Атомный заряд служит запалом для водородной бомбы, а дальше происходит термоядерная реакция. Водородную бомбу можно собрать таким образом, что выгорание каждого из трёх компонентов — плутония, дейтрида лития и обеднённого урана — превысит 90%. тип ядерного оружия, разрушительная сила которого Разработка водородной бомбы.
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США
Водородная бомба - состав и принцип действий | Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. |
3. Водородная бомба: кто выдал её секрет | «взрывает» реакция неуправляемого термоядерного синтеза. |
Как один солдат водородную бомбу изобрел | Пресловутая американская бомба В61 является термоядерной, или как их еще не совсем правильно, но часто, называют – водородной. |
Презентация по физике на тему: "Термоядерные реакции. Водородная бомба"
Кулоновский барьер есть следствие того, что, согласно закону Кулона , одноимённо заряженные тела отталкиваются. На малых расстояниях ядерные силы между двумя протонами сильнее кулоновских сил, расталкивающих одноимённо заряженные частицы; однако ядерные силы убывают с ростом расстояния значительно быстрее кулоновских сил. В результате зависимость суммарного потенциала взаимодействия ядер от расстояния имеет максимум вершину кулоновского барьера на некотором расстоянии. Слайд 5 Мюонный катализ Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов. Мюон — элементарная частица, образующаяся в космическом излучении на высоте 300км над поверхностью земли. Слайд 8 Общее описание Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия , так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях — газ при плюсовых температурах, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, Li-6 — единственный промышленный источник получения трития : Слайд 9 В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотопе лития с массовым числом 7.
Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.
По-видимому, мнение оказалось благоприятным». Следствием «смотрин» стали необычные для советского первокурсника поблажки.
Олегу Лаврентьеву была установлена персональная стипендия, выделена для жилья отдельная комната правда, маленькая — 14 кв. Он был освобожден от платы за обучение. Наконец, была организована доставка необходимой литературы.
Вскоре состоялось знакомство с техническими руководителями советской атомной программы Б. Ванниковым , Н. Павловым и И.
Вчерашний сержант, за годы службы не видевший ни одного генерала даже издалека, теперь на равных беседовал сразу с двумя: Ванниковым и Павловым. Правда, вопросы задавал в основном Курчатов. Очень похоже, что предложениям Лаврентьева после его знакомства с Берией послушно придавалось даже слишком большое значение.
В Архиве Президента РФ лежит адресованное Берии и подписанное вышеупомянутыми тремя собеседниками предложение о создании «небольшой теоретической группы» для обсчета идей О. Была ли такая группа создана и если да, то с каким результатом, сейчас неизвестно. Вход в Курчатовский инстутут.
Современная фотография. Странное тогдашнее название тоже было данью всеобщей секретности. Олег был назначен практикантом в отдел электроаппаратуры с задачей ознакомиться с идущей уже работой над МТР магнитным термоядерным реактором.
Как и в университете, к особому гостю был прикреплен персональный гид, «специалист по газовым разрядам тов. Андрианов» — так гласит докладная записка на имя Берии. Там проектировали установку с удержанием плазмы магнитным полем, впоследствии ставшую токамаком, а Лаврентьев хотел работать над доработанной версией электромагнитной ловушки, восходившей к его сахалинским мыслям.
Оппоненты не нашли в нем ошибок и в целом признали работу верной, но реализовывать отказались, решив «сосредоточить силы на главном направлении». В 1952 году Лаврентьев готовит новый проект с уточненными параметрами плазмы. Надо отметить, что Лаврентьев в тот момент думал, что его предложение по реактору тоже запоздало, и коллеги из ЛИПАНа разрабатывают целиком собственную идею, пришедшую им в головы независимо и раньше.
О том, что сами коллеги придерживаются иного мнения, он узнал существенно позднее. Ваш благодетель умер 26 июня 1953 года был арестован и вскоре расстрелян Берия. Сейчас можно только догадываться, имел ли он какие-то конкретные планы в отношении Олега Лаврентьева, но на его судьбе утрата столь влиятельного покровителя сказалась весьма ощутимо.
