Новости черная дыра стрелец а

Из-за того, что практически рядом находится звезда Стрелец А*, непонятным образом изменился путь поступления звездного газа на поверхность черной дыры. Несмотря на внушительную разницу в размерах двух чёрных дыр, в целом изображение тени Стрельца А* вполне согласуется со снимком М87.

Черная дыра в Млечном Пути: ученые увидели центр нашей галактики

Прорыв последовал за открытием первого изображения черной дыры под названием M87* в центре более далекой галактики Мессье 87. Астрофизики из Австралии и США выяснили, что сверхмассивная черная дыра Sgr A* (Стрелец А*), которая находится в центре Млечного Пути, около 3,5 млн лет. В центре нашей галактики, в сверхмассивной чёрной дыре Стрелец А*, происходят уникальные процессы. Астрономы Европейской южной обсерватории (ESO) объявили, им удалось получить первое изображение сверхмассивной чёрной дыры Стрелец A*. Справа — «Стрелец А*». Поляризация света вокруг чёрных дыр происходит при помощи плазмы, которая генерирует там магнитные поля.

Самая важная вещь во вселенной. Снимок черной дыры стал научным прорывом?

Научный мир облетела долгожданная новость — получено первое изображение сверхмассивной черной дыры в центре Млечного Пути. Научные работы последних десятилетий показали, что, в отличие от черных дыр из других галактик, Стрелец А* отличается спокойствием, не притягивает громадных масс материи и не слишком активно извергает плазму. Несмотря на внушительную разницу в размерах двух чёрных дыр, в целом изображение тени Стрельца А* вполне согласуется со снимком М87.

Получено изображение черной дыры в центре нашей Галактики

Дзен — там регулярно выходят статьи, которых нет на сайте! Снимок сердца Млечного Пути С первого взгляда новое изображение раскрывает важную информацию о центре нашей Галактики. Благодаря полученным данным ученые подтвердили факт вращения черной дыры и окружающей ее материи. Отметим, что увидеть саму черную дыру на снимке невозможно, так как она абсолютно черная. На ее существование указывает светящийся вокруг дыры газ: темная центральная область окружена яркой структурой, напоминающей кольцо. Телескоп горизонта событий англ.

Напомним, что на сбор и проверку информации о черной дыре М87 понадобилось целых два года, а объем полученных данных огромен. Это интересно: Можно ли доказать существование червоточин? Как правило черные дыры чрезвычайно активны и поглощают огромное количество газа и пыли, которые мы видим на полученных снимках. Однако черная дыра в центре нашей Галактики периодически ведет себя странно , устраивая мимолетное шоу.

И они предлагают новое понимание того, как эти гигантские черные дыры взаимодействуют со своим окружением. Однако вблизи края эти черные дыры выглядят удивительно похожими", — говорит Сера Маркофф, сопредседатель научного совета EHT и профессор теоретической астрофизики Амстердамского университета. Результат, полученный с помощью EHT, является экстраординарным.

Еще одна часть истории, которая имеет место, огромный прогресс в научной сфере. Не только за наши знания о Млечном Пути или за то, чему он нас учит, но и потому, что он еще раз подтверждает, куда могут двигаться научные исследования. Работа велась в течение пяти лет с использованием суперкомпьютеров для объединения и анализа данных, при этом была собрана беспрецедентная библиотека смоделированных черных дыр для сравнения с наблюдениями. Усилия более чем 300 исследователей из 80 институтов по всему миру, которые вместе составляют коллаборацию EHT, позволили добиться этого замечательного достижения. Таким образом, мы можем пойти гораздо дальше в проверке поведения гравитации в этих экстремальных условиях, чем когда-либо прежде".

Она называется релятивистской струёй, или релятивистским джетом. Релятивистская струя поток плазмы из центра галактики М87. То есть с обратной стороны есть второй точно такой же джет, просто его плохо видно. В плоскости экватора чёрной дыры вращается диск, а от полюсов идут такие струи плазмы. Полагают, что их порождает как раз магнитное поле. Чёрная дыра с летящими от её полюсов релятивистскими джетами художественная анимация. Примечательно, что джет М87 направлен почти прямо на нас, на Землю, а у центра Млечного Пути струи должны быть развёрнуты по отношению к нам совсем по-другому: они идут перпендикулярно плоскости галактики, а эту плоскость мы и наблюдаем в ночном небе, сами при этом в ней же и находясь.

