Новости период что такое в химии

Период периодической системы — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная.

Металлы, неметаллы, металлоиды

  • Группы и периоды Периодической системы. Физический смысл порядкового номера химического элемента
  • Конспект "Периодическая система химических элементов" - УчительPRO
  • Свойства таблицы Менделеева
  • Строение периодической системы

Периодическая система химических элементов

По мере перехода от металлов к неметаллам по периоду, металлические свойства уменьшаются, а неметаллические — увеличиваются. Температура плавления и кипения: В пределах периода температура плавления и кипения элементов обычно увеличивается слева направо. Связано это с увеличением электроотрицательности и энергии ионизации элементов. Исключением в свойствах периода являются элементы группы инертных газов группа 18 , которые по своим свойствам мало зависят от положения в периоде. Химическая активность Период в химии имеет прямое отношение к химической активности элементов. Химическая активность определяется способностью элемента образовывать химические соединения.

Периодическая система химических элементов включает в себя семь периодов, где каждый период соответствует электронной оболочке атома. В пределах одного периода, химическая активность элементов увеличивается от газообразных элементов с крайней левой стороны периодической системы до неметаллов и металлов с крайней правой стороны. Самыми активными элементами в периоде являются неметаллы, такие как кислород, фтор и хлор. Они обладают высокой электроотрицательностью и способностью к образованию соединений с другими элементами. В то же время, металлы находятся в нижней части периода и обычно менее активны, хотя существуют исключения.

Различные свойства элементов в периоде объясняются изменением заряда ядра атома и количеством электронов во внешней электронной оболочке. По мере увеличения заряда ядра и добавления электронов в оболочку, элементы становятся более активными и имеют большую способность к химическим реакциям. Важно отметить, что химическая активность элементов может быть изменена в различных условиях, таких как температура, давление и наличие катализаторов. Однако, период в периодической системе остается основным фактором, определяющим химическую активность элементов. Физические свойства Физические свойства химических веществ описывают их состояние, структуру и поведение в различных условиях.

Номер периода соответствует числу заполняемых энергетических уровней. Номер группы, как правило, соответствует числу валентных электронов в атоме то есть электроном, способных к образованию химической связи. Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения! О каких же еще свойствах говорится в Периодическом законе? Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др. Рассмотрим, как меняется атомный радиус. Вообще, атомный радиус — понятие довольно сложное и неоднозначное. Различают радиусы атомов металлов и ковалентные радиусы неметаллов. Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке.

Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств. Мы говорим про орбитальный радиус изолированного атома. Орбитальный радиус — это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов. Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами. Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы. Например , в ряду атомов: F — Cl — Br — I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается. Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы. Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру. Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно: Чем больше заряд ядра атома при одинаковом количестве заполняемых энергетических уровней , тем меньше атомный радиус.

Например , в ряду Li — Be — B — C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается. В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома. В главных подгруппах сверху вниз увеличивается орбитальный радиус. В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов. В периодах слева направо орбитальный радиус атомов уменьшается. В группе снизу вверх атомный радиус уменьшается, а сверху вниз — увеличивается. Следовательно, правильный ответ: O, S, Se или 142.

В периоде слева направо атомный радиус уменьшается, а справа налево — увеличивается. Следовательно, правильный ответ: Li, B, F или 243. Ответ: 243 Рассмотрим закономерности изменения радиусов ионов : катионов и анионов. Катионы — это положительно заряженные ионы. Катионы образуются, если атом отдает электроны. Радиус катиона меньше радиуса соответствующего атома. С увеличением положительного заряда иона радиус уменьшается. Анионы образуются, если атом принимает электроны. Радиус аниона больше радиуса соответствующего атома. Радиусы ионов также зависят от числа заполненных энергетических уровней в ионе и от заряда ядра.

Например , радиус иона Cl — больше радиуса атома хлора Cl. Изоэлектронные ионы — это ионы с одинаковым числом электронов. Для изоэлектронных частиц радиус также определяется зарядом ядра: чем больше заряд ядра иона, тем меньше радиус. Еще одно очень важное свойство атомов — электроотрицательность ЭО. Электроотрицательность — это способность атома смещать к себе электроны других атомов при образовании связи. Оценить электроотрицательность можно только примерно. В настоящее время существует несколько систем оценки относительной электроотрицательности атомов. Одна из наиболее распространенных — шкала Полинга. В главных подгруппах сверху вниз уменьшается электроотрицательность. В периодах слева направо электроотрицательность увеличивается.

Электроотрицательность увеличивается в группах снизу вверх и слева направо в периодах. Следовательно, правильный ответ: P, N, O или 243. На данном уроке рассматривается Периодический закон и Периодическая система химических элементов Д. Менделеева в свете теории строения атома.