Чего же вы хотите? Если стипендию потом все-таки восстановили, то допуск в институт я так и не получил. Сейчас невозможно, да и бессмысленно, пытаться понять, виновата ли в этом репутация «человека Берии», какие-то личные сложности или что-то еще.
Там он и сосредоточился над своей любимой темой — электромагнитными ловушками плазмы. В 1958 году была пущена установка С1, наконец-то показавшая жизнеспособность идеи. Следующее десятилетие ознаменовалось строительством еще нескольких установок, после чего идеи Лаврентьева стали восприниматься в научном мире всерьез.
К сожалению, пока новинка проектировалась, обстановка вокруг изменилась. В целях экономии средств установка была уменьшена вдвое. Потребовалась переделка проекта и расчетов.
К моменту ее завершения технику пришлось уменьшать еще на треть — и, конечно, все снова пересчитывать. Запущенный наконец образец был вполне работоспособен, но до полноценных масштабов было, конечно, далеко. Но главная идея его жизни пока так и осталась непроверенной.
Нашли опечатку?
Она приводит к летальному исходу, если кто-либо окажется поблизости. Самые мелкие частицы могут много лет находиться в атмосфере и так «путешествовать», несколько раз облетая всю планету.
Их радиоактивное излучение станет более слабым к тому моменту, когда они выпадут в виде осадков. При возникновении ядерной войны с применением водородной бомбы зараженные частицы приведут к уничтожению жизни в радиусе сотни километров от эпицентра. Если будет использоваться супербомба, тогда загрязнится территория в несколько тысяч километров, что сделает землю совершенно необитаемой. Получается, что созданная человеком самая мощная бомба в мире способна к уничтожению целых континентов.
Термоядерная бомба "Кузькина мать". Она была разработана в Советском Союзе в 1954-1961 годах. Имела самое мощное взрывное устройство за все время существования человечества. Работа по ее созданию проводилась в течение нескольких лет в особо засекреченной лаборатории под названием «Арзамас-16».
Водородная бомба мощностью 100 мегатонн превосходит в 10 тысяч раз мощность бомбы, сброшенной на Хиросиму. Ее взрыв способен в считаные секунды стереть Москву с лица земли. Центр города запросто бы испарился в прямом смысле слова, а все остальное могло бы превратиться в мельчайший щебень. Самая мощная бомба в мире стерла бы и Нью-Йорк со всеми небоскребами.
После него остался бы двадцатикилометровый расплавленный гладкий кратер. При таком взрыве не получилось бы спастись, спустившись в метро. Вся территория в радиусе 700 километров получила бы разрушения и заразилась радиоактивными частицами. Взрыв «Царь-бомбы» - быть или не быть?
Летом 1961 года ученые решили провести испытание и понаблюдать за взрывом. Самая мощная бомба в мире должна была взорваться на полигоне, расположенном на самом севере России. Огромная площадь полигона занимает всю территорию острова Новая Земля. Масштаб поражения должен был составить 1000 километров.
Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз — мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная. Правда о термоядерном оружии не так популярна, как мифы.
На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа — более чем достаточный сдерживающий фактор. Александр Березин Браво Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова.
В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона.
С тех пор конструкция термоядерной бомбы претерпела незначительные изменения например, появился урановый экран между инициирующей бомбой и основным зарядом и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды.
Что такое реакция слияния ядер? Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона.
В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Схематически эта реакция показана на рисунке ниже.
Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти.
А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба. Термоядерное оружие Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров.
Наиболее известным типом термоядерного оружия являются термоядерные водородные бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.
Атомная бомба В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород — дейтерий, ядра которого имеют необычную структуру — один протон и один нейтрон.
При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия.
Результатом этого процесса и становится выделения энергии. Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии для поддержания из жидкостного агрегатного состояния.
Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы.
Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес более 60 т. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение. В ходе исследования 2 вышеуказанные проблемы были решены.
Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.
Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности — сверхмощные и, наоборот, малокалиберные бомбы.
«Сердце» взрыва
- Как устроена водородная бомба
- Уроки водородной бомбы для мирного термоядерного синтеза
- Термоядерное оружие — Википедия
- Как создавали супермощную термоядерную бомбу
3. Водородная бомба: кто выдал её секрет
Но испытанная водородная «царь-бомба» смогла остановить наращивание их ядерного потенциала. Принцип термоядерной реакции: Водородная бомба использует термоядерную реакцию, при которой происходит слияние легких ядер (обычно изотопов водорода) при высоких температурах и давлениях. термоядерные (термоядерные бомбы, водородные бомбы) — более современное оружие, в котором принцип действия «атомной бомбы» усиливается термоядерным синтезом. Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса.
Водородная против атомной. Что нужно знать о ядерном оружии
Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. Взрыв произошел в 1961 году. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте.
Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа. По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду. Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным.
Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь. Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней.
Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца. Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете. Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз.
Проволочки мгновенно испаряются, через них продолжает течь огромный ток в 27 миллионов ампер на протяжении 95 наносекунд. Плазма, нагретая до миллионов и миллиардов! Возможно, у этого направления в будущем появится шанс сравниться и превзойти токамаки. Dense Plasma Focus — DPF — «схлопывает» бегущую по электродам плазму с получением гигантских температур. В марте 2012 на установке, действующей по этому принципу была достигнута температура 1. Levitated Dipole — «вывернутый» токамак , в центре вакуумной камеры висит торообразный сверхпроводящий магнит который и удерживает плазму. В такой схеме плазма обещает быть стабильной сама по себе. Но финансирования у проекта сейчас нет, похоже непосредственно реакцию синтеза на установке не проводили. Farnsworth—Hirsch fusor Идея проста — размещаем две сферические сетки в вакуумной камере наполненной дейтерием, или дейтерий-тритиевой смесью, прикладываем между ними потенциал в 50-200 тысяч вольт. В электрическом поле атомы начинают летать вокруг центра камеры, иногда сталкиваясь между собой. Выход нейтронов есть, но он довольно мал. Большие потери энергии на тормозное рентгеновское излучение, внутренняя сетка быстро раскаляется и испаряется от столкновений с атомами и электронами. Хотя конструкция интересна с академической точки зрения собрать её может любой студент , КПД генерации нейтронов намного ниже линейных ускорителей. Polywell — хорошие напоминание о том, что не все работы по термоядерному синтезу публичны. Идея — развитие Farnsworth—Hirsch fusor. Центральный отрицательный электрод, с которым было больше всего проблем, мы заменяем облаком электронов, удерживаемых магнитным полем в центре камеры. Все тестовые модели имели обычные, а не сверхпроводящие магниты. Реакция давала единичные нейтроны. В общем, никакой революции. Возможно, увеличение размеров и сверхпроводящие магниты и изменили бы что-то. Мюонный катализ — радикально отличающаяся идея. Берем отрицательно-заряженный мюон, и заменяем им электрон в атоме. Поскольку мюон в 207 раз тяжелее электрона — в молекуле водорода 2 атома будут намного ближе друг к другу, и произойдет реакция синтеза. Проблема тут в том, что генерация мюона на данный момент требует больше энергии, чем может получится в цепочке реакций, и таким образом пока энергию тут не получить. Научно подтвержденных и независимо повторяемых положительных результатов нет. А сенсации на уровне желтой прессы были уже не раз и до E-Cat-а Андреа Росси. Резюме Термоядерная энергия — вовсе не такая кристально чистая.
Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. Изотопы водорода. Атом водорода — простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды H2O показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода — дейтерий 2H. Ядро дейтерия состоит из протона и нейтрона — нейтральной частицы, по массе близкой к протону. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли , где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов. Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом.
Сконструировать термоядерный боеприпас оказалось намного сложнее. Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов. Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году проект неофициально назывался Super , но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу.
