое вокруг него магнитное поле, столкнувшись с изъяном, меняется. Прибор улавливает это изменение и, либо издаёт сигнал, либо показывает, что обнаружена трещина. В зависимости от тог, где этот робот эксплуатируется, сосуд или трубопровод — это может привести к самым неожиданным последствиям, вплоть до катастрофы. Поэтому определение и постоянный мониторинг состояния таких объектов — это очень важная задача. Самый большой по размерам магнит нашей планеты — это она сама. Земля, как утверждают некоторые физики, гигантский голубой магнит. Солнце — жёлтый плазменный шар, магнит еще более грандиозный. Галактики и туманности, едва различимые телескопами , тоже непостижимые по размерам магниты.
В XVI веке учёный Уильям Гилберт изготовил стальной шар Gilberts Terrella намагнитив его, он увидел, что в нём получилось два полюса, так появилось предположение, что и Земля является большим магнитом. Уильям Гилберт Gilberts Terrella В настоящее время у учёных нет знаний о том, почему у Земли есть магнитный момент, почему она является магнитом, нет чёткого понимания механизма, который приводит к появлению магнитного поля. Существует лишь несколько теорий. Одна из них утверждает, что в ядре Земли существуют потоки расплавленной плазмы а расплавленное вещество всегда сильно ионизировано , поэтому, если ядро вращается, то получается некий ток. Но это лишь теория. Свои латинские труды он подписывал: Пётр Перегрин. Впервые исследования о магните были произведены именно им. Свои результаты он опубликовал в этом обширном трактате.
Магнетизм и электромагнетизм
- Две концепции магнетизма
- What Makes a Material Magnetic?
- как Поле действует на объект? например магнит притягивает железо почему это происходит
- Суть магнита. Почему магниты магнитят. Природа и принцип действия магнитов и электромагнитов.
Ферромагнетики – основная причина притяжения сплавов
- Какие металлы можно найти с помощью поискового магнита
- Почти понятно о магнетизме... тайная сила камня магнита | Granite of science
- Почти понятно о магнетизме... тайная сила камня магнита | Granite of science
- Почти понятно о магнетизме... тайная сила камня магнита | Granite of science
- Чем магнит притягивает
Расплавленное железо против магнита: увлекательный эксперимент
Но как магнит притягивает железо? Кусок (немагнитного) железа не имеет магнитного поля, а два куска железа не притягиваются друг к другу, так как же магнит? Почему железо притягивается к магниту? Магнит может притягивать чаще всего такой металл как железо. Почему иногда магнит притягивает монеты? — современные монеты чаще всего делаются из ферромагнетиков с покрытием. Магниты притягивают только определенные металлы, главным образом железо, никель и кобальт, называющиеся ферромагнетиками.