Фундаментальным принципом построения П. Каждая группа в свою очередь подразделяется на главную а и побочную б подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших степенях окисления, которые, как правило, соответствуют номеру группы. Периодом называется совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом особый случай — первый период ; каждый период содержит строго определённое число элементов. Первый период периодической системы элементов Специфика первого периода заключается в том, что он содержит всего 2 элемента: H и He.

Место H в системе неоднозначно: водород проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia-, либо предпочтительнее в VIIa-подгруппу. Гелий — первый представитель VIIa-подгруппы однако долгое время Не и все инертные газы объединяли в самостоятельную нулевую группу. Второй период периодической системы элементов Второй период Li — Ne содержит 8 элементов. Он начинается щелочным металлом Li, единственная степень окисления которого равна I. Затем идёт Be — металл, степень окисления II. Металлический характер следующего элемента В выражен слабо степень окисления III. Идущий за ним C — типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, O, F и Ne — неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положительную валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne. Третий период периодической системы элементов Третий период Na — Ar также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде.

Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща амфотерность. Si, Р, S, Cl, Ar — типичные неметаллы, но все они кроме Ar проявляют высшие степени окисления, равные номеру группы. Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов малых, по его терминологии типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и O являются наряду с H основными элементами органической материи органогенами. Все элементы первых трёх периодов входят в подгруппы а. Четвёртый период периодической системы элементов Четвёртый период K — Kr содержит 18 элементов первый большой период, по Менделееву. После щелочного металла K и щёлочноземельного Ca s-элементы следует ряд из десяти так называемых переходных элементов Sc — Zn , или d-элементов символы даны синим цветом , которые входят в подгруппы б соответствующих групп П. Большинство переходных элементов все они металлы проявляет высшие степени окисления, равные номеру группы. Исключение — триада Fe — Co — Ni, где два последних элемента максимально положительно трёхвалентны, а железо в определённых условиях известно в степени окисления VI.

Элементы, начиная с Ga и кончая Kr р-элементы , принадлежат к подгруппам а, и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Kr способен образовывать химические соединения главным образом с F , но степень окисления VIII для него неизвестна. Пятый период периодической системы элементов Пятый период Rb — Xe построен аналогично четвёртому; в нём также имеется вставка из 10 переходных элементов Y — Cd , d-элементов. Специфические особенности периода: 1 в триаде Ru — Rh — Pd только рутений проявляет степень окисления VIII; 2 все элементы подгрупп а проявляют высшие степени окисления, равные номеру группы, включая и Xe; 3 у I отмечаются слабые металлические свойства. Таким образом, характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлические свойства сохраняются в большом интервале порядковых номеров. Шестой период периодической системы элементов Шестой период Cs — Rn включает 32 элемента. В нём помимо 10 d-элементов La, Hf — Hg содержится совокупность из 14 f-элементов, лантаноидов, от Ce до Lu символы чёрного цвета. Элементы от La до Lu химически весьма сходны. В короткой форме П. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы.

Элементы расположены в таблице по определенному химическому и физическому смыслу. По расположению элемента можно определить его валентность, число электронов и многие другие особенности. Таблица поделена горизонтально на большие и малые периоды, а вертикально на группы. Таблица Менделеева. Существует 7 периодов, которые начинаются с щелочного металла, а заканчиваются веществами, имеющими неметаллические свойства. Группы, в свою очередь, состоящие из 8 столбцов, поделены на главные и побочные подгруппы. Дальнейшее развитие науки показало, что периодическое повторение свойств элементов через определенные интервалы, особенно отчетливо проявляющиеся во 2 и 3 малых периодах, объясняется повторением электронного строения внешних энергетических уровней, где находятся валентные электроны, за счет которых идет образование химических связей и новых веществ в реакциях.

Поэтому в каждом вертикальном столбце-группе оказываются элементы с повторяющимися характерными чертами. Это ярко проявляется в группах, где находятся семейства очень активных щелочных металлов I группа, главная подгруппа и неметаллов-галогенов VII группа, главная подгруппа.

Период в химии: что это такое?

  • Что означает Nn в химии (нулевой период)
  • Что такое период химия. Что такое период в химии — domino22
  • Что означает Nn в химии (нулевой период) - Есть ответ на
  • Химия - это просто
  • ТАБЛИЦА МЕНДЕЛЕЕВА - периодическая система химических элементов
  • ТАБЛИЦА МЕНДЕЛЕЕВА - периодическая система химических элементов

Характеристика натрия

В статье дается развернутое определение того, что такое период в периодической таблице химических элементов. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает. Рассмотрим: почему она носит такое название, почему её называют универсальной шпаргалкой, какие сведения можно получить, используя её на уроках не только химии, но и физики. Итогом чудесных сновидений ученого стала Периодическая таблица химических элементов, в которой Д.И. Менделеев выстроил химические элементы по возрастанию атомной массы. Правильный ответ на вопрос«Что означает Nn в химии (нулевой период) » по предмету Химия.

Что важно знать о марганце в химии ,состав, строение, характеристики

Значение сделанного Шееле и Пристли открытия смог правильно оценить французский химик Антуан Лоран Лавуазье. В 1774 г. Лавуазье опубликовал трактат "Небольшие работы по физике и химии", где высказал предположение о том, что при горении происходит присоединение к телам части атмосферного воздуха. После того, как Пристли в 1774 г. Наконец, в 1777 г. Лавуазье сформулировал основные положения кислородной теории горения: 1. Тела горят только в "чистом воздухе".

Металлы при прокаливании превращаются в "земли". Сера или фосфор, соединяясь с "чистым воздухом", превращаются в кислоты. Новая кислородная теория горения термин кислород — oxygenium — появился в 1877 г. Она более проста, чем флогистонная, не содержала в себе "противоестественных" предположений о наличии у тел отрицательной массы, и, главное, не основывалась на существовании субстанций, не выделенных экспериментально. Вследствие этого кислородная теория горения довольно быстро получила широкое признание среди естествоиспытателей хотя полемика между Лавуазье и флогистиками длилась ещё много лет. В конце 18 века и начале 19 в философии преобладает течение, называемое Сциентизм от science , которое проявляется в восхищении наукой, культе науки и человеческого знания.

Человек гордится своим знанием и разумностью, свободой, уверен в своей способности решить все возникающие задачи. Главными центрами научной деятельности становятся Академии. В это время и в химической науке происходит революция. Отказ от теории флогистона потребовал пересмотра всех основных принципов и понятий химии, изменения терминологии и номенклатуры веществ. Поэтому с создания кислородной теории начался переломный этап в развитии химии, названный "химической революцией". В 1785-1787 гг.

Логика новой номенклатуры предполагала построение названия вещества по названиям тех элементов, из которых вещество состоит. Основные принципы этой номенклатуры используются до настоящего времени. Если таблица Менделеева кажется вам сложной для понимания, вы не одиноки! Хотя бывает непросто понять ее принципы, умение работать с ней поможет при изучении естественных наук. Для начала изучите структуру таблицы и то, какую информацию можно узнать из нее о каждом химическом элементе. Затем можно приступить к изучению свойств каждого элемента.

И наконец, с помощью таблицы Менделеева можно определить число нейтронов в атоме того или иного химического элемента. Шаги Часть 1 Структура таблицы Таблица Менделеева, или периодическая система химических элементов, начинается в левом верхнем углу и заканчивается в конце последней строки таблицы в нижнем правом углу. Элементы в таблице расположены слева направо в порядке возрастания их атомного номера. Атомный номер показывает, сколько протонов содержится в одном атоме. Кроме того, с увеличением атомного номера возрастает и атомная масса. Таким образом, по расположению того или иного элемента в таблице Менделеева можно определить его атомную массу.

Как видно, каждый следующий элемент содержит на один протон больше, чем предшествующий ему элемент. Это очевидно, если посмотреть на атомные номера. Атомные номера возрастают на один при движении слева направо. Поскольку элементы расположены по группам, некоторые ячейки таблицы остаются пустыми. Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2. Однако они расположены на противоположных краях, так как принадлежат к разным группам.

Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке. Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах.

В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы. Номера могут быть указаны римскими например, IA или арабскими например,1A или 1 цифрами. При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу». Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам элементы одной группы обладают схожими физическими и химическими свойствами. Благодаря этому можно легче понять, как ведет себя тот или иной элемент.

Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки. Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21. Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода.

Таблица содержит 7 строк, то есть 7 периодов. Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей. Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы. При движении вдоль строки слева направо говорят, что вы «просматриваете период». Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится.

Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними. Часть 2 Обозначения элементов Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков.

При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их. Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов, они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия. Обратите внимание на полное название элемента, если оно приведено в таблице. Это «имя» элемента используется в обычных текстах.

Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом. Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы. Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу.

Предшественники Д. Менделеева — французский химик Шанкартуа, немецкий химик Дёберейнер, английский ученый Ньюлендс - осуществляли попытки классифицировать элементы, но в основу их классификации были положены свойства веществ осуществлялся подбор элементов по свойствам. Ближе всех к решению задачи систематизации подошёл в 1864г. Изучение свойств элементов, равно как свойств образуемых ими соединений, привело к накоплению богатого фактического материала. В отличии от своих предшественников, Д.

Менделеев находит общее среди всех элементов. И основой его классификации становится атомная масса. Расположив все известные к тому времени химические элементы в порядке возрастания их относительных атомных масс, он увидел периодичность повторения свойств элементов и их соединений. Так Д. Менделеев в марте 1869г. Несмотря на важность сделанного Д. Менделеевым открытия, многие противоречия все же не были разрешены. И было сделано ряд исключений для расположения элементов по атомным массам. Так, была непонятна причина периодичности изменения свойств элементов. Ответы на этот и другие вопросы были найдены лишь после раскрытия внутренней структуры атома.

Учение о строении атома подтвердило глубинный смысл периодического закона и скорректировало его формулировку. Свое выражение периодический закон нашел в построенной Д. Менделеевым периодической системе. Периодическая система — одна, а форм периодических таблиц — более 500. Наиболее известны длинный, полудлинный и короткий варианты периодической таблицы. Как показали достижения физики в области квантовой механики строения атома, периодичность свойств элементов обусловлена периодической повторяемостью расположения валентных электронов на уровнях и подуровнях по мере роста заряда ядра атома. Закономерности периодической системы элементов широко используются современными интегрированными науками: геохимией, космохимией, физхимией, биохимией, при подборе катализаторов и т.

Магний, в свою очередь, является неотъемлемой составляющей многих ферментов и участвует в процессах синтеза ДНК и РНК. Третий период также включает в себя элементы главной подгруппы, такие как бор B и алюминий Al. Бор используется в производстве стекла и применяется в ядерной энергетике. Алюминий широко используется в промышленности благодаря своим высоким прочностным характеристикам и легкости. Таким образом, третий период периодической системы химических элементов включает в себя элементы, играющие важную роль в химических реакциях и биологических процессах. Четвёртый период Особенностью четвёртого периода является то, что в нём заполняются электронные оболочки элементов d- и p-блока. В результате этого, в периоде представлены как металлы, так и неметаллы. Некоторые из них являются основными компонентами нашей окружающей среды и широко используются в промышленности. Среди элементов четвёртого периода наиболее известными являются железо Fe , никель Ni , медь Cu и цинк Zn. Вместе с тем, этот период также включает в себя элементы, такие как карбонат K , аргон Ar и криптон Kr , которые имеют важное значение в научных и технических областях. Четвёртый период играет важную роль в химии, так как представляет собой переходный период между элементами s- и p-блоков. Это период активной реактивности и разнообразности свойств элементов, что делает его изучение особенно интересным для химиков.

Все периоды кроме первого начинаются щелочным металлом s -элементом , а заканчиваются благородным газом. Группы — вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns— и np— подуровнях. Периодическая система элементов Д. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра. В периодах слева направо возрастает число электронов на внешнем уровне. В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства. При этом водород условно размещают в IA или VIIA подгруппе, так как он проявляет сходство и со щелочными металлами, и с галогенами. Как и щелочные металлы, водород является восстановителем. Аналогично построен пятый период. Переходными элементами обычно называют любые элементы с валентными d— или f—электронами. Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d—элементов от лантана La — до ртути Hg , а после первого переходного элемента лантана La следуют 14 f—элементов — лантаноидов Се — Lu. После ртути Hg располагаются остальные 6 основных р-элементов шестого периода Тl — Rn. В седьмом незавершенном периоде за Ас следуют 14 f—элементов- актиноидов Th — Lr. В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы. В Периодической системе каждый элемент расположен в строго определенном месте, которое соответствует его порядковому номеру. Элементы в Периодической системе разделены на восемь групп I — VIII , которые в свою очередь делятся на подгруппы — главные , или подгруппы А и побочные , или подгруппы Б. Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно: В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические. В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы. У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп литий, бериллий, натрий и др. У p-элементов электронами заполняются p-орбитали. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп. Номер периода соответствует числу заполняемых энергетических уровней. Номер группы, как правило, соответствует числу валентных электронов в атоме то есть электроном, способных к образованию химической связи. Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения! О каких же еще свойствах говорится в Периодическом законе? Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др. Рассмотрим, как меняется атомный радиус. Вообще, атомный радиус — понятие довольно сложное и неоднозначное. Различают радиусы атомов металлов и ковалентные радиусы неметаллов. Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств. Мы говорим про орбитальный радиус изолированного атома. Орбитальный радиус — это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов. Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами. Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы. Например , в ряду атомов: F — Cl — Br — I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается. Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы. Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру. Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно: Чем больше заряд ядра атома при одинаковом количестве заполняемых энергетических уровней , тем меньше атомный радиус. Например , в ряду Li — Be — B — C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается. В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома. В главных подгруппах сверху вниз увеличивается орбитальный радиус. В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов.

ТАБЛИЦА МЕНДЕЛЕЕВА - периодическая система химических элементов

В 1871 году в книге "Основы химии" Менделеевым была включена "Естественная система элементов Д. Менделеева" – первая классическая короткая форма Периодической системы химических элементов. К четвёртому периоду периодической системы относятся элементы четвёртой строки (или четвёртого периода) периодической системы химических элементов. Период периодической системы — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.

Как быстро выучить таблицу Менделеева?

Найди верный ответ на вопрос«Что означает Nn в химии (нулевой период) » по предмету Химия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. Современная форма Периодической системы химических элементов (в 1989 году Международным союзом теоретической и прикладной химии рекомендована длинная форма таблицы) состоит из семи периодов (горизонтальных последовательностей элементов. Период в химии — это одна из основных характеристик химического элемента, которая связана с расположением элементов в периодической системе.

Теория электролитической диссоциации

Периоды имеют отношение ко многим основным свойствам элементов, включая их электронную конфигурацию, радиусы атомов и их активность. Кроме того, периоды играют важную роль в предсказании и понимании химических реакций. Элементы в пределах одного периода имеют подобные свойства, поэтому знание периодической системы элементов позволяет спрогнозировать химическое поведение и реакционную способность различных элементов. Таким образом, понимание периода в химии является необходимым для изучения и практического применения химических процессов, а также для разработки новых материалов и реакций в области науки и промышленности.

Марганец является важным элементом для всех форм жизни. Это абсолютно необходимо для активности нескольких ферментов, которые должны связывать атом марганца, прежде чем они смогут функционировать, включая супероксиддисмутазу, фермент, который защищает нас от вредного воздействия токсичных кислородных радикалов. Особенности марганца Марганец — это химически активный элемент розовато-серого цвета. Это твердый металл и очень хрупкий. Он трудно плавится, но легко окисляется. Марганец реагирует в чистом виде, и в виде порошка он будет гореть в кислороде, он реагирует с водой ржавеет, как железо и растворяется в разбавленных кислотах. Он химически активен и медленно разлагается в холодной воде. Металлический марганец является ферромагнитным только после специальной обработки. Марганец жизненно важен для жизни человека и животных в метаболических функциях. Многие сплавы, содержащие марганец, используются в производстве стали, производстве стекла и даже для того, чтобы сделать алюминий в банках из-под газировки тоньше и прочнее.

Эти признаки объединяют группу металлов. Как мы можем описать неметаллические вещества? Какие они будут иметь общие характеристики? В простых соединениях неметаллы могут быть как газы кислород О2, хлор Cl2, азот N2 , жидкости бром Br2 , так и твёрдые вещества алмаз — самоё твёрдое вещество, образован Углеродом С, также сера S, кремний Si, фосфор Р, йод I2. Они могут быть не только разного агрегатного состояния, но и иметь разнообразную окраску. Но, не смотря на такие резкие отличия между ними, возможно выделить общие черты: они диэлектрики и не пластичны. Большинство неметаллов имеют молекулярное строение. Данная классификация актуальна и в наше время. Над классификацией элементов трудилось много учёных разных стран. Работая независимо друг от друга, они обнаружили интересный факт, что свойства элементов зависят от их атомной массы. Немецкий химик И. Деберейнер отметил, что некоторые элементы сходны свойствами, и их можно объединить в группы, название которым дал — триады. Масса одного из элементов является средним арифметическим элементов с максимальной и минимальной массой в группе. Источник Недостатком данной систематизации является то, что данным способом удалось получить всего 5 триад. Не трудно подсчитать, что систематизировано было всего 15 элементов, а остальные 56 элементов не вписывались в его классификацию. Однако Деберейнер один из немногих заметил связь между свойствами и атомной массой элемента. Ещё один необычный способ предложил французский химик А. За основу он взял спираль и на её витках разместил элементы в порядке возрастания их атомных масс. Другое название она получила «Теллуровый винт», потому что заканчивалась Теллуром. Заслугой «спирали-винта» было обращение внимания на подобные свойства Водорода и галогенов Cl, Br, I. Таким образом удалось систематизировать 50 элементов. Как совершенству нет предела, так и фантазиям учёных. Так английский учёный Джон Ньюлендс связал элементы с музыкой, он предоставил их в виде нот и заострил своё внимание на том, что каждый восьмой повторяет свойства первого. Источник Как оказалось, и эта классификация имеет недочёты, во-первых, она не располагала местом для новых элементов, а, во-вторых, в одно семейство попадали элементы с разными свойствами, которые не имели ничего общего: Cl и Pt, S, Fe и Au. Однако данная систематизация имела и положительные моменты, учёные заметили, что периодичность возникает на 8 элементе по счёту, также появилось понятие порядковый номер. Отдельно хочется выделить немецкого учёного Лотара Мейера. Он разместил 28 элементов в виде таблицы. В принцип создания таблицы он заложил атомную массу, её увеличение, а также выделил столбцы элементов с одинаковой валентностью.

Главные подгруппы состоят из элементов малых и больших периодов. Побочные подгруппы состоят из элементов только больших периодов. В главных подгруппах сверху вниз металлические свойства усиливаются, а неметаллические ослабевают. Элементы главных и побочных групп сильно отличаются по свойствам. Номер группы показывает высшую валентность элемента кроме N, O, F. Общими для элементов главных и побочных подгрупп являются формулы высших оксидов и их гидратов. Для элементов главных подгрупп общими являются формулы водородных соединений. Основные принципы построения периодической системы Изменения свойств в периодической системе с ростом величины атомных весов в периоде слева направо : 1.

Что означает Nn в химии (нулевой период)

У этих элементов электроны начинают заполнять третий по счёту от внешнего электронного слоя уровень. Это лантаноиды и актиноиды. Для удобства их помещают под основной таблицей. Все они, кроме урана, практически не встречаются в природе и синтезируются искусственно. Переходные металлы Элементы побочных подгрупп, кроме лантаноидов и актиноидов, называют переходными металлами. Они вполне укладываются в привычные представления о металлах — твёрдые за исключением жидкой ртути , плотные, обладают характерным блеском, хорошо проводят тепло и электричество. Валентные электроны их атомов находятся на внешнем и предвнешнем энергетических уровнях. Неметаллы Правый верхний угол таблицы до инертных газов занимают неметаллы. Неметаллы плохо проводят тепло и электричество и могут существовать в трёх агрегатных состояниях: твёрдом как углерод или кремний , жидком как бром и газообразном как кислород и азот.

Водород может проявлять как металлические, так и неметаллические свойства, поэтому его относят как к первой, так и к седьмой группе Периодической системы. Подгруппа углерода Четвёртую группу главную подгруппу IVА называют подгруппой углерода. Углерод и кремний обладают всеми свойствами неметаллов, германий и олово занимают промежуточную позицию, а свинец имеет выраженные металлические свойства. Углерод образует несколько аллотропных модификаций — вариантов простых веществ, отличающихся по своему строению, а именно: графит, алмаз, фуллерит и другие. Большинство элементов подгруппы углерода — полупроводники проводят электричество за счёт примесей, но хуже, чем металлы. Графит, германий и кремний используют при изготовлении полупроводниковых элементов транзисторы, диоды, процессоры и так далее. Подгруппа азота Пятую группу главную подгруппу VA называют пниктогенами или подгруппой азота. В ходе реакций эти элементы могут как отдавать электроны, так и принимать их, завершая внешний энергетический уровень.

Физические свойства элементов подгруппы азота различны. Азот является бесцветным газом. Фосфор, мягкое вещество, образует несколько вариантов аллотропных модификаций — белый, красный и чёрный фосфор. Мышьяк — твёрдый полуметалл, способный проводить электрический ток. Висмут — блестящий серебристо-белый металл с радужным отливом. Азот — основное вещество в составе атмосферы нашей планеты. Некоторые элементы подгруппы азота токсичны для человека фосфор, мышьяк, висмут. При этом азот и фосфор являются важными элементами почвенного питания растений, поэтому они входят в состав большинства удобрений.

Азот и фосфор также участвуют в формировании важнейших молекул живых организмов — белков и нуклеиновых кислот. Подгруппа кислорода Халькогены или подгруппа кислорода — элементы шестой группы главной подгруппы VIA. Для завершения внешнего электронного уровня атомам этих элементов не хватает лишь двух электронов, поэтому они проявляют сильные окислительные неметаллические свойства. Однако, по мере продвижения от кислорода к полонию они ослабевают. Кислород образует две аллотропные модификации — кислород и озон — тот самый газ, который образует экран в атмосфере планеты, защищающий живые организмы от жёсткого космического излучения.

Проблема нижней границы таблицы Менделеева остаётся одной из важнейших в современной теоретической химии [2]. Структура Наиболее распространёнными являются три формы таблицы Менделеева: «короткая» короткопериодная , «длинная» длиннопериодная и «сверхдлинная».

В «сверхдлинном» варианте каждый период занимает ровно одну строчку. Такая расширенная периодическая таблица элементов была предложена в 1970 году Теодором Сиборгом. Водород помещён в 17-ю группу таблицы. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по две строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток. Водород помещён в 7-ю группу таблицы. Короткая форма таблицы была официально отменена ИЮПАК в 1989 году, но её продолжают иногда использовать. Существует несколько сотен вариантов таблицы, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона.

Например, Нильс Бор разрабатывал лестничную пирамидальную форму периодической системы. Многие учёные до сих пор предлагают всё новые варианты таблицы [3] [4]. Группы Группа, или семейство — одна из колонок периодической таблицы. Для групп, как правило, характерны более выраженные периодические тенденции, нежели для периодов или блоков. Современные квантово-механические теории атомной структуры объясняют групповую общность тем, что элементы в пределах одной группы обыкновенно имеют одинаковые электронные конфигурации на их валентных оболочках. Соответственно, элементы, которые принадлежат к одной и той же группе, традиционно располагают схожими химическими особенностями и демонстрируют явную закономерность в изменении свойств по мере увеличения атомного числа. Впрочем, в некоторых областях таблицы, например, в d-блоке и f-блоке, горизонтальные сходства могут быть столь же важны или даже более заметно выражены, нежели вертикальные.

Ранее для их идентификации использовались римские цифры. Изменение свойств элементов в зависимости от положения в периодической таблице Менделеева. Стрелки указывают на повышение Некоторым из этих групп были присвоены тривиальные, несистематические названия например, « щёлочноземельные металлы », « галогены » и т. Группы с третьей по четырнадцатую включительно такими именами не располагают, и их идентифицируют либо по номеру, либо по наименованию первого представителя «титановая», «кобальтовая» и так далее , поскольку они демонстрируют меньшую степень сходства между собой или меньшее соответствие вертикальным закономерностям. Элементы, относящиеся к одной группе, как правило, демонстрируют определённые тенденции по атомному радиусу , энергии ионизации и электроотрицательности.

Электролитическая диссоциация — это процесс, в ходе которого молекулы электролитов взаимодействуют с водой или другим растворителем и распадаются на ионы. Она может иметь обратимый или необратимый характер. Обратный процесс называется моляризацией. Благодаря диссоциации растворы электролитов обретают способность проводить ток. Сванте Аррениус не смог объяснить, почему разные вещества сильно отличаются по электропроводности, но это сделал Д. Он подробно описал процесс распада электролита на ионы, который объясняется его взаимодействием с молекулами воды или другого растворителя.

Каждый период представляет собой группу элементов, у которых количество электронных оболочек равно номеру периода. Например, первый период состоит из элементов с одной электронной оболочкой водород и гелий. Периодическая таблица Менделеева состоит из 7 периодов. Принципиальное отличие элементов в разных периодах заключается в том, что с ростом номера периода элементов увеличивается количество электронных оболочек, а также количество зарядовых ядерных частиц протонов и нейтронов.

Тема №2 «Закономерности изменения химических свойств элементов»

Аналогично построен пятый период. Переходными элементами обычно называют любые элементы с валентными d— или f—электронами. Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d—элементов от лантана La — до ртути Hg , а после первого переходного элемента лантана La следуют 14 f—элементов — лантаноидов Се — Lu. После ртути Hg располагаются остальные 6 основных р-элементов шестого периода Тl — Rn. В седьмом незавершенном периоде за Ас следуют 14 f—элементов- актиноидов Th — Lr.

В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы. В Периодической системе каждый элемент расположен в строго определенном месте, которое соответствует его порядковому номеру. Элементы в Периодической системе разделены на восемь групп I — VIII , которые в свою очередь делятся на подгруппы — главные , или подгруппы А и побочные , или подгруппы Б. Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению.

А именно: В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические. В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы. У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп литий, бериллий, натрий и др. У p-элементов электронами заполняются p-орбитали.

У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп. Номер периода соответствует числу заполняемых энергетических уровней. Номер группы, как правило, соответствует числу валентных электронов в атоме то есть электроном, способных к образованию химической связи. Номер группы, как правило, соответствует высшей положительной степени окисления атома.

Но есть исключения! О каких же еще свойствах говорится в Периодическом законе? Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др. Рассмотрим, как меняется атомный радиус. Вообще, атомный радиус — понятие довольно сложное и неоднозначное.

Различают радиусы атомов металлов и ковалентные радиусы неметаллов. Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств. Мы говорим про орбитальный радиус изолированного атома. Орбитальный радиус — это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов.

Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами. Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы. Например , в ряду атомов: F — Cl — Br — I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается. Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы. Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру.

Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно: Чем больше заряд ядра атома при одинаковом количестве заполняемых энергетических уровней , тем меньше атомный радиус. Например , в ряду Li — Be — B — C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается. В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома.

В главных подгруппах сверху вниз увеличивается орбитальный радиус. В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов. В периодах слева направо орбитальный радиус атомов уменьшается.

В группе снизу вверх атомный радиус уменьшается, а сверху вниз — увеличивается. Следовательно, правильный ответ: O, S, Se или 142. В периоде слева направо атомный радиус уменьшается, а справа налево — увеличивается. Следовательно, правильный ответ: Li, B, F или 243. Ответ: 243 Рассмотрим закономерности изменения радиусов ионов : катионов и анионов.

Катионы — это положительно заряженные ионы. Катионы образуются, если атом отдает электроны. Радиус катиона меньше радиуса соответствующего атома.

Это приводит к изменениям в химических свойствах элементов. Период обозначается цифрой сверху периодической таблицы. Примеры элементов из различных периодов: второй литий, бериллий , третий натрий, магний , четвёртый калий, кальций и так далее.

Строение периодической таблицы основано на строках для иллюстрации повторяющихся периодических трендов в… … Википедия Седьмой период периодической системы — К седьмому периоду периодической системы относятся элементы седьмой строки или седьмого периода периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся периодических трендов … Википедия Шестой период периодической системы — К шестому периоду периодической системы относятся элементы шестой строки или шестого периода периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся периодических трендов в… … Википедия Первый период периодической системы — К первому периоду периодической системы относятся элементы первой строки или первого периода периодической системы химических элементов.

Строение периодической таблицы основано на строках для иллюстрации повторяющихся периодических трендов в… … Википедия Второй период периодической системы — Ко второму периоду периодической системы относятся элементы второй строки или второго периода периодической системы химических элементов.

Например, атом кислорода может быть в виде соединения кислорода О2 и озона О3. Имеют изотопы — разновидности атомов химического элемента, имеющие одинаковое количество протонов и электронов, но разное количество нейтронов, следовательно, и разную атомную массу. Как «вес» элемента может сказаться на его «работе»? Мы упомянули, что изотопы имеют различную массу. Оказывается, «вес» элемента напрямую влияет на его свойства и применение. Самыми известными являются изотопы водорода: водород масса равна 1 , дейтерий масса равна 2 и тритий масса равна 3. Более тяжелые изотопы используются в атомной энергетике, для осуществления термоядерного синтеза и для создания водородных бомб. Изотопы имеет и углерод: углерод-12, углерод-13 и углерод-14 цифра обозначает массу атома. Если первые два стабильны и встречаются повсеместно, то последний за счет своей массы менее стабилен — он хочет быстрее сбросить с себя лишние нейтроны путем распада.

Данное качество сыграло решающую роль в применении углерода-14. Ученые рассчитали «время жизни» изотопа, благодаря чему при анализе органических веществ по количеству найденного углерода-14 можно сделать вывод о возрасте найденного объекта. Данный метод был назван радиоуглеродным анализом, сейчас он находит широкое применение при датировке определении возраста ископаемых. За это открытие в 1960 году Уилларду Либби была присуждена Нобелевская премия по химии. Теперь, когда мы разобрались в понятии и общих свойствах химических элементов, давайте разберем подробнее, как именно зависят их свойства от местонахождения в Периодической системе. Закономерности изменения химических свойств элементов Для дальнейшей работы хорошо бы иметь под рукой таблицу Менделеева. Разберем закономерности изменения свойств элементов в зависимости от положения в таблице. Ориентир — франций Для начала изучим свойства элементов, которые увеличиваются справа налево и сверху вниз при движении по таблице то есть при движении к францию — Fr. Можно провести воображаемую линию, которая начинается у атома бора и заканчивается у атома астата. Так вот, все элементы, которые попадут в левую область таблицы будут являться металлами , а элементы главных подгрупп, которые попадут в правую часть — неметаллами.

Радиус атома При движении по периоду увеличивается число электронов на соответствующем валентном уровне — электроны начинают сильнее притягиваться к положительному ядру, тем самым «сжимая» размер радиуса. Поэтому радиус атома уменьшается слева направо при движении по периоду. При движении по группе сверху вниз увеличивается число электронных оболочек, атом становится «толще», поэтому сверху вниз по группе радиус атома увеличивается.

Что такое период в периодической системе элементов?

Периоды (кроме 1-го) начинаются щелочным металлом и заканчиваются инертным газом. Что такое период в химии — domino22 Периоды бывают в химии. К четвёртому периоду периодической системы относятся элементы четвёртой строки (или четвёртого периода) периодической системы химических элементов. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях. Элементы одного периода имеют близкие значения атомных масс, но разные физические и химические свойства, в отличие от элементов одной группы.

Период периодической системы. Периоды развития химии Что можно определить по периоду в химии

В периодах и группах периодической системы химические элементы располагаются в порядке возрастания заряда их атомных ядер, т.е. порядкового номера элемента. Закон и периодическая система химических элементов своим появлением разделили химию на два периода: до появления периодической системы Менделеева и после открытия. Современная формулировка периодического закона заключается в следующем: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элемента. Закономерности изменений свойств химических элементов в группах и периодах: слева направо по периоду, сверху вниз по группе.

Похожие новости:

Оцените статью
Добавить комментарий