Угроза №1. История создания водородной бомбы в СССР
Водородная бомба мощностью 100 мегатонн превосходит в 10 тысяч раз мощность бомбы, сброшенной на Хиросиму. Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта». СССР начал разрабатывать термоядерную бомбу позднее — первая схема была предложена советскими разработчиками лишь в 1949 году. Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов.
Поражающие факторы взрыва водородной бомбы. Водородная бомба
Водородная бомба (также известная как водородная бомба, слитая бомба, или термоядерная бомба) является атомной бомбой, чья основной энергия исходит от синтеза легких ядер. Пресловутая американская бомба В61 является термоядерной, или как их еще не совсем правильно, но часто, называют – водородной. Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Водородная или термоядерная бомба является на сегодняшний день самым мощным оружием массового поражения.
Водородная (термоядерная) бомба: испытания оружия массового поражения
Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий.
Взрыв произошел на высоте 3,7 км от земли и 4,2 км над уровнем моря, на 188 сек. Вспышка длилась 65-70 сек. Облако долго сохраняло свою форму и было видно на расстоянии нескольких сотен километров. Несмотря на сплошную облачность, световая вспышка наблюдалась на расстоянии более 1 тыс. Ударная волна трижды обогнула земной шар, из-за электромагнитного излучения на 40-50 мин. Радиоактивное загрязнение в районе эпицентра оказалось небольшим 1 миллирентген в час поэтому исследовательский персонал смог работать там без опасности для здоровья через 2 часа после взрыва. По оценкам специалистов, мощность супербомбы составила около 58 мегатонн в тротиловом эквиваленте. Это примерно в три тысячи раз мощнее атомной бомбы, сброшенной США на Хиросиму в 1945 г. Съемка испытания велась как с земли, так и с борта Ту-95В, который на момент взрыва успел отойти на расстояние более 45 км, а также с самолета Ил-14 на момент взрыва был на расстоянии 55 км. После продолжительных переговоров 5 августа 1963 г. С момента его вступления в силу СССР производил только подземные ядерные испытания. Последний взрыв был проведен 24 октября 1990 г. В настоящее время этого моратория придерживается и Россия. Восьми сотрудникам КБ-11 присвоено звание Героя Социалистического Труда из них Андрей Сахаров получил его в третий раз , 40 сотрудников стали лауреатами Ленинской премии. В сентябре 2015 г. Цепная реакция успеха" в Центральном Манеже.
Взрывная мощность может равняться мощности нескольких миллионов тонн мегатонн тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели. Вначале взрыв атомной бомбы А образует огненный шар 1 с температурой и миллионы градусов по Цельсию и испускает радиационное излучение? Через несколько минут В шар увеличивается в обьеме и создав! Огненный шар поднимается С , всасывая пыль и обломки, и образует грибовидное облако D , По мере увеличения в обьеме огненный шар создает мощное конвекционное течение 4 , выделяя горячее излучение 5 и образуя облако 6 , При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным 7 в радиусе 8 км, серьезными 8 в радиусе 15км и заметными Я в радиусе 30 км Даже на расстоянии 20 км 10 взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию. Современные атомные бомбы и снаряды Радиус действия В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный. Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра — сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное водородное оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 — 15 тыс. Атомные и водородные бомбы мощностью свыше 50 тыс. Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими.
