На рисунке изображена график функции у х.
Решение №7 (2021 вар1): На рисунке изображен график y=f'(x) производной функции
На рисунке изображён график , определённой на интервале -9; 6. Найдите количество точек минимума функции , принадлежащих отрезку [-8; 5]. Решение: Так как на картинке изображена производная, то ясно, что точки минимума и максимума функции могут быть только в точках-нулях производной.
В какой из этих точек значение производной наибольшее? Решение Проводим касательные к графику в точках с указанными абсциссами см.
В ответе укажите длину наибольшего из них. В ответе укажите сумму целых точек, входящих в эти промежутки. Решение Так как на промежутке -6.
Disha1605 6 нояб. Используя рисунок найдите наименьшее целое решение неравенства.
По уровню сложности данный вопрос соответствует знаниям учащихся 5 - 9 классов. Здесь вы найдете правильный ответ, сможете обсудить и сверить свой вариант ответа с мнениями пользователями сайта. С помощью автоматического поиска на этой же странице можно найти похожие вопросы и ответы на них в категории Математика. Если ответы вызывают сомнение, сформулируйте вопрос иначе.
Остаётся записать полученные промежутки возрастания и убывания функции в ответ. Обратимся снова к определению убывания функции. Вспомним, как записать условия убывания функции с точки зрения формул.
Вместо « x » подставим « x1 » и « x2 ».
Алгебра. 8 класс
10. На рисунке изображен график функции f (x) = ax+b. На рисунке изображён график функции вида f(x)= kx+ b. Найдите значение f(7). 2. На рисунке изображены графики двух линейных функций.
На рисунке изображен график функции 3 5
Тут тоже требуется найти сумму проданных единиц за целые периоды. Для 1-го и последнего периода она уже найдена см. К требуемым 800 холодильникам максимально приближен объем продаж в январе—марте. Поэтому имеем: А—3. Одинаковое падение объема продаж означает, что разница между кол-вом проданных холодильников должна быть одинаковой. Падение продаж наблюдалось, начиная с конца июля. Ответ: В—4. По горизонтали указывается год, по вертикали — объем добычи угля в миллионах тонн. Для наглядности точки соединены линиями. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов характеристику добычи угля в этот период.
Анализируем по очереди приведенные в правом столбце характеристики, используя данный график. Определяем соответствие каждой из них конкретного временного периода. Решение: Анализируем характеристики: Объем добычи меньше 190 млн т приходился на период с 2001 года по 2005 год. Затем спад добычи зафиксирован в 2009 году, но один год не составляет периода. Поэтому получаем ответ: А—1. Такая формулировка «объем… сначала уменьшался, а затем начал расти» соответствует 2 периодам — 2002—2003 гг. Но так как первый из этих периодов уже взят в качестве ответа, то правильно здесь использовать пару Г—2. Ситуация, описанная в 3-й характеристике, наиболее точно отображена в периоде 2006—2008 гг. Именно в это время добыча сначала понемногу увеличивалась примерно с 190 млн т до 210 , а потом резко возросла до 250 млн т.
Медленный рост следует искать в период, когда линия графика имеет наиболее пологий вид. Это: 2004—2006 год, что соответствует периоду Б, то есть получаем: Б—4. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси — температура двигателя в градусах Цельсия. Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику температуры. Решение: Выше 600 температура была с 4-й по 7-ю минуту. Поэтому здесь нужно взять интервал 4—6 мин. Получаем: В—1. Температура падала только после 7-й минуты. Соответственно, тут подходит интервал 7—9 мин.
Ответ: Г—2. Самый быстрый рост температуры происходил там, где график имеет наиболее «крутой» вертикальный подъем. Это имеет место только в 1-ю минуту нагревания. Ответ: А—3. В пределах 40—50 0С температура имела место, начиная со 2-й по 3-ю минуту. Значит, нужно выбрать интервал 2—3мин. Ответ: Б—4. На горизонтальной оси отмечено время в минутах , прошедшее с начала выступления гимнаста, на вертикальной оси — частота пульса в ударах в минуту. Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику пульса гимнаста на этом интервале.
Для точек графика, которые не попадают в «узлы» сетки рисунка то есть для которых невозможно определить точные значения , нужно определять значения приблизительно. Величина роста пульса связана с пологостью или, напротив, крутизной линии графика. Это означает, что чем большее изменение значения функции происходит за тот или иной но обязательно одинаковый промежуток времени, тем больше величина роста.
На промежутке 18—22 мин остановок не было. Получаем: А—4.
По горизонтали указывается год, по вертикали — прирост населения в процентах увеличение численности населения относительно прошлого года. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику прироста населения Китая в этот период. Находится она как разница пары соседних значений шкалы, деленная на 2 так как между двумя соседними значениями имеется 2 деления. Анализируем последовательно приведенные в условии характеристики 1—4 левая табличная колонка. Сопоставляем каждую из них с конкретным периодом времени правая табличная колонка.
Падение прироста непрерывно продолжалось с 2004 по 2010 год. В 2010—2011 годах прирост был стабильно минимальным, и начиная с 2012 года оно начал увеличиваться. Этот год находится в периоде 2009—2011 гг. Соответственно, имеем: В—1. Наибольшим падением прироста следует считать самую «круто» падающую линию графика на рисунке.
Она приходится на период 2006—2007 гг. Отсюда получаем: А—2. Это соответствует периоду времени Б, то есть имеем: Б—3. Прирост населения начал увеличиваться после 2011 г. Поэтому получаем: Г—4.
В правом столбце указаны значения производной функции в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней. Сравниваем их, находим соответствие среди пары соответствующих значений производных. Рассматриваем пару касательных, образующих с положит. Сравниваем их по модулю, определяем соответствие их значениям производных среди двух оставшихся в правой колонке.
Решение: Острый угол с положит. Эти производные имеют положит. Применяя правило о том, что если угол меньше 450, то производная меньше 1, а если больше, то больше 1, делаем вывод: в т. В производная по модулю больше 1, в т. С — меньше 1.
Это означает, что можно составить пары для ответа: В—3 и С—1. Производные в т. D образуют с положит. И тут применяем то же правило, немного перефразировав его: чем больше касательная в точке «прижата» к линии оси абсцисс к отрицат. Тогда получаем: производная в т.
А по модулю меньше, чем производная в т. Отсюда имеем пары для ответа: А—2 и D—4. По горизонтали указываются числа месяца, по вертикали — температура в градусах Цельсия. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику изменения температуры. Ставим каждой из них в соответствие конкретный временной период левая колонка.
Решение: Рост температуры наблюдался только в конце периода 22—28 января. Здесь 27 и 28 числа она повышалась соответственно на 1 и на 2 градуса. В конце периода 1—7 января температура была стабильной —10 градусов , в конце 8—14 и 15—21 января понижалась с —1 до —2 и с —11 до —12 градусов соответственно.
На графике, функция убывает на участках от х1 до х2, от х3 до х4, от х5 до х6 и от х6 до х7. Таким образом, производная отрицательна в точках х1, х3, х5 и х6. Ответ: 4 точки.
Использование материалов сайта возможно только с разрешения администрации портала. Фотографии предоставлены.
ОГЭ / Графики функций
Для определения того, в каких точках производная функции f(x) отрицательна, мы должны знать, что производная функции описывает ее скорость изменения. Задать свой вопрос *более 50 000 пользователей получили ответ на «Решим всё». Задача 4717 На рисунке изображен график функции y. На рисунке изображен график y = f'(x) производной функции f(x), определённой на интервале (-3; 8). В какой точке отрезка [-2; 3] функция f(x) принимает наименьшее значение?
Алгебра. Урок 5. Задания. Часть 2.
Какие из следующих утверждений о данной функции неверны? 509253. На рисунке изображены графики функций f (x)=4x2-25x+41 и g (x)=ax2+bx+c, которые пересекаются в точках А и В. Найдите абсциссу точки В. В данном случае уравнение параболы вывести легко. Условие задачи: На рисунке изображен график функции y = f(x) и отмечены точки -7, -3, 1, 5. В какой из этих точек значение производной этой функции наибольшее? 16. На рисунке изображены графики функций видов f(x) = a √x и g(x)=kx, пересекающиеся в точках A и B. Найдите абсциссу точки B. В заданиях этого типа дан график производной, и, как правило, нужно сделать выводы про функцию, от которой эта производная взята.
Ответы графики функции фипи
На рисунке 10 изображён график функции у = f(x), определённой на множестве действительных чисел. Задать свой вопрос *более 50 000 пользователей получили ответ на «Решим всё». Задача 4717 На рисунке изображен график функции y. На рисунке изображён график функции вида f(x)= + +c, где числа a, b и c — целые. На рисунке изображен график y = f'(x) производной функции f(x), определённой на интервале (-3; 8). В какой точке отрезка [-2; 3] функция f(x) принимает наименьшее значение? Открытый банк задач 8.3. Первообразная (Задачи ЕГЭ профиль). Примеры, решения, проверка ответа. На рисунке изображен график f x cos AX-B.
Прототипы задания №6 ЕГЭ по математике
Ответ: 3 График какой из приведенных ниже функций изображен на рисунке? Следовательно, выбор стоит между 2 и 4 пунктами. Прямая на рисунке наоборот опущена на 4 единицы вниз. Следовательно, выбираем пункт 4. Ответ: 4.
Найдите количество точек максимума функции f x , принадлежащих отрезку [-2;17]. Найдите количество точек минимума функции f x , принадлежащих отрезку [-18;3]. В какой точке отрезка [-5;-1] функция f x принимает наибольшее значение? В какой точке отрезка [2;8] функция f x принимает наименьшее значение? На оси абсцисс отмечены точки -1, 2, 3, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
График функции Производная положительна только тогда, когда функция возрастает. То есть, нам необходимо найти точки, в которых функция растет. Я отметил их зеленым цветом. Найдите количество точек, в которых производная функции равна нулю. График функции Производная равна нулю в точках, где функция принимает максимальные и минимальные значения в вершинах и впадинах. Поэтому нам остается только посчитать количество таких «вершин» и «впадин». На рисунке они отмечены красными точками. Всего их 5 штук.
Даны числа 1134, 3965, 7200, 1724? Gariny 27 апр. Kate29222 27 апр. Мика100 27 апр. ToP4ИK 27 апр. Sashastay 27 апр.
На рисунке изображён график функции вида f(x)=|ax-b|, где a и b - целые числа
Найдите точку минимума функции f x. Найдите количество точек максимума функции f x , принадлежащих отрезку [-2;17]. Найдите количество точек минимума функции f x , принадлежащих отрезку [-18;3]. В какой точке отрезка [-5;-1] функция f x принимает наибольшее значение? В какой точке отрезка [2;8] функция f x принимает наименьшее значение? На оси абсцисс отмечены точки -1, 2, 3, 4.
Способ 3. Этот способ подойдёт для школьников, которые знакомы с элементарными преобразованиями графиков функций, претендует на высокие баллы за экзамен и хочет потратить на решение задачи минимум времени. Задача 9. На рисунке 13 изображён график функции вида. Найдите значение c. Ответ: 2.
По условию эта касательная проходит через точки 3;1 и 8;8. Решение: 0,2 Производная функции f x в точке x0 равна тангенсу угла наклона касательной к графику функции в этой точке. По условию эта касательная проходит через точки -2;2 и 3;3. На оси абсцисс отмечено десять точек: x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10. В ответе укажите количество точек из отмеченных , в которых производная функции f x отрицательна. Решение: При убывающей функции динамика отрицательная, то есть производная функции будет отрицательной. На оси абсцисс отмечено восемь точек: x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8. В ответе укажите количество точек из отмеченных , в которых производная функции f x положительна. Решение: При возрастающей функции динамика положительная, то есть производная функции будет положительной. На оси абсцисс отмечено десять точек: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. Найдите количество отмеченных точек, в которых производная функции f x положительна. Типы заданий те же, что и в новом банке.
Найдите a. Найдите f 15. Найдите ab.