Первая — про способность выделять из фона слабые объекты. Вторая — про возможность разглядеть мелкие подробности объектов ярких. Понятно, что астрономов интересует «и то, и другое и можно без хлеба», но в этой статье мы поговорим о разрешении. Как оно измеряется? Когда мы смотрим на далекий предмет, наш глаз оказывается в вершине треугольника, основание которого — этот самый предмет. Это проиллюстрировано ниже масштаб искажен с особой жестокостью. Разрешение, или угловое разрешение, — это минимальный угол, при котором предмет все еще различим. Угловое разрешение человеческого глаза — около одной угловой минуты. Это значит, что человек с идеальным зрением может с километрового расстояния разглядеть предмет размером 30 сантиметров. Чем он меньше, тем более тонкие детали мы различаем. Будь этот угол меньше в десять раз, с километровой дистанции мы разглядели бы и монету. От чего зависит разрешение радиотелескопа? Ответ дает простая приближенная формула будем надеяться, что она не уменьшит число читателей этой статьи вдвое, чем издатели традиционно пугают популяризаторов. Радиоастрономы, дай им волю, превратили бы в антенну всю Вселенную, после чего им стало бы нечего наблюдать. Однако реальность жестока: слишком большие конструкции технически нежизнеспособны. Самый большой действующий радиотелескоп — китайский 500-метровый FAST, но и он использует не всю свою площадь. Какое же разрешение обеспечивает этот великан? Легко вычислить, что при минимальной для него длине волны 10 сантиметров разрешение составляет… порядка угловой минуты. Полукилометровый гигант, чудо инженерной мысли, различает детали не лучше, чем невооруженный человеческий глаз! Разумеется, это лукавое сравнение. Оптическая и радиоастрономия дополняют друг друга, но не могут друг друга заменить. Это так хотя бы потому, что не все космические радиоисточники излучают еще и свет, и наоборот. А поскольку глаз вообще не воспринимает радиоизлучение, то и незачем ему задирать нос перед честными антеннами хотя минуточку, где у глаза нос? И вообще, что поделать, если десятисантиметровые радиоволны в сотни тысяч раз длиннее световых? Ученым, однако, очень хочется что-нибудь с этим поделать. Поэтому еще на заре радиоастрономии они придумали телескопы-интерферометры. Как это работает Простейший интерферометр представляет собой две антенны, которые работают как одна: сигнал с них складывается или чаще перемножается. Они могут быть соединены кабелем или просто вести запись с метками точного времени, чтобы перемножение сигнала можно было выполнить постфактум. Что в этом хорошего? Дело в том, что угловое разрешение интерферометра тоже описывается приведенной выше формулой, только под D в ней нужно понимать расстояние между антеннами. Отрезок, соединяющий антенны, называется базой интерферометра; понятно, что расстояние между ними — это длина базы.

Космический прорыв ученых. Впервые получен снимок черной дыры в центре Млечного Пути (фото)

астрофизики представили первое изображение чёрной дыры в центре Млечного Пути — сверхмассивного объекта в созвездии Стрельца с обозначением Sgr A*. Называется эта наша черная дыра очень забавно Стрелец A*, то есть так и читается "стрелец А со звездочкой", ну что сказать, в астрофизике давно проблема с названиями, уж как умеют. Вблизи Стрельца А*, сверхмассивной черной дыры в центре Млечного Пути, обнаружена интригующая аномалия: "зона избегания", в которой таинственным образом отсутствуют некоторые S-звезды.

В центре нашей галактики — черная дыра. Сейчас там нашли загадочную активность

Для определения скорости вращения черных дыр используется специальная система, в которой основной показатель варьируется в диапазоне от 0 до 1. Согласно ей, 1 — максимальная скорость вращения конкретного объекта, составляющая значительную часть скорости света. То, как быстро черная дыра может вращаться, зависит от ее размеров и количества поглощаемого ей материала.

Астрономам уже несколько десятилетий известно, что черная дыра вспыхивает каждый день, испуская всплески излучения, которые в 10-100 раз ярче, чем обычные сигналы, наблюдаемые от черной дыры. Чтобы узнать больше об этих загадочных вспышках, группа астрономов во главе с Андресом провела поиск закономерностей в данных за 15 лет, предоставленных обсерваторией Нила Герелса Свифт НАСА — спутником на околоземной орбите, предназначенным для обнаружения гамма-всплесков.

Обсерватория Swift наблюдает гамма-лучи от черной дыры с 2006 года. Анализ данных показал высокий уровень активности с 2006 по 2008 год с резким спадом активности в течение следующих четырех лет. После 2012 года частота вспышек снова увеличилась, и исследователям было сложно выделить закономерности.

Подписывайтесь на наш канал в Яндекс. Дзен — там регулярно выходят статьи, которых нет на сайте! Снимок сердца Млечного Пути С первого взгляда новое изображение раскрывает важную информацию о центре нашей Галактики. Благодаря полученным данным ученые подтвердили факт вращения черной дыры и окружающей ее материи. Отметим, что увидеть саму черную дыру на снимке невозможно, так как она абсолютно черная.

На ее существование указывает светящийся вокруг дыры газ: темная центральная область окружена яркой структурой, напоминающей кольцо. Телескоп горизонта событий англ. Напомним, что на сбор и проверку информации о черной дыре М87 понадобилось целых два года, а объем полученных данных огромен. Это интересно: Можно ли доказать существование червоточин? Как правило черные дыры чрезвычайно активны и поглощают огромное количество газа и пыли, которые мы видим на полученных снимках.

В результате вспышки яркость звезды внезапно возросла в 75 раз, чего не наблюдалось раньше ни с одним космическим объектом.

С чем это связано — ученые пока не могут сказать. Данные исследований, проведенных в мае этого года обсерваторией Кека показывают, что яркость соседней черной дыры значительно увеличилась в инфракрасном диапазоне. После этого она стала немного тусклее. Возможно, это явление связано с тем, что объект G2 еще в 2014 году подошел к черной дыре на расстояние 36 световых лет. Этого оказалось достаточным для того, чтобы на черную дыру попало облако звездного газа. Она оборачивается вокруг нее по эллипсоподобной орбите и в 2018 году приблизилась к ней на расстояние в 17 световых лет.

Черная дыра в Млечном Пути: ученые увидели центр нашей галактики

Астрономы сделали сенсационное открытие о нашей галактике Большую часть времени черная дыра ведет себя сдержанно, проявляя минимальные колебания в яркости.
Черная дыра в Млечном Пути: ученые увидели центр нашей галактики В центре нашей галактики, в сверхмассивной чёрной дыре Стрелец А*, происходят уникальные процессы.
На новом изображении черной дыры Стрелец А* видны сгустки энергии Первое фото черной дыры Стрелец А* в центре нашей Галактики.

Молодые звёзды вблизи чёрной дыры: загадка звёздного кластера IRS13 у Стрельца А*

Поскольку размер горизонта событий черной дыры прямо пропорционален ее массе, а угловой размер на небе обратно пропорционален расстоянию, изображения теней обеих черных дыр должны быть примерно одного размера. Во-первых, мы находимся в плоскости диска Млечного Пути и нам приходится смотреть в его центр через плотные облака газа и пыли, которые находятся на пути излучения. И поглощение, и искажение излучения приходится учитывать при построении финального изображения. Эти эффекты были теоретически предсказаны ранее, но для большинства других активных ядер галактик они малы, и на практике их почти никогда не учитывают. Поэтому в коллаборации EHT пришлось разрабатывать методы учета таких искажений, чтобы в итоге получить четкие изображения. Если представить, что вы снимаете черную дыру в М87 обычным фотоаппаратом, то это означало бы, что вы можете держать затвор открытым восемь-девять часов. Поэтому получилось так, что радиоастрономы получили множество кусочков мозаики, но все они относились к разным картинкам, потому что пока они получали эти фрагменты, изображение менялось. Чтобы собрать из них единое изображение потребовалось пять лет. Они нашли четыре кластера моделей, четыре типа изображений, которые согласовывались лучше всего», — говорит Ковалев.

Из этих четырех кластеров было построено финальное изображение. Ученые могли бы получать качественные изображения каждые 10 минут и за одну наблюдательную сессию сделать целый фильм о том, как живет и меняется черная дыра. Но в EHT в 2017 году было всего восемь телескопов, и для построения качественного изображения пришлось использовать вращение Земли. Благодаря ему проекция базы каждой пары телескопов меняется со временем, поэтому количество измеренных за одно наблюдение различных угловых масштабов достаточно для простого построения изображения при условии, что это изображение не меняется. В будущих наблюдениях, увеличив число телескопов в составе EHT, можно будет действительно сделать видео поведения вещества вокруг черной дыры. Это позволит не только уточнить параметры самой черной дыры, но и лучше понять физику аккрецирующей плазмы. В чем сюрприз Как и в случае M87, изображение центра нашей Галактики выглядит как яркое кольцо с темной зоной в середине. Сами черные дыры не излучают, но вещество, которое падает на них, разогревается и ярко светится.

При этом гравитация черной дыры, как линза, фокусирует излучение окружающего газа, только не за счет разницы в показателях преломления, а за счет гравитационного искривления траекторий фотонов. Кроме того, мы видим фотоны, которые черная дыра не захватила, но на направление движения которых она повлияла — в большей или меньшей степени. Там есть фотоны, которые сделали оборот, два оборота вокруг черной дыры». Фотоны, которые обернулись один или два раза вокруг черной дыры, выглядят для нас как тонкое светящееся фотонное кольцо. Его предсказывал Давид Гильберт еще в 1916 году, сразу после опубликования Общей теории относительности Эйнштейна.

Радиоастрономы, дай им волю, превратили бы в антенну всю Вселенную, после чего им стало бы нечего наблюдать. Однако реальность жестока: слишком большие конструкции технически нежизнеспособны. Самый большой действующий радиотелескоп — китайский 500-метровый FAST, но и он использует не всю свою площадь. Какое же разрешение обеспечивает этот великан? Легко вычислить, что при минимальной для него длине волны 10 сантиметров разрешение составляет… порядка угловой минуты.

Полукилометровый гигант, чудо инженерной мысли, различает детали не лучше, чем невооруженный человеческий глаз! Разумеется, это лукавое сравнение. Оптическая и радиоастрономия дополняют друг друга, но не могут друг друга заменить. Это так хотя бы потому, что не все космические радиоисточники излучают еще и свет, и наоборот. А поскольку глаз вообще не воспринимает радиоизлучение, то и незачем ему задирать нос перед честными антеннами хотя минуточку, где у глаза нос? И вообще, что поделать, если десятисантиметровые радиоволны в сотни тысяч раз длиннее световых? Ученым, однако, очень хочется что-нибудь с этим поделать. Поэтому еще на заре радиоастрономии они придумали телескопы-интерферометры. Как это работает Простейший интерферометр представляет собой две антенны, которые работают как одна: сигнал с них складывается или чаще перемножается. Они могут быть соединены кабелем или просто вести запись с метками точного времени, чтобы перемножение сигнала можно было выполнить постфактум.

Что в этом хорошего? Дело в том, что угловое разрешение интерферометра тоже описывается приведенной выше формулой, только под D в ней нужно понимать расстояние между антеннами. Отрезок, соединяющий антенны, называется базой интерферометра; понятно, что расстояние между ними — это длина базы. Кроме длины, важна еще и ориентация базы в пространстве. Что же получается? Разнесем два телескопа на тысячу километров — и получим разрешение, как у фантастической, невозможной тысячекилометровой антенны? На самом деле, увы, все сложнее. Телескопы можно и нужно разносить главное, чтобы не вдребезги , но эффект от этого будет несколько менее впечатляющий. Дело в том, что интерферометр с длиной базы D получает только часть информации, которая достается цельной антенне диаметра D. Для математически подкованных читателей уточним: интерферометр с единственной базой считывает единственную же Фурье-гармонику пространственного распределения яркости на частоте, зависящей от длины и ориентации этой базы.

Если для вас это звучит как «интерферометр считывает только одну сепульку тирьямпампации», не отчаивайтесь! Главная мысль проста: для построения полного изображения нужны все сепульки, которых много. А интерферометр из двух неподвижных антенн и, значит, с единственной базой дает лишь одну. Пусть и точно такую же, какую в числе прочих! Иногда этого хватает. Например, если наблюдаемый объект — крошечная точка, и задача интерферометра лишь как можно точнее определить ее положение на небе.

Саму черную дыру снять невозможно, поэтому мы видим газ и пыль, которые ускоряются и нагреваются под действием мощной гравитации и начинают светиться.

Это открытие позволило астрономам окончательно доказать существование чёрной дыры в центре нашей галактики. Последние записи:.

Первое изображение черной дыры в центре Млечного Пути. Это первое прямое визуальное свидетельство присутствия этой черной дыры.

Изображение получено Телескопом горизонта событий EHT , массивом, который соединил восемь существующих радиообсерваторий по всей планете, чтобы сформировать единый виртуальный телескоп «размером с Землю». Телескоп назван в честь «горизонта событий», границы черной дыры, за которую не может выйти свет. Хотя мы не можем видеть сам горизонт событий, потому что он не может излучать свет, светящийся газ, вращающийся вокруг черной дыры, обнаруживает контрольную сигнатуру: темную центральную область называемую «тенью» , окруженную яркой кольцеобразной структурой. Но новые результаты показали, что они настолько разные, насколько это возможно.

Содержание

  • Астрономы впервые получили фото черной дыры в центре Млечного Пути
  • Звёзды могут поглощать чёрные дыры — нестандартная гипотеза
  • Найден вероятный источник загадочной активности у черной дыры в центре Млечного Пути
  • Фото черной дыры Стрелец А*
  • Сверхмассивная черная дыра в центре нашей Галактики внезапно вспыхнула | The Spaceway

Подписка на дайджест

  • Получена фотография центральной черной дыры Млечного Пути
  • Сфоткали черную дыру в центре нашей галактики / Алексей Сысоев
  • Фото черной дыры Стрелец А*
  • Представлено новое изображение черной дыры в нашей галактике

Похожие новости:

Оцените статью
Добавить комментарий