Гэвин заявил, что «тотальное ядерное нападение военно-воздушных сил на Советский Союз приведет к нескольким сотням миллионов жертв, которые могут быть и с той, и с другой стороны, в зависимости от направления ветра». Наш запас водородных бомб мог не только стать бесполезным как средство сдерживания агрессии, но и превратиться в самое мощное пропагандистское оружие, направленное против нас самих. Эта идея завоевала миллионы сторонников не только в коммунистическом мире и среди нейтральных стран, но и в нашей стране, где проблема запрещения дальнейших испытаний мощных водородных бомб превратилась в один из главных вопросов предвыборной президентской кампании 1956 г. В совместном советско-индийском заявлении от 13 декабря 1955 г. В своем рождественском послании 1955 г. Эдлай Стивенсон, выступая в апреле и мае 1956 г. Впоследствии он заменил это предложение проектом заключения соглашения с СССР о прекращении испытаний мощных водородных бомб. Истинный смысл вопроса «испытывать или не испытывать» был разъяснен выдающимся внешнеполитическим экспертом, бывшим послом в Советском Союзе Джорджем Ф. Кеннэном, профессором Института прогрессивных исследований в Принстоне. Нельзя игнорировать чувства этих миллионов». То, что ужасные радиоактивные осадки действительно вызывали беспокойство наших руководителей, стало ясно после выступления президента Эйзенхауэра на пресс-конференции за несколько дней до тихоокеанских испытаний 1956 г. Он заявил, что одна из основных целей программы предстоящих ядерных испытаний состоит в создании оружия с «меньшим количеством осадков». В заявлении Льюиса Л. Страусса, бывшего тогда председателем Комиссии по атомной энергии, а затем в заявлении самого президента Эйзенхауэра в ходе избирательной кампании 1956 г. Испытания именно этого «чистого» оружия я наблюдал утром 21 мая с палубы флагманского корабля «Маунт Мак-Кинли» у атолла Бикини. Как сообщил Страусс, «максимальный эффект оружия, испытанного в Тихом океане весной и летом 1956 г. Эти испытания «подтвердили,— добавил Страусс,— что существует много факторов, включая оперативные, которые позволяют уменьшить выпадение осадков при ядерных взрывах до таких размеров, о которых до сих пор и не подозревали». Под «оперативными факторами», о которых говорил Страусс, подразумевался взрыв многомегатонной водородной бомбы на большой высоте, примерно девять тысяч метров, т. Когда взрыв происходит на высоте, превышающей этот радиус от 5 до 6,5 километра , огненный шар не касается земли или водной поверхности и поэтому не поднимает при взрыве тысячи тонн земли или воды, зараженных радиоактивными частицами и образующих гигантское облако, дающее смертоносные осадки. Однако предположение Страусса о том, что существует много факторов, кроме чисто оперативных, «которые позволяют уменьшить выпадение осадков при ядерных взрывах», может означать только одно — уменьшение количества используемого расщепляющегося материала, прежде всего урана, который является основным источником опасных осадков. Эта мысль была еще. Можно надеяться на дальнейший прогресс в этом направлении». Так как в качестве детонаторов водородных бомб служат обычные атомные бомбы и так как все атомные бомбы в зависимости от их размеров вызывают образование определенного количества осадков, то ясно, что и любая водородная бомба образует при взрыве радиоактивные осадки. С другой стороны, основываясь на реакции ядерного синтеза, можно создать такую водородную бомбу, в которой «маленькая» атомная бомба мощностью в пятьдесят тысяч тонн тротила может поджечь водородную бомбу мощностью в пять мегатонн пять миллионов тонн тротила. Конечно, конструкция «чистой» водородной бомбы засекречена. Но, основываясь на некоторых фактах, известных многим, можно догадываться, что лежит в основе процесса очищения. Поэтому ясно, что для создания «чистой» бомбы необходимо удалить «грязный» элемент из процесса, происходящего внутри бомбы. Но, как будет показано в дальнейшем, это связано с огромными трудностями, которые одно время казались непреодолимыми. Природа «грязного» элемента была впервые раскрыта в работах японских физиков, опубликовавших подробный отчет в двух томах с результатами тщательного анализа смертоносного радиоактивного пепла, который выпал на японское рыболовное судно после взрыва «грязной» водородной бомбы 1 марта 1954 г. Эти исследования показали, что образование гигантского облака радиоактивной пыли, заразившего площадь в восемнадцать тысяч квадратных километров, не было вызвано присутствием в бомбе ни водорода, ни одного из двух расщепляющихся элементов — урана-235 или плутония, которые служат детонаторами в водородных бомбах. Анализы, проведенные японцами, показали, что тайна «грязной» водородной бомбы заключается в успешном превращении урана «Доктор Джекилл» в уран «Мистер Хайд» названия «Доктор Джекилл» и «Мистер Хайд» взяты из фантастического рассказа Р. Стивенсона, в котором мягкий и воспитанный доктор Джекилл, выпив определенное снадобье, может превращаться в злого и распутного мистера Хайда. При синтезе водородных элементов за одну десятимиллионную долю секунды, в течение которой бомба еще представляет единое целое, выделяется огромное количество нейтронов такой большой энергии, что они способны расщепить атомы урана-238. В отличие от элементов обычной атомной бомбы, которые могут мгновенно взрываться при достижении сравнительно небольшой критической массы, для основного компонента водородной бомбы — урана-238 — нет предела, и это делает его особенно устрашающим для человечества. Так как уран-238 по своей природе является «мягким доктором Джекиллом» до момента взрыва, в бомбу можно поместить любое его количество в зависимости от того, какой мощности должен быть взрыв. Од- номегатонная бомба взорвет пятьдесят килограммов элемента «Джекилл и Хайд», а бомба в двадцать мегатонн— около тысячи килограммов этого «грязного» элемента. Так как наличие вещества «Джекилл и Хайд» определяет степень загрязненности водородной бомбы это в основном бомба из урана-238 , очевидно, что единственной возможностью создать «чистую» водородную бомбу является удаление «грязного» элемента. Единственная возможность получения «чистой» водородной бомбы, совершенно не образующей радиоактивных осадков, за исключением лишь небольшого их количества от атомной бомбы-детонатора,— это создание оружия, взрывная сила которого имеет своим источником исключительно процесс ядерного синтеза водорода. Но здесь природа выдвинула, казалось бы, непреодолимое препятствие. Для создания «чистой» водородной бомбы необходимо наличие двух тяжелых изотопов водорода — водорода-2 и водорода-3. Но водород-3, или тритий, вес которого в три раза больше обычного водорода, исчез на Земле миллионы лет назад. Нейтрон, выделяемый при делении урана-235 в реакторе, попадает в ядро лития-6, которое состоит из трех протонов и трех нейтронов. При этом образуются два газа — тритий, ядро которого состоит из одного протона и двух нейтронов, и гелий, ядро которого состоит из двух протонов и двух нейтронов. На общую массу ядер трития и гелия приходится, таким образом, три протона и три нейтрона ядра бывшего лития-6 плюс дополнительный нейтрон, образовавшийся при делении урана. Получение трития в большом количестве, необходимом для создания запаса «чистых» водородных бомб порядка нескольких мегатонн с взрывной силой, создаваемой исключительно за счет синтеза дейтерия и трития не принимая во внимание взрывную силу атомной бомбы-детонатора ,— процесс исключительно дорогой, требующий наличия большого числа ядерных реакторов стоимостью много миллионов долларов. Однако, как уже отмечалось, есть основания предполагать, что наши ученые разработали простой и дешевый метод получения трития в самой бомбе в ходе процесса синтеза. Это достигается помещением в бомбу специального твердого соединения — дейтерида лития, который состоит из лития-6 и водорода-2. Когда атомная бомба-детонатор взрывается, нейтроны, выделяемые в ходе этого процесса, попадают в литий-6 и превращают его в тритий и гелий, как об этом уже ранее говорилось. Под влиянием температуры в 50 млн. При этом выделяется незначительное количество опасных радиоактивных осадков. Как отмечалось в докладе Комиссии по атомной энергии июль 1956 г. Но бомба даже в одну или две мегатонны является достаточно мощной, чтобы разрушить любой большой город, и, таким образом, она выполняет свою миссию как мощное сдерживающее средство в нашем оборонительном арсенале. Более того, устранение «грязного» элемента делает бомбу гораздо легче. Действительно, тихоокеанские испытания 1956 г. Эти небольшие водородные бомбы намного увеличили потенциал «чистого» оружия как средства обороны. Их можно использовать как боеголовки в радиоуправляемых ракетах, как мощное оборонительное средство в случае воздушного нападения и как транспортабельное оружие, которое может доставляться сверхзвуковыми реактивными самолетами. Все эти известные факты позволяют сделать вывод, что нам удалось сделать водородную бомбу более «гуманной», ограничив ее громадную убийственную силу одним только огнем и взрывом и превратив ее из радиоактивного чудовища, которое черпает большую часть своих сил из «грязного» элемента, в оружие локального действия. Алиса в стране грома В момент испытания многомегатонной бомбы в атолле Эниветок, в нескольких сотнях километров от места испытаний, в самый момент взрыва у туземки Маршальских островов родилась девочка. Ее назвали Алисой, в честь Алисы Страусс — жены тогдашнего председателя Комиссии по атомной энергии, которая подарила молодой матери целое состояние из десяти свиней. Рано или поздно кто-нибудь будет называть эту девочку «Алисой в стране грома» по-английски созвучно названию популярной детской книги Льюиса Кэррола «Алиса в стране чудес». Ее земные владения состоят из двух атоллов — Эниветок и Бикини — цепочки крохотных коралловых островков, окружающих огромные лагуны площадью в сотни квадратных километров. Когда приезжаешь туда, то попадаешь на остатки разбитых надежд созидателей Германской, а затем Японской империй.
«Настоящая водородная» (к 55-летию испытаний термоядерного заряда РДС-37)
Это не могло не повлиять на взаимоотношения на политической арене. И пока СССР предпринимал попытки приблизиться к Штатам, «ядерная держава» пыталась диктовать свои условия игры. США не рассчитывали на быстрое развитие научно-технического прогресса в Союзе. Первая атомная бомба, взорванная на территории СССР уже 29 августа 1949 года, дала понять, чего стоит опасаться Америке. Этим взрывом ознаменовалось начало ядерной гонки между двумя державами. К началу 1960-х в мире сложилась довольно непростая политическая ситуация. Спасшегося летчика Фрэнсиса Пауэрса арестовали. На это американский президент ответил отменой встречи глав правительств четырех держав в Париже и других инициатив по сближению государств. Пилот Френсис Пауэрс U.
Были предприняты ответные меры. К этому периоду относятся и предложения А.
Сахарова, физика-ядерщика, в то время работавшего сменным инженером на оборонном заводе. Через своего отца - великолепного школьного преподавателя физики в Москве, автора учебника по физике, Сахаров сумел передать И. Тамму свою тетрадь с обоснованием возможности создания термоядерной бомбы и управляемой термоядерной реакции с целью получения колоссальной энергии для хозяйственных нужд. Сахаров сразу же был направлен в лабораторию И. Тамма в качестве аспиранта и начал интенсивно работать над проектом в содружестве с В. Гинзбургом и Ю. Группу И. Саров к сожалению, по причине «политической неблагонадежности» жены В. Гинзбург был отстранен от участия в проекте, хотя именно ему принадлежала идея использования в качестве термоядерного топлива дейтерида лития LiD6, в обиходе физиков-ядерщиков называвшегося «Лидочка». Зельдовичем; - РДС-6С «слойка» - во главе с к.
После проведения расчетно-теоретических и экспериментальных исследований, разработка РДС-6Т была приостановлена как неперспективная. К работе были привлечены такие гиганты науки, как академики Келдыш М. В 1952 г. В этом экспериментальном устройстве термоядерное топливо дейтерий и тритий находилось в жидком виде в огромных сосудах Дьюара. Для инициирования реакции синтеза использовался атомный заряд. Мы пошли своим путем… Первая советская водородная 12 августа 1953 г. В РДС-6С была успешно реализована физическая идея, получившая название «слойка» одноступенчатая схема термоядерного заряда. Созданный научно-технический и производственный задел обеспечил прогресс в области конструирования термоядерного оружия. Основные результаты создания РДС-6С: - впервые в СССР было реализовано зажигание и горение термоядерного горючего, практически показана возможность создания одностадийного термоядерного заряда; - схема РДС-6С оказала прямое влияние на выбор схемы термоядерного узла в будущих термоядерных зарядах на принципах радиационной имплозии. За разработку первого одноступенчатого водородного заряда большая группа сотрудников КБ-11 и смежных организаций была удостоена звания Героя Социалистического Труда в том числе, первая Звезда Героя у будущего академика А.
По сути, эти параметры послужили отправной точкой, определившей полезную нагрузку и стартовую массу ракеты Р-7 созданной ОКБ-1, главный конструктор С. Королев — первой советской межконтинентальной баллистической ракеты. Но с учетом расчетной точности стрельбы ракеты Р-7, мощность заряда РДС-6С была недостаточной для требуемой боевой эффективности. Требовалось форсировать энерговыделение заряда. Кроме того, РДС-6С имел невысокие эксплуатационные характеристики. Расчетно-теоретические оценки показали, что в заданных массогабаритных ограничениях РДС-6С при одноступенчатой схеме, на принципе химической имплозии кардинально повысить энерговыделение заряда практически невозможно.
Направляя свою записку И. Френкель, конечно же, не мог знать, что И. Курчатов уже имеет информацию о проведении в США работ в этом направлении.
Так, например, сообщение о возможности создания сверхбомбы появилось в английской газете «Таймс» 19 октября 1945 года. Сталин назначил Л. Курчатов поручает Ю. Харитону совместно с другими физиками - И. Гуревичем, Я. Зельдовичем и И. Померанчуком - рассмотреть вопрос о возможности освобождения энергии легких элементов. Докладчиком был Я. Фукса с советским разведчиком А.
Теллера и Э. Однако А. Арзамас-16 Саров. В этом постановлении, помимо конкретных мероприятий, предусматривалась командировка Я. Зельдовича для работы в КБ-11. Фукса с А. Среди переданных К. Фуксом материалов были новые теоретические сведения, относящиеся к сверхбомбе. Фукса в адрес И.
Сталина, В. Молотова, Л. Политическое руководство страны отнеслось к ним с большим вниманием, и уже 23 апреля Л. Берия поручил Б.
Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой.
Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс. В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала — урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки.
Как работает термоядерная бомба и кто ее изобрел? Термоядерная бомба основана на реакции ядерного синтеза. В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно — поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером.
Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре — порядка нескольких миллионов кельвинов отсюда и название. Термоядерные реакции бывают трех видов: самоподдерживающиеся проходят в недрах звезд , управляемые и неуправляемые или взрывные — они используются в водородных бомбах. Статья по теме Северная Корея опубликовала видео успешных испытаний баллистической ракеты Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Однако тогда эта идея оказалась не востребована.
Разработки Теллера усовершенствовал Станислав Улам, сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона. Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой».
В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать». В октябре 1961 года ее испытали на архипелаге Новая Земля. Из чего делают термоядерные бомбы? Если вы думали, что водородные и термоядерные бомбы — это разные вещи, вы ошибались. Эти слова синонимичны.
Именно водород а точнее, его изотопы — дейтерий и тритий требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру — лишь тогда атомные ядра начнут реагировать.
«Настоящая водородная» (к 55-летию испытаний термоядерного заряда РДС-37)
Атомное оружие — Wiki. Lesta Games | Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. |
Водородная бомба и ядерная бомба отличия | Возможность использования в качестве детонатора водородной бомбы ядерного заряда обсуждалась ещё физиками работающими в рамках Манхеттенского проекта. |
Водородная и атомная бомбы: сравнительные характеристики
Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер. Одним из типов ядерного оружия является термоядерное оружие, которое многим из нас более известно под названием водородная бомба. Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов. Термоя́дерное ору́жие — вид ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые.
Как устроена водородная бомба
Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. Водородная бомба — ядерное оружие, которое использует процесс термоядерного синтеза для создания огромного количества энергии